This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Sample Sales Data is a retail sales dataset of 2,823 orders and 25 columns that includes a variety of sales-related data, including order numbers, product information, quantity, unit price, sales, order date, order status, customer and delivery information.
2) Data Utilization (1) Sample Sales Data has characteristics that: • This dataset consists of numerical (sales, quantity, unit price, etc.), categorical (product, country, city, customer name, transaction size, etc.), and date (order date) variables, with missing values in some columns (STATE, ADDRESSLINE2, POSTALCODE, etc.). (2) Sample Sales Data can be used to: • Analysis of sales trends and performance by product: Key variables such as order date, product line, and country can be used to visualize and analyze monthly and yearly sales trends, the proportion of sales by product line, and top sales by country and region. • Segmentation and marketing strategies: Segmentation of customer groups based on customer information, transaction size, and regional data, and use them to design targeted marketing and customized promotion strategies.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Standard error reference tables for the Retail Sales Index in Great Britain.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by selvam mts
Released under MIT
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Sample Sales Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/kyanyoga/sample-sales-data on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Sample Sales Data, Order Info, Sales, Customer, Shipping, etc., Used for Segmentation, Customer Analytics, Clustering and More. Inspired for retail analytics. This was originally used for Pentaho DI Kettle, But I found the set could be useful for Sales Simulation training.
Originally Written by María Carina Roldán, Pentaho Community Member, BI consultant (Assert Solutions), Argentina. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. Modified by Gus Segura June 2014.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1.Introduction
Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.
One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.
This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.
2. Citation
Please cite the following papers when using this dataset:
3. Dataset Modalities
The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.
3.1 Data Collection
The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.
The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.
Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.
It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.
The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).
File |
Period |
Number of Samples (days) |
product 1 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 1 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 1 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 2 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 2 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 2 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 3 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 3 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 3 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 4 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 4 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 4 2022.xlsx |
01/01/2022–31/12/2022 |
364 |
product 5 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 5 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 5 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 6 2020.xlsx |
01/01/2020–31/12/2020 |
362 |
product 6 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 6 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 7 2020.xlsx |
01/01/2020–31/12/2020 |
362 |
product 7 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 7 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
3.2 Dataset Overview
The following table enumerates and explains the features included across all of the included files.
Feature |
Description |
Unit |
Day |
day of the month |
- |
Month |
Month |
- |
Year |
Year |
- |
daily_unit_sales |
Daily sales - the amount of products, measured in units, that during that specific day were sold |
units |
previous_year_daily_unit_sales |
Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year |
units |
percentage_difference_daily_unit_sales |
The percentage difference between the two above values |
% |
daily_unit_sales_kg |
The amount of products, measured in kilograms, that during that specific day were sold |
kg |
previous_year_daily_unit_sales_kg |
Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year |
kg |
percentage_difference_daily_unit_sales_kg |
The percentage difference between the two above values |
kg |
daily_unit_returns_kg |
The percentage of the products that were shipped to selling points and were returned |
% |
previous_year_daily_unit_returns_kg |
The percentage of the products that were shipped to |
The annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.
This dataset was created by Waqas Ali Naqvi
It contains the following files:
Attribution 1.0 (CC BY 1.0)https://creativecommons.org/licenses/by/1.0/
License information was derived automatically
Nothing ever becomes real till it is experienced.
-John Keats
While we don't know the context in which John Keats mentioned this, we are sure about its implication in data science. While you would have enjoyed and gained exposure to real world problems in this challenge, here is another opportunity to get your hand dirty with this practice problem.
Problem Statement :
The data scientists at BigMart have collected 2013 sales data for 1559 products across 10 stores in different cities. Also, certain attributes of each product and store have been defined. The aim is to build a predictive model and find out the sales of each product at a particular store.
Using this model, BigMart will try to understand the properties of products and stores which play a key role in increasing sales.
Please note that the data may have missing values as some stores might not report all the data due to technical glitches. Hence, it will be required to treat them accordingly.
Data :
We have 14204 samples in data set.
Variable Description
Item Identifier: A code provided for the item of sale
Item Weight: Weight of item
Item Fat Content: A categorical column of how much fat is present in the item: ‘Low Fat’, ‘Regular’, ‘low fat’, ‘LF’, ‘reg’
Item Visibility: Numeric value for how visible the item is
Item Type: What category does the item belong to: ‘Dairy’, ‘Soft Drinks’, ‘Meat’, ‘Fruits and Vegetables’, ‘Household’, ‘Baking Goods’, ‘Snack Foods’, ‘Frozen Foods’, ‘Breakfast’, ’Health and Hygiene’, ‘Hard Drinks’, ‘Canned’, ‘Breads’, ‘Starchy Foods’, ‘Others’, ‘Seafood’.
Item MRP: The MRP price of item
Outlet Identifier: Which outlet was the item sold. This will be categorical column
Outlet Establishment Year: Which year was the outlet established
Outlet Size: A categorical column to explain size of outlet: ‘Medium’, ‘High’, ‘Small’.
Outlet Location Type: A categorical column to describe the location of the outlet: ‘Tier 1’, ‘Tier 2’, ‘Tier 3’
Outlet Type: Categorical column for type of outlet: ‘Supermarket Type1’, ‘Supermarket Type2’, ‘Supermarket Type3’, ‘Grocery Store’
Item Outlet Sales: The number of sales for an item.
Evaluation Metric:
We will use the Root Mean Square Error value to judge your response
Click here for original dataset: https://community.tableau.com/docs/DOC-1236
Envestnet®| Yodlee®'s Consumer Behavior Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.
Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.
We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.
Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?
Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.
Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking
Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)
Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence
Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis
This dataset contains sales data, including order dates, order IDs, item details, costs, and revenues, primarily featuring USB novelty items and mugs.
Note:- Only publicly available data can be worked upon
In today's ever-evolving Ecommerce landscape, success hinges on the ability to harness the power of data. APISCRAPY is your strategic ally, dedicated to providing a comprehensive solution for extracting critical Ecommerce data, including Ecommerce market data, Ecommerce product data, and Ecommerce datasets. With the Ecommerce arena being more competitive than ever, having a data-driven approach is no longer a luxury but a necessity.
APISCRAPY's forte lies in its ability to unearth valuable Ecommerce market data. We recognize that understanding the market dynamics, trends, and fluctuations is essential for making informed decisions.
APISCRAPY's AI-driven ecommerce data scraping service presents several advantages for individuals and businesses seeking comprehensive insights into the ecommerce market. Here are key benefits associated with their advanced data extraction technology:
Ecommerce Product Data: APISCRAPY's AI-driven approach ensures the extraction of detailed Ecommerce Product Data, including product specifications, images, and pricing information. This comprehensive data is valuable for market analysis and strategic decision-making.
Data Customization: APISCRAPY enables users to customize the data extraction process, ensuring that the extracted ecommerce data aligns precisely with their informational needs. This customization option adds versatility to the service.
Efficient Data Extraction: APISCRAPY's technology streamlines the data extraction process, saving users time and effort. The efficiency of the extraction workflow ensures that users can obtain relevant ecommerce data swiftly and consistently.
Realtime Insights: Businesses can gain real-time insights into the dynamic Ecommerce Market by accessing rapidly extracted data. This real-time information is crucial for staying ahead of market trends and making timely adjustments to business strategies.
Scalability: The technology behind APISCRAPY allows scalable extraction of ecommerce data from various sources, accommodating evolving data needs and handling increased volumes effortlessly.
Beyond the broader market, a deeper dive into specific products can provide invaluable insights. APISCRAPY excels in collecting Ecommerce product data, enabling businesses to analyze product performance, pricing strategies, and customer reviews.
To navigate the complexities of the Ecommerce world, you need access to robust datasets. APISCRAPY's commitment to providing comprehensive Ecommerce datasets ensures businesses have the raw materials required for effective decision-making.
Our primary focus is on Amazon data, offering businesses a wealth of information to optimize their Amazon presence. By doing so, we empower our clients to refine their strategies, enhance their products, and make data-backed decisions.
[Tags: Ecommerce data, Ecommerce Data Sample, Ecommerce Product Data, Ecommerce Datasets, Ecommerce market data, Ecommerce Market Datasets, Ecommerce Sales data, Ecommerce Data API, Amazon Ecommerce API, Ecommerce scraper, Ecommerce Web Scraping, Ecommerce Data Extraction, Ecommerce Crawler, Ecommerce data scraping, Amazon Data, Ecommerce web data]
Company Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
This dataset is prepared for statistical factor pricing models and standardized across variables including country, region, currency, vendor, artist for seamless data filtering. It contains 20+ years of all items in the luxury classic cars both on auction and in the private markets. Tracked brands include: AMC, Aston Martin, Alfa Romeo, Bentley, BMW, Bugatti, Cadillac, Chevrolet, Chrysler, Daimler, Duesenberg, El Camino, Ferrari, Fiat, Ford, Hispano-Suiza, Isotta Fraschini, Jaguar, Lamborghini, Lancia, Maserati, Mercedes, McLaren, Mercury, Panther, Peugeot, Pontiac, Rolls Royce, Porsche, Shelby, Toyota, Volkswagen, Zundapp
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Sales data for all Islanders Board Of Industry & Service (IBIS) stores.
This dataset is a merged dataset created from the data provided in the competition "Store Sales - Time Series Forecasting". The other datasets that were provided there apart from train and test (for example holidays_events, oil, stores, etc.) could not be used in the final prediction. According to my understanding, through the EDA of the merged dataset, we will be able to get a clearer picture of the other factors that might also affect the final prediction of grocery sales. Therefore, I created this merged dataset and posted it here for the further scope of analysis.
##### Data Description Data Field Information (This is a copy of the description as provided in the actual dataset)
Train.csv - id: store id - date: date of the sale - store_nbr: identifies the store at which the products are sold. -**family**: identifies the type of product sold. - sales: gives the total sales for a product family at a particular store at a given date. Fractional values are possible since products can be sold in fractional units (1.5 kg of cheese, for instance, as opposed to 1 bag of chips). - onpromotion: gives the total number of items in a product family that were being promoted at a store on a given date. - Store metadata, including ****city, state, type, and cluster.**** - cluster is a grouping of similar stores. - Holidays and Events, with metadata NOTE: Pay special attention to the transferred column. A holiday that is transferred officially falls on that calendar day but was moved to another date by the government. A transferred day is more like a normal day than a holiday. To find the day that it was celebrated, look for the corresponding row where the type is Transfer. For example, the holiday Independencia de Guayaquil was transferred from 2012-10-09 to 2012-10-12, which means it was celebrated on 2012-10-12. Days that are type Bridge are extra days that are added to a holiday (e.g., to extend the break across a long weekend). These are frequently made up by the type Work Day which is a day not normally scheduled for work (e.g., Saturday) that is meant to pay back the Bridge. Additional holidays are days added to a regular calendar holiday, for example, as typically happens around Christmas (making Christmas Eve a holiday). - dcoilwtico: Daily oil price. Includes values during both the train and test data timeframes. (Ecuador is an oil-dependent country and its economic health is highly vulnerable to shocks in oil prices.)
**Note: ***There is a transaction column in the training dataset which displays the sales transactions on that particular date. * Test.csv - The test data, having the same features like the training data. You will predict the target sales for the dates in this file. - The dates in the test data are for the 15 days after the last date in the training data. **Note: ***There is a no transaction column in the test dataset as was there in the training dataset. Therefore, while building the model, you might exclude this column and may use it only for EDA.*
submission.csv - A sample submission file in the correct format.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Application and use cases
1 )Market Analysis: Evaluate overall trends and regional variations in car sales to assess manufacturer performance, model preferences, and demographic insights. 2) Seasonal Patterns and Competitor Analysis: Investigate seasonal and cyclical patterns in sales. 3) Forecasting and Predictive Analysis Use historical data for forecasting and predict future market trends. Support marketing, advertising, and investment decisions based on insights. 4) Supply Chain and Inventory Optimization: Provide valuable data for stakeholders in the automotive industry.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Restaurant Sales Dataset with Dirt contains data for 17,534 transactions. The data introduces realistic inconsistencies ("dirt") to simulate real-world scenarios where data may have missing or incomplete information. The dataset includes sales details across multiple categories, such as starters, main dishes, desserts, drinks, and side dishes.
This dataset is suitable for: - Practicing data cleaning tasks, such as handling missing values and deducing missing information. - Conducting exploratory data analysis (EDA) to study restaurant sales patterns. - Feature engineering to create new variables for machine learning tasks.
Column Name | Description | Example Values |
---|---|---|
Order ID | A unique identifier for each order. | ORD_123456 |
Customer ID | A unique identifier for each customer. | CUST_001 |
Category | The category of the purchased item. | Main Dishes , Drinks |
Item | The name of the purchased item. May contain missing values due to data dirt. | Grilled Chicken , None |
Price | The static price of the item. May contain missing values. | 15.0 , None |
Quantity | The quantity of the purchased item. May contain missing values. | 1 , None |
Order Total | The total price for the order (Price * Quantity ). May contain missing values. | 45.0 , None |
Order Date | The date when the order was placed. Always present. | 2022-01-15 |
Payment Method | The payment method used for the transaction. May contain missing values due to data dirt. | Cash , None |
Data Dirtiness:
Item
, Price
, Quantity
, Order Total
, Payment Method
) simulate real-world challenges.Item
is present.Price
is present.Quantity
and Order Total
are present.Price
or Quantity
is missing, the other is used to deduce the missing value (e.g., Order Total / Quantity
).Menu Categories and Items:
Chicken Melt
, French Fries
.Grilled Chicken
, Steak
.Chocolate Cake
, Ice Cream
.Coca Cola
, Water
.Mashed Potatoes
, Garlic Bread
.3 Time Range: - Orders span from January 1, 2022, to December 31, 2023.
Handle Missing Values:
Order Total
or Quantity
using the formula: Order Total = Price * Quantity
.Price
from Order Total / Quantity
if both are available.Validate Data Consistency:
Order Total = Price * Quantity
) match.Analyze Missing Patterns:
Category | Item | Price |
---|---|---|
Starters | Chicken Melt | 8.0 |
Starters | French Fries | 4.0 |
Starters | Cheese Fries | 5.0 |
Starters | Sweet Potato Fries | 5.0 |
Starters | Beef Chili | 7.0 |
Starters | Nachos Grande | 10.0 |
Main Dishes | Grilled Chicken | 15.0 |
Main Dishes | Steak | 20.0 |
Main Dishes | Pasta Alfredo | 12.0 |
Main Dishes | Salmon | 18.0 |
Main Dishes | Vegetarian Platter | 14.0 |
Desserts | Chocolate Cake | 6.0 |
Desserts | Ice Cream | 5.0 |
Desserts | Fruit Salad | 4.0 |
Desserts | Cheesecake | 7.0 |
Desserts | Brownie | 6.0 |
Drinks | Coca Cola | 2.5 |
Drinks | Orange Juice | 3.0 |
Drinks ... |
Global Spend Analysis with Consumer Edge Credit & Debit Card Transaction Data
Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. CE Vision EUR is an aggregated transaction feed that includes consumer transaction data on 6.7M+ Europe-domiciled payment accounts, including 5.3M+ active monthly users. Capturing online, offline, and 3rd-party consumer spending on public and private companies, data covers 4.4K+ brands and 620 symbols including 490 public tickers. Track detailed consumer behavior patterns, including retention, purchase frequency, and cross shop in addition to total spend, transactions, and dollars per transaction.
Consumer Edge’s consumer transaction datasets offer insights into industries across consumer and discretionary spend such as: • Apparel, Accessories, & Footwear • Automotive • Beauty • Commercial – Hardlines • Convenience / Drug / Diet • Department Stores • Discount / Club • Education • Electronics / Software • Financial Services • Full-Service Restaurants • Grocery • Ground Transportation • Health Products & Services • Home & Garden • Insurance • Leisure & Recreation • Limited-Service Restaurants • Luxury • Miscellaneous Services • Online Retail – Broadlines • Other Specialty Retail • Pet Products & Services • Sporting Goods, Hobby, Toy & Game • Telecom & Media • Travel
This data sample illustrates how Consumer Edge data can be used to understand a company’s growth by country for a specific time period (Ex: What was McDonald’s year-over-year growth by country from 2019-2020?)
Inquire about a CE subscription to perform more complex, near real-time global spend analysis functions on public tickers and private brands like: • Analyze year-over-year spend growth for a company for a subindustry by country • Analyze spend growth for a company vs. its competitors by country through most recent time
Consumer Edge offers a variety of datasets covering the US and Europe (UK, Austria, France, Germany, Italy, Spain), with subscription options serving a wide range of business needs.
Use Case: Global Spend Analysis
Problem A global retailer wants to understand company performance by geography to identify growth and expansion opportunities.
Solution Consumer Edge transaction data can be used to analyze shopper behavior across geographies and track: • Growth trends by country vs. competitors • Brand performance vs. subindustry by country • Opportunities for product and location expansion
Impact Marketing and Consumer Insights were able to: • Develop weekly reporting KPI's on key growth drivers by geography for company-wide reporting • Refine strategy in underperforming geographies, both online and offline • Identify areas for investment and expansion by country • Understand how different cohorts are performing compared to key competitors
Corporate researchers and consumer insights teams use CE Vision for:
Corporate Strategy Use Cases • Ecommerce vs. brick & mortar trends • Real estate opportunities • Economic spending shifts
Marketing & Consumer Insights • Total addressable market view • Competitive threats & opportunities • Cross-shopping trends for new partnerships • Demo and geo growth drivers • Customer loyalty & retention
Investor Relations • Shareholder perspective on brand vs. competition • Real-time market intelligence • M&A opportunities
Most popular use cases for private equity and venture capital firms include: • Deal Sourcing • Live Diligences • Portfolio Monitoring
Public and private investors can leverage insights from CE’s synthetic data to assess investment opportunities, while consumer insights, marketing, and retailers can gain visibility into transaction data’s potential for competitive analysis, understanding shopper behavior, and capturing market intelligence.
Most popular use cases among public and private investors include: • Track Key KPIs to Company-Reported Figures • Understanding TAM for Focus Industries • Competitive Analysis • Evaluating Public, Private, and Soon-to-be-Public Companies • Ability to Explore Geographic & Regional Differences • Cross-Shop & Loyalty • Drill Down to SKU Level & Full Purchase Details • Customer lifetime value • Earnings predictions • Uncovering macroeconomic trends • Analyzing market share • Performance benchmarking • Understanding share of wallet • Seeing subscription trends
Fields Include: • Day • Merchant • Subindustry • Industry • Spend • Transactions • Spend per Transaction (derivable) • Cardholder State • Cardholder CBSA • Cardholder CSA • Age • Income • Wealth • Ethnicity • Political Affiliation • Children in Household • Adults in Household • Homeowner vs. Renter • Business Owner • Retention by First-Shopped Period • Churn • Cross-Shop • Average Ticket Buckets
This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly