By ANil [source]
This dataset provides an in-depth look at the profitability of e-commerce sales. It contains data on a variety of sales channels, including Shiprocket and INCREFF, as well as financial information on related expenses and profits. The columns contain data such as SKU codes, design numbers, stock levels, product categories, sizes and colors. In addition to this we have included the MRPs across multiple stores like Ajio MRP , Amazon MRP , Amazon FBA MRP , Flipkart MRP , Limeroad MRP Myntra MRP and PaytmMRP along with other key parameters like amount paid by customer for the purchase , rate per piece for every individual transaction Also we have added transactional parameters like Date of sale months category fulfilledby B2b Status Qty Currency Gross amt . This is a must-have dataset for anyone trying to uncover the profitability of e-commerce sales in today's marketplace
For more datasets, click here.
- šØ Your notebook can be here! šØ!
This dataset provides a comprehensive overview of e-commerce sales data from different channels covering a variety of products. Using this dataset, retailers and digital marketers can measure the performance of their campaigns more accurately and efficiently.
The following steps help users make the most out of this dataset: - Analyze the general sales trends by examining info such as month, category, currency, stock level, and customer for each sale. This will give you an idea about how your e-commerce business is performing in each channel.
- Review the Shiprocket and INCREF data to compare and analyze profitability via different fulfilment methods. This comparison would enable you to make better decisions towards maximizing profit while minimizing costs associated with each methodās referral fees and fulfillment rates.
- Compare prices between various channels such as Amazon FBA MRP, Myntra MRP, Ajio MRP etc using the corresponding columns for each store (Amazon MRP etc). You can judge which stores are offering more profitable margins without compromising on quality by analyzing these pricing points in combination with other information related to product sales (TP1/TP2 - cost per piece).
- Look at customer specific data such as TP 1/TP 2 combination wise Gross Amount or Rate info in terms price per piece or total gross amount generated by any SKU dispersed over multiple customers with relevant dates associated to track individual item performance relative to others within its category over time periods shortlisted/filtered appropriately.. Have an eye on items commonly utilized against offers or promotional discounts offered hence crafting strategies towards inventory optimization leading up-selling operations.?
- Finally Use Overall āStockā details along all the P & L Data including Yearly Expenses_IIGF information record for takeaways which might be aimed towards essential cost cutting measures like switching amongst delivery options carefully chosen out of Shiprocket & INCREFF leadings away from manual inspections catering savings under support personnel outsourcing structures.?By employing a comprehensive understanding on how our internal subsidiaries perform globally unless attached respective audits may provide us remarkably lower operational costs servicing confidence; costing far lesser than being incurred taking into account entire pallet shipments tracking sheets representing current level supply chains efficiencies achieved internally., then one may finally scale profits exponentially increases cut down unseen losses followed up introducing newer marketing campaigns necessarily tailored according playing around multiple goods based spectrums due powerful backing suitable transportation boundaries set carefully
- Analysing the difference in profitability between sales made through Shiprocket and INCREFF. This data can be used to see where the biggest profit margins lie, and strategize accordingly.
- Examining the Complete Cost structure of a product with all its components and their contribution towards revenue or profitability, i.e., TP 1 & 2, MRP Old & Final MRP Old together with Platform based MRP - Amazon, Myntra and Paytm etc., Currency based Profit Margin etc.
- Building a predictive model using Machine Learning by leveraging historical data to predict future sales volume and profits for e-commerce products across multiple categories/devices/platforms such as Amazon, Flipkart, Myntra etc as well providing m...
Salutary Data is a boutique, B2B contact and company data provider that's committed to delivering high quality data for sales intelligence, lead generation, marketing, recruiting / HR, identity resolution, and ML / AI. Our database currently consists of 148MM+ highly curated B2B Contacts ( US only), along with over 4M+ companies, and is updated regularly to ensure we have the most up-to-date information.
We can enrich your in-house data ( CRM Enrichment, Lead Enrichment, etc.) and provide you with a custom dataset ( such as a lead list) tailored to your target audience specifications and data use-case. We also support large-scale data licensing to software providers and agencies that intend to redistribute our data to their customers and end-users.
What makes Salutary unique? - We offer our clients a truly unique, one-stop aggregation of the best-of-breed quality data sources. Our supplier network consists of numerous, established high quality suppliers that are rigorously vetted. - We leverage third party verification vendors to ensure phone numbers and emails are accurate and connect to the right person. Additionally, we deploy automated and manual verification techniques to ensure we have the latest job information for contacts. - We're reasonably priced and easy to work with.
Products: API Suite Web UI Full and Custom Data Feeds
Services: Data Enrichment - We assess the fill rate gaps and profile your customer file for the purpose of appending fields, updating information, and/or rendering net new ālook alikeā prospects for your campaigns. ABM Match & Append - Send us your domain or other company related files, and weāll match your Account Based Marketing targets and provide you with B2B contacts to campaign. Optionally throw in your suppression file to avoid any redundant records. Verification (āCleaning/Hygieneā) Services - Address the 2% per month aging issue on contact records! We will identify duplicate records, contacts no longer at the company, rid your email hard bounces, and update/replace titles or phones. This is right up our alley and levers our existing internal and external processes and systems.
This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
š Total Sales: Achieved $456,000 in revenue across 1,000 transactions, with an average transaction value of $456.00.
š„ Customer Demographics:
Average Age: 41.39 years Gender Distribution: 51% male, 49% female Most active age groups: 31-40 & 41-50 years š·ļø Product Performance:
Top Categories: Electronics and Clothing led the sales, each contributing $160,000, followed by Beauty products with $140,000. Quantity Sold: Clothing topped the charts with 894 units sold. š Sales Trends: Identified key sales peaks, especially in May 2023, indicating the success of targeted promotional strategies.
Why This Matters:
Understanding these metrics allows for better-targeted marketing, efficient inventory management, and strategic planning to capitalize on peak sales periods. This project demonstrates the power of data-driven decision-making in retail!
š” Takeaway: Power BI continues to be a game-changer in visualizing and interpreting complex data, helping businesses to not just see numbers but to translate them into actionable insights.
Iām always looking forward to new challenges and projects that push my skills further. If you're interested in diving into the details or discussing data insights, feel free to reach out!
Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. CE Vision Europe includes consumer transaction data on 6.7M+ credit cards, debit cards, direct debit accounts, and direct transfer accounts, including 5.3M+ active monthly users. Capturing online, offline, and 3rd-party consumer spending on public and private companies, data covers 5K+ merchants, 3K+ brands mapped to 600 global parent companies (500 publicly traded), and deep geographic breakouts with demographic breakouts coming soon for UK. Brick & mortar and ecommerce direct-to-consumer sales are recorded on transaction date and purchase data is available for most companies as early as 5 days post-swipe.
Consumer Edgeās consumer transaction datasets offer insights into industries across consumer and discretionary spend such as: ⢠Apparel, Accessories, & Footwear ⢠Automotive ⢠Beauty ⢠Commercial ā Hardlines ⢠Convenience / Drug / Diet ⢠Department Stores ⢠Discount / Club ⢠Education ⢠Electronics / Software ⢠Financial Services ⢠Full-Service Restaurants ⢠Grocery ⢠Ground Transportation ⢠Health Products & Services ⢠Home & Garden ⢠Insurance ⢠Leisure & Recreation ⢠Limited-Service Restaurants ⢠Luxury ⢠Miscellaneous Services ⢠Online Retail ā Broadlines ⢠Other Specialty Retail ⢠Pet Products & Services ⢠Sporting Goods, Hobby, Toy & Game ⢠Telecom & Media ⢠Travel
Private equity and venture capital firms can leverage insights from CEās synthetic data to assess investment opportunities, while consumer insights teams and retailers can gain visibility into transaction dataās potential for competitive analysis, shopper behavior, and market intelligence.
CE Vision Benefits ⢠Discover new competitors ⢠Compare sales, average ticket & transactions across competition ⢠Evaluate demographic and geographic drivers of growth ⢠Assess customer loyalty ⢠Explore granularity by geos ⢠Benchmark market share vs. competition ⢠Analyze business performance with advanced cross-cut queries
Corporate researchers and consumer insights teams use CE Vision for:
Corporate Strategy Use Cases ⢠Ecommerce vs. brick & mortar trends ⢠Real estate opportunities ⢠Economic spending shifts
Marketing & Consumer Insights ⢠Total addressable market view ⢠Competitive threats & opportunities ⢠Cross-shopping trends for new partnerships ⢠Demo and geo growth drivers ⢠Customer loyalty & retention
Investor Relations ⢠Shareholder perspective on brand vs. competition ⢠Real-time market intelligence ⢠M&A opportunities
Most popular use cases for private equity and venture capital firms include: ⢠Deal Sourcing ⢠Live Diligences ⢠Portfolio Monitoring
Salutary Data is a boutique, B2B contact and company data provider that's committed to delivering high quality data for sales intelligence, lead generation, marketing, recruiting / HR, identity resolution, and ML / AI. Our database currently consists of 148MM+ highly curated B2B Contacts ( US only), along with over 4M+ companies, and is updated regularly to ensure we have the most up-to-date information.
We can enrich your in-house data ( CRM Enrichment, Lead Enrichment, etc.) and provide you with a custom dataset ( such as a lead list) tailored to your target audience specifications and data use-case. We also support large-scale data licensing to software providers and agencies that intend to redistribute our data to their customers and end-users.
What makes Salutary unique? - We offer our clients a truly unique, one-stop aggregation of the best-of-breed quality data sources. Our supplier network consists of numerous, established high quality suppliers that are rigorously vetted. - We leverage third party verification vendors to ensure phone numbers and emails are accurate and connect to the right person. Additionally, we deploy automated and manual verification techniques to ensure we have the latest job information for contacts. - We're reasonably priced and easy to work with.
Products: API Suite Web UI Full and Custom Data Feeds
Services: Data Enrichment - We assess the fill rate gaps and profile your customer file for the purpose of appending fields, updating information, and/or rendering net new ālook alikeā prospects for your campaigns. ABM Match & Append - Send us your domain or other company related files, and weāll match your Account Based Marketing targets and provide you with B2B contacts to campaign. Optionally throw in your suppression file to avoid any redundant records. Verification (āCleaning/Hygieneā) Services - Address the 2% per month aging issue on contact records! We will identify duplicate records, contacts no longer at the company, rid your email hard bounces, and update/replace titles or phones. This is right up our alley and levers our existing internal and external processes and systems.
http://www.gnu.org/licenses/fdl-1.3.htmlhttp://www.gnu.org/licenses/fdl-1.3.html
This dataset contains transaction data from a fictitious SaaS company selling sales and marketing software to other companies (B2B). In the dataset, each row represents a single transaction/order (9,994 transactions), and the columns include:
Here is the Original Dataset: https://ee-assets-prod-us-east-1.s3.amazonaws.com/modules/337d5d05acc64a6fa37bcba6b921071c/v1/SaaS-Sales.csv
| # | Name of the attribute | Description | | -- | --------------------- | -------------------------------------------------------- | | 1 | Row ID | A unique identifier for each transaction. | | 2 | Order ID | A unique identifier for each order. | | 3 | Order Date | The date when the order was placed. | | 4 | Date Key | A numerical representation of the order date (YYYYMMDD). | | 5 | Contact Name | The name of the person who placed the order. | | 6 | Country | The country where the order was placed. | | 7 | City | The city where the order was placed. | | 8 | Region | The region where the order was placed. | | 9 | Subregion | The subregion where the order was placed. | | 10 | Customer | The name of the company that placed the order. | | 11 | Customer ID | A unique identifier for each customer. | | 13 | Industry | The industry the customer belongs to. | | 14 | Segment | The customer segment (SMB, Strategic, Enterprise, etc.). | | 15 | Product | The product was ordered. | | 16 | License | The license key for the product. | | 17 | Sales | The total sales amount for the transaction. | | 18 | Quantity | The total number of items in the transaction. | | 19 | Discount | The discount applied to the transaction. | | 20 | Profit | The profit from the transaction. |
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Sales Intelligence Market Size 2025-2029
The sales intelligence market size is forecast to increase by USD 4.86 billion at a CAGR of 17.6% between 2024 and 2029.
The market is experiencing significant growth, driven primarily by the increasing demand for custom-made solutions that cater to the unique needs of businesses. This trend is fueled by the rapid advancements in cloud technology, enabling real-time access to comprehensive and accurate sales data from anywhere. However, the high initial cost of implementing sales intelligence solutions can act as a barrier to entry for smaller organizations. Furthermore, regulatory hurdles impact adoption in certain industries, requiring strict compliance with data privacy regulations. With the advent of cloud computing and SaaS customer relationship management (CRM) systems, businesses are able to store and access customer information more efficiently. Moreover, the exponential growth of marketing intelligence, driven by big data and natural language processing (NLP) technologies, enables organizations to gain valuable insights from customer interactions.
Despite these challenges, the market's potential is vast, with opportunities for growth in sectors such as healthcare, finance, and retail. Companies seeking to capitalize on these opportunities must navigate these challenges effectively, investing in cost-effective solutions and ensuring regulatory compliance. By doing so, they can gain a competitive edge through improved lead generation, enhanced customer insights, and streamlined sales processes.
What will be the Size of the Sales Intelligence Market during the forecast period?
Request Free Sample
In today's business landscape, sales intelligence has become a critical driver of revenue growth. The go-to-market strategy of companies relies heavily on predictive lead scoring and sales pipeline analysis to prioritize opportunities and optimize resource allocation. Sales operations teams leverage revenue intelligence to gain insights into sales performance and identify trends. Data quality is paramount in sales analytics dashboards, ensuring accurate sales negotiation and closing. Sales teams collaborate using sales enablement platforms, which integrate CRM systems and provide sales performance reporting. Sales process mapping and sales engagement tools enable effective communication and productivity. Conversational AI and sales automation software streamline sales outreach and prospecting efforts. Messaging and alerting features help sales teams engage with potential customers effectively, while chatbots facilitate efficient communication.
Sales forecasting models and intent data inform sales management decisions, while salesforce automation and data governance ensure data security and compliance. Sales effectiveness is enhanced through sales negotiation training and sales enablement training. The sales market is dynamic, with trends shifting towards advanced analytics and AI-driven solutions. Companies must adapt to stay competitive, focusing on data-driven strategies and continuous improvement.
How is this Sales Intelligence Industry segmented?
The sales intelligence industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
Cloud-based
On-premises
Component
Software
Services
Application
Data management
Lead management
End-user
IT and Telecom
Healthcare and life sciences
BFSI
Others
Geography
North America
US
Canada
Mexico
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
Rest of World (ROW)
By Deployment Insights
The cloud-based segment is estimated to witness significant growth during the forecast period. In today's business landscape, sales intelligence platforms have become indispensable tools for organizations seeking to optimize their sales processes and gain a competitive edge. These solutions offer various features, including deal tracking, win-loss analysis, data mining, sales efficiency, customer journey mapping, sales process optimization, pipeline management, sales cycle analysis, revenue optimization, market research, data integration, customer segmentation, sales engagement, sales coaching, sales playbook, sales process automation, business intelligence (BI), predictive analytics, target account identification, lead generation, account-based marketing (ABM), sales strategy, sales velocity, real-time data, artificial intelligence (AI), sales insights, sales enablement content, sales enablement, sales funnel optimization, sales performance metrics, competitive intelligence, sales methodology, customer churn, and machine learning (ML) for sales forecasting and buyer persona deve
The link for the Excel project to download can be found on GitHub here.
It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt="">
The link for the Tableau adjusted dashboard can be found here.
A screenshot of the interactive Excel dashboard is also included below for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">
https://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for US Retail Sales. from United States. Source: Census Bureau. Track economic data with YCharts analytics.
Company Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset contains lot of historical sales data. It was extracted from a Brazilian top retailer and has many SKUs and many stores. The data was transformed to protect the identity of the retailer.
[TBD]
This data would not be available without the full collaboration from our customers who understand that sharing their core and strategical information has more advantages than possible hazards. They also support our continuos development of innovative ML systems across their value chain.
Every retail business in the world faces a fundamental question: how much inventory should I carry? In one hand to mush inventory means working capital costs, operational costs and a complex operation. On the other hand lack of inventory leads to lost sales, unhappy customers and a damaged brand.
Current inventory management models have many solutions to place the correct order, but they are all based in a single unknown factor: the demand for the next periods.
This is why short-term forecasting is so important in retail and consumer goods industry.
We encourage you to seek for the best demand forecasting model for the next 2-3 weeks. This valuable insight can help many supply chain practitioners to correctly manage their inventory levels.
This dataset is generated for the purpose of analyzing furniture sales data using multiple regression techniques. It contains 2,500 rows with 15 columns, including 7 numerical columns and 7 categorical columns, along with a target variable (revenue) which represents the total revenue generated from furniture sales. The dataset captures various aspects of furniture sales, such as pricing, cost, sales volume, discount percentage, inventory levels, delivery time, and different categorical attributes like furniture type, material, color, and store location.
Guys please upload your notebook of this dataset so that others can also learn from your work
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains information about the sales of shoes in a particular region. The data includes information on the brand, model, type of shoe, gender, size, color, material, and price.
Column Details
Brand: The brand of the shoe, such as Nike, Adidas, or Reebok.
Model: The specific model name or number of the shoe, such as Air Jordan 1, Ultra Boost 21, or Classic Leather.
Type: The type of shoe, such as running, casual, or skate. This column describes the intended use or function of the shoe.
Gender: The gender the shoe is designed for, such as men, women, or unisex. This column specifies the target demographic for the shoe.
Size: The size of the shoe, using US sizing. This column indicates the length of the shoe in inches or centimeters.
Color: The color of the shoe's exterior. This column describes the predominant color or color combination of the shoe.
Material: The primary material of the shoe, such as leather, mesh, or suede. This column indicates the material that comprises the majority of the shoe's construction.
Price: The price of the shoe, in US dollars. This column specifies the cost of purchasing the shoe.
** The purpose of creating this dataset is solely for educational use, and any commercial use is strictly prohibited and this dataset was large language models generated and not collected from actual data sources.
cover image: https://pin.it/6Eb04Gf
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Business location data for Maptitude mapping software are from Caliper Corporation and contain point locations for businesses.
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
ZIP Code business counts data for Maptitude mapping software are from Caliper Corporation and contain aggregated ZIP Code Business Patterns (ZBP) data and Rural-Urban Commuting Area (RUCA) data.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Alphabet Inc. is a listed US holding company of the former Google LLC, which continues to exist as a subsidiary. The headquarters is Mountain View in Silicon Valley. The company is led by Sundar Pichai as CEO.
With sales of $137 billion, a profit of $30.7 billion and a market value of $ 863.2 billion, Alphabet Inc. ranks 17th among the world's largest companies according to Forbes Global 2000 (as of 4th November 2019). The company had a market cap of $ 766.4 billion in early 2018. In 2019, Alphabet had annual sales of $161.9 billion and an annual profit of $34.3 billion.
Market capitalization of Alphabet (Google) (GOOG)
Market cap: $2.442 Trillion USD
As of August 2025 Alphabet (Google) has a market cap of $2.442 Trillion USD. This makes Alphabet (Google) the world's 4th most valuable company by market cap according to our data. The market capitalization, commonly called market cap, is the total market value of a publicly traded company's outstanding shares and is commonly used to measure how much a company is worth.
Geography: USA
Time period: August 2004- August 2025
Unit of analysis: Google Stock Data 2025
Variable | Description |
---|---|
date | date |
open | The price at market open. |
high | The highest price for that day. |
low | The lowest price for that day. |
close | The price at market close, adjusted for splits. |
adj_close | The closing price after adjustments for all applicable splits and dividend distributions. Data is adjusted using appropriate split and dividend multipliers, adhering to Center for Research in Security Prices (CRSP) standards. |
volume | The number of shares traded on that day. |
This dataset belongs to me. Iām sharing it here for free. You may do with it as you wish.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2F84937d0d9ac664fa6c705c0da59564e0%2FScreenshot%202024-12-18%20153807.png?generation=1734532695847825&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2Fa927d7f9ef11a23685bbb86a25b44d8d%2FScreenshot%202024-12-18%20153822.png?generation=1734532715073647&alt=media" alt="">
Dataset Card for "sales-conversations"
This dataset was created for the purpose of training a sales agent chatbot that can convince people. The initial idea came from: textbooks is all you need https://arxiv.org/abs/2306.11644 gpt-3.5-turbo was used for the generation
Structure
The conversations have a customer and a salesman which appear always in changing order. customer, salesman, customer, salesman, etc. The customer always starts the conversation Who ends the⦠See the full description on the dataset page: https://huggingface.co/datasets/goendalf666/sales-conversations.
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
The data quality tools market has the potential to grow by USD 1.09 billion during 2021-2025, and the marketās growth momentum will accelerate at a CAGR of 14.30%.
This data quality tools market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers market segmentation by deployment (on-premise and cloud-based) and geography (North America, Europe, APAC, South America, and Middle East and Africa). The data quality tools market report also offers information on several market vendors, including Accenture Plc, Ataccama Corp., DQ Global, Experian Plc, International Business Machines Corp., Oracle Corp., Precisely, SAP SE, SAS Institute Inc., and TIBCO Software Inc. among others.
What will the Data Quality Tools Market Size be in 2021?
Browse TOC and LoE with selected illustrations and example pages of Data Quality Tools Market
Get Your FREE Sample Now!
Data Quality Tools Market: Key Drivers and Trends
The increasing use of data quality tools for marketing is notably driving the data quality tools market growth, although factors such as high implementation and production cost may impede market growth. To unlock information on the key market drivers and the COVID-19 pandemic impact on the data quality tools industry get your FREE report sample now.
Enterprises are increasingly using data quality tools, to clean and profile the data to target customers with appropriate products, for digital marketing. Data quality tools help in digital marketing by collecting accurate customer data that is stored in databases and translate that data into rich cross-channel customer profiles. This data helps enterprises in making better decisions on how to maximize the funds coming in. Thus, the rising use of data quality tools to change company processes of marketing is driving the data quality tools market growth.
This data quality tools market analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. Get detailed insights on the trends and challenges, which will help companies evaluate and develop growth strategies.
Who are the Major Data Quality Tools Market Vendors?
The report analyzes the marketās competitive landscape and offers information on several market vendors, including:
Accenture Plc
Ataccama Corp.
DQ Global
Experian Plc
International Business Machines Corp.
Oracle Corp.
Precisely
SAP SE
SAS Institute Inc.
TIBCO Software Inc.
The data quality tools market is fragmented and the vendors are deploying organic and inorganic growth strategies to compete in the market. Click here to uncover other successful business strategies deployed by the vendors.
To make the most of the opportunities and recover from post COVID-19 impact, market vendors should focus more on the growth prospects in the fast-growing segments, while maintaining their positions in the slow-growing segments.
Download a free sample of the data quality tools market forecast report for insights on complete key vendor profiles. The profiles include information on the production, sustainability, and prospects of the leading companies.
Which are the Key Regions for Data Quality Tools Market?
For more insights on the market share of various regions Request for a FREE sample now!
39% of the marketās growth will originate from North America during the forecast period. The US is the key market for data quality tools market in North America. Market growth in this region will be slower than the growth of the market in APAC, South America, and MEA.
The expansion of data in the region, fueled by the increasing adherence to mobile and Internet of Things (IoT), the presence of major data quality tools vendors, stringent data-related regulatory compliances, and ongoing projects will facilitate the data quality tools market growth in North America over the forecast period. To garner further competitive intelligence and regional opportunities in store for vendors, view our sample report.
What are the Revenue-generating Deployment Segments in the Data Quality Tools Market?
To gain further insights on the market contribution of various segments Request for a FREE sample
Although the on-premises segment is expected to grow at a slower rate than the cloud-based segment, primarily due to the high cost of on-premises deployment, its prime advantage of total ownership by the end-user will retain its market share. Also, in an on-premise solution, customization is high, which makes it more adaptable among large enterprises, thus driving the revenue growth of the market.
Fetch actionable market insights on post COVID-19 impact on each segment. This report provides an accurate prediction of the contribution of all the segments to the growth of the data qualit
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Free-Cash-Flow-To-Equity Time Series for HubSpot Inc. HubSpot, Inc., together with its subsidiaries, provides a cloud-based customer relationship management (CRM) platform for businesses in the Americas, Europe, and the Asia Pacific. The company's CRM platform includes Marketing Hub, a toolset for marketing automation and email, social media, SEO, and reporting and analytics; Sales Hub offers email templates and tracking, conversations and live chat, meeting and call scheduling, lead and website visit alerts, lead scoring, sales automation, pipeline management, quoting, forecasting, and reporting; Service Hub, a service software designed to help businesses manage, respond, and connect with customers; and Content Hub enables businesses to create new and edit existing web content. It offers Operations Hub, which is designed for customer data to automate business processes, data cleanup, and provide customer insights and connections; and Commerce Hub, a B2B commerce suite. In addition, the company provides professional services to educate and train customers on how to utilize its CRM platform; and customer success, as well as phone and/or email and chat-based support services. It serves mid-market business-to-business companies. The company was incorporated in 2005 and is headquartered in Cambridge, Massachusetts.
By ANil [source]
This dataset provides an in-depth look at the profitability of e-commerce sales. It contains data on a variety of sales channels, including Shiprocket and INCREFF, as well as financial information on related expenses and profits. The columns contain data such as SKU codes, design numbers, stock levels, product categories, sizes and colors. In addition to this we have included the MRPs across multiple stores like Ajio MRP , Amazon MRP , Amazon FBA MRP , Flipkart MRP , Limeroad MRP Myntra MRP and PaytmMRP along with other key parameters like amount paid by customer for the purchase , rate per piece for every individual transaction Also we have added transactional parameters like Date of sale months category fulfilledby B2b Status Qty Currency Gross amt . This is a must-have dataset for anyone trying to uncover the profitability of e-commerce sales in today's marketplace
For more datasets, click here.
- šØ Your notebook can be here! šØ!
This dataset provides a comprehensive overview of e-commerce sales data from different channels covering a variety of products. Using this dataset, retailers and digital marketers can measure the performance of their campaigns more accurately and efficiently.
The following steps help users make the most out of this dataset: - Analyze the general sales trends by examining info such as month, category, currency, stock level, and customer for each sale. This will give you an idea about how your e-commerce business is performing in each channel.
- Review the Shiprocket and INCREF data to compare and analyze profitability via different fulfilment methods. This comparison would enable you to make better decisions towards maximizing profit while minimizing costs associated with each methodās referral fees and fulfillment rates.
- Compare prices between various channels such as Amazon FBA MRP, Myntra MRP, Ajio MRP etc using the corresponding columns for each store (Amazon MRP etc). You can judge which stores are offering more profitable margins without compromising on quality by analyzing these pricing points in combination with other information related to product sales (TP1/TP2 - cost per piece).
- Look at customer specific data such as TP 1/TP 2 combination wise Gross Amount or Rate info in terms price per piece or total gross amount generated by any SKU dispersed over multiple customers with relevant dates associated to track individual item performance relative to others within its category over time periods shortlisted/filtered appropriately.. Have an eye on items commonly utilized against offers or promotional discounts offered hence crafting strategies towards inventory optimization leading up-selling operations.?
- Finally Use Overall āStockā details along all the P & L Data including Yearly Expenses_IIGF information record for takeaways which might be aimed towards essential cost cutting measures like switching amongst delivery options carefully chosen out of Shiprocket & INCREFF leadings away from manual inspections catering savings under support personnel outsourcing structures.?By employing a comprehensive understanding on how our internal subsidiaries perform globally unless attached respective audits may provide us remarkably lower operational costs servicing confidence; costing far lesser than being incurred taking into account entire pallet shipments tracking sheets representing current level supply chains efficiencies achieved internally., then one may finally scale profits exponentially increases cut down unseen losses followed up introducing newer marketing campaigns necessarily tailored according playing around multiple goods based spectrums due powerful backing suitable transportation boundaries set carefully
- Analysing the difference in profitability between sales made through Shiprocket and INCREFF. This data can be used to see where the biggest profit margins lie, and strategize accordingly.
- Examining the Complete Cost structure of a product with all its components and their contribution towards revenue or profitability, i.e., TP 1 & 2, MRP Old & Final MRP Old together with Platform based MRP - Amazon, Myntra and Paytm etc., Currency based Profit Margin etc.
- Building a predictive model using Machine Learning by leveraging historical data to predict future sales volume and profits for e-commerce products across multiple categories/devices/platforms such as Amazon, Flipkart, Myntra etc as well providing m...