10 datasets found
  1. S

    Annual Retail Store Data, 2000 [Canada] [Excel]

    • dataverse.scholarsportal.info
    • borealisdata.ca
    • +1more
    pdf, xls
    Updated Nov 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scholars Portal Dataverse (2021). Annual Retail Store Data, 2000 [Canada] [Excel] [Dataset]. https://dataverse.scholarsportal.info/dataset.xhtml;jsessionid=1283d69ee2dd528c9011fe4a2fe3?persistentId=hdl%3A10864%2F11351&version=&q=&fileTypeGroupFacet=&fileAccess=&fileTag=%22Tables%22&fileSortField=&fileSortOrder=
    Explore at:
    xls(2165760), xls(29696), xls(2920448), pdf(76787), pdf(158404), xls(34816), xls(2754048), pdf(81084), pdf(71183), xls(34304), xls(625664), xls(2707968), xls(695808), pdf(70673), pdf(72585), xls(576512), xls(609792), xls(28672), pdf(60236), pdf(30338), pdf(87181), pdf(84140), pdf(92012), xls(610304), pdf(74439), xls(2471424), pdf(73788), xls(30208), pdf(74478), pdf(53645)Available download formats
    Dataset updated
    Nov 17, 2021
    Dataset provided by
    Scholars Portal Dataverse
    Area covered
    Canada, Canada
    Description

    The annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.

  2. Retail sales quality tables

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Retail sales quality tables [Dataset]. https://www.ons.gov.uk/businessindustryandtrade/retailindustry/datasets/retailsalesqualitytables
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Standard error reference tables for the Retail Sales Index in Great Britain.

  3. Z

    Dairy Supply Chain Sales Dataset

    • data.niaid.nih.gov
    • ieee-dataport.org
    • +1more
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dimitrios Pliatsios (2024). Dairy Supply Chain Sales Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7853252
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Panagiotis Sarigiannidis
    Christos Chaschatzis
    Thomas Lagkas
    Konstantinos Georgakidis
    Dimitrios Pliatsios
    Anna Triantafyllou
    Athanasios Liatifis
    Vasileios Argyriou
    Dimitris Iatropoulos
    Ilias Siniosoglou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1.Introduction

    Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.

    One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.

    This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.

    1. Citation

    Please cite the following papers when using this dataset:

    I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted

    1. Dataset Modalities

    The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.

    3.1 Data Collection

    The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.

    The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.

    Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.

    It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.

    The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).

    File

    Period

    Number of Samples (days)

    product 1 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 1 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 1 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 2 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 2 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 2 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 3 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 3 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 3 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 4 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 4 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 4 2022.xlsx

    01/01/2022–31/12/2022

    364

    product 5 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 5 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 5 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 6 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 6 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 6 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 7 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 7 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 7 2022.xlsx

    01/01/2022–31/12/2022

    365

    3.2 Dataset Overview

    The following table enumerates and explains the features included across all of the included files.

    Feature

    Description

    Unit

    Day

    day of the month

    -

    Month

    Month

    -

    Year

    Year

    -

    daily_unit_sales

    Daily sales - the amount of products, measured in units, that during that specific day were sold

    units

    previous_year_daily_unit_sales

    Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year

    units

    percentage_difference_daily_unit_sales

    The percentage difference between the two above values

    %

    daily_unit_sales_kg

    The amount of products, measured in kilograms, that during that specific day were sold

    kg

    previous_year_daily_unit_sales_kg

    Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year

    kg

    percentage_difference_daily_unit_sales_kg

    The percentage difference between the two above values

    kg

    daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned

    %

    previous_year_daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned the previous year

    %

    points_of_distribution

    The amount of sales representatives through which the product was sold to the market for this year

    previous_year_points_of_distribution

    The amount of sales representatives through which the product was sold to the market for the same day for the previous year

    Table 1 – Dataset Feature Description

    1. Structure and Format

    4.1 Dataset Structure

    The provided dataset has the following structure:

    Where:

    Name

    Type

    Property

    Readme.docx

    Report

    A File that contains the documentation of the Dataset.

    product X

    Folder

    A folder containing the data of a product X.

    product X YYYY.xlsx

    Data file

    An excel file containing the sales data of product X for year YYYY.

    Table 2 - Dataset File Description

    1. Acknowledgement

    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 957406 (TERMINET).

    References

    [1] MEVGAL is a Greek dairy production company

  4. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  5. Data from: Global Superstore

    • kaggle.com
    zip
    Updated Jul 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chandra Shekhar (2020). Global Superstore [Dataset]. https://www.kaggle.com/datasets/shekpaul/global-superstore
    Explore at:
    zip(5985038 bytes)Available download formats
    Dataset updated
    Jul 16, 2020
    Authors
    Chandra Shekhar
    Description

    Dataset

    This dataset was created by Chandra Shekhar

    Released under Other (specified in description)

    Contents

  6. d

    Warehouse and Retail Sales

    • catalog.data.gov
    • data.montgomerycountymd.gov
    • +3more
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.montgomerycountymd.gov (2025). Warehouse and Retail Sales [Dataset]. https://catalog.data.gov/dataset/warehouse-and-retail-sales
    Explore at:
    Dataset updated
    Mar 8, 2025
    Dataset provided by
    data.montgomerycountymd.gov
    Description

    This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly

  7. Google Analytics Sample

    • kaggle.com
    zip
    Updated Sep 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Google Analytics Sample [Dataset]. https://www.kaggle.com/datasets/bigquery/google-analytics-sample
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 19, 2019
    Dataset provided by
    Googlehttp://google.com/
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.

    Content

    The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:

    Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.

    Fork this kernel to get started.

    Acknowledgements

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:google_analytics_sample.ga_sessions_20170801

    Banner Photo by Edho Pratama from Unsplash.

    Inspiration

    What is the total number of transactions generated per device browser in July 2017?

    The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?

    What was the average number of product pageviews for users who made a purchase in July 2017?

    What was the average number of product pageviews for users who did not make a purchase in July 2017?

    What was the average total transactions per user that made a purchase in July 2017?

    What is the average amount of money spent per session in July 2017?

    What is the sequence of pages viewed?

  8. Retail sales, business analysis

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Dec 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Retail sales, business analysis [Dataset]. https://www.ons.gov.uk/businessindustryandtrade/retailindustry/datasets/retailsalesbusinessanalysis
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 22, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The extent to which individual businesses in Great Britain experienced actual changes in their sales.

  9. Hindustan Unilever's gross sales value FY 2013-2024

    • statista.com
    Updated Jun 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Hindustan Unilever's gross sales value FY 2013-2024 [Dataset]. https://www.statista.com/statistics/763888/india-hindustan-unilever-limited-gross-sales-value/
    Explore at:
    Dataset updated
    Jun 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    In financial year 2024, Hindustan Unilever Limited reported a gross sales value of about 596 billion Indian rupees, up from about 267 billion Indian rupees in financial year 2013. Hindustan Unilever is a subsidiary of the British-Dutch FMCG company Unilever and it is headquartered in Mumbai.

  10. Number of Office 365 enterprise subscribers worldwide 2025, by country

    • statista.com
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of Office 365 enterprise subscribers worldwide 2025, by country [Dataset]. https://www.statista.com/statistics/983321/worldwide-office-365-user-numbers-by-country/
    Explore at:
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Microsoft 365 is used by over two million companies worldwide, with over one million customers in the United States alone using the office suite software. Office 365 is the brand name previously used by Microsoft for a group of software applications providing productivity related services to its subscribers. Office 365 applications include Outlook, OneDrive, Word, Excel, PowerPoint, OneNote, SharePoint and Microsoft Teams. The consumer and small business plans of Office 365 were renamed as Microsoft 365 on 21 April, 2020. Global office suite market share  An office suite is a collection of software applications (word processing, spreadsheets, database etc.) designed to be used for tasks within an organization. Worldwide market share of office suite technologies is split between Google’s G Suite and Microsoft’s Office 365, with G Suite controlling around 45 percent of the global market and Office 365 holding around 26 percent. This trend is similar across most worldwide regions.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Scholars Portal Dataverse (2021). Annual Retail Store Data, 2000 [Canada] [Excel] [Dataset]. https://dataverse.scholarsportal.info/dataset.xhtml;jsessionid=1283d69ee2dd528c9011fe4a2fe3?persistentId=hdl%3A10864%2F11351&version=&q=&fileTypeGroupFacet=&fileAccess=&fileTag=%22Tables%22&fileSortField=&fileSortOrder=

Annual Retail Store Data, 2000 [Canada] [Excel]

Explore at:
xls(2165760), xls(29696), xls(2920448), pdf(76787), pdf(158404), xls(34816), xls(2754048), pdf(81084), pdf(71183), xls(34304), xls(625664), xls(2707968), xls(695808), pdf(70673), pdf(72585), xls(576512), xls(609792), xls(28672), pdf(60236), pdf(30338), pdf(87181), pdf(84140), pdf(92012), xls(610304), pdf(74439), xls(2471424), pdf(73788), xls(30208), pdf(74478), pdf(53645)Available download formats
Dataset updated
Nov 17, 2021
Dataset provided by
Scholars Portal Dataverse
Area covered
Canada, Canada
Description

The annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.

Search
Clear search
Close search
Google apps
Main menu