Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.
Facebook
TwitterThe average sales price of new homes in the United States experienced a slight decrease in 2024, dropping to 512,2000 U.S. dollars from the peak of 521,500 U.S. dollars in 2022. This decline came after years of substantial price increases, with the average price surpassing 400,000 U.S. dollars for the first time in 2021. The recent cooling in the housing market reflects broader economic trends and changing consumer sentiment towards homeownership. Factors influencing home prices and affordability The rapid rise in home prices over the past few years has been driven by several factors, including historically low mortgage rates and increased demand during the COVID-19 pandemic. However, the market has since slowed down, with the number of home sales declining by over two million between 2021 and 2023. This decline can be attributed to rising mortgage rates and decreased affordability. The Housing Affordability Index hit a record low of 98.1 in 2023, indicating that the median-income family could no longer afford a median-priced home. Future outlook for the housing market Despite the recent cooling, experts forecast a potential recovery in the coming years. The Freddie Mac House Price Index showed a growth of 6.5 percent in 2023, which is still above the long-term average of 4.4 percent since 1990. However, homebuyer sentiment remains low across all age groups, with people aged 45 to 64 expressing the most pessimistic outlook. The median sales price of existing homes is expected to increase slightly until 2025, suggesting that affordability challenges may persist in the near future.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for US Existing Home Median Sales Price. from United States. Source: National Association of Realtors. Track ec…
Facebook
TwitterThe U.S. housing market has seen significant price growth since 2011, with the median sales price of existing single-family homes reaching a record high of ******* U.S. dollars in 2024. This represents a substantial increase of ******* over the past five years, highlighting the rapid appreciation of home values across the country. The trend of rising prices can also be observed in the new homes sold. Regional variations and housing shortage While the national median price provides a broad overview, regional differences in home prices are notable. The West remains the most expensive region, with prices twice higher than in the more affordable Midwest. This disparity persists despite efforts to increase housing supply. In 2024, approximately ******* building permits for single-family housing units were granted, showing a slight increase from previous years but still well below the 2005 peak of **** million permits. The ongoing housing shortage continues to drive prices upward across all regions. Market dynamics and future outlook The number of existing home sales has plummeted since 2020, reflecting the growing cost of homeownership. Factors such as high home prices, unfavorable economic conditions, and aggressive increases in mortgage rates have contributed to affordability challenges for many potential homebuyers. Despite these challenges, forecasts suggest a potential recovery in the housing market by 2025, though transaction volumes are expected to remain below long-term averages.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single Family Home Prices in the United States increased to 415200 USD in October from 412300 USD in September of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThe number of U.S. home sales in the United States declined in 2024, after soaring in 2021. A total of four million transactions of existing homes, including single-family, condo, and co-ops, were completed in 2024, down from 6.12 million in 2021. According to the forecast, the housing market is forecast to head for recovery in 2025, despite transaction volumes expected to remain below the long-term average. Why have home sales declined? The housing boom during the coronavirus pandemic has demonstrated that being a homeowner is still an integral part of the American dream. Nevertheless, sentiment declined in the second half of 2022 and Americans across all generations agreed that the time was not right to buy a home. A combination of factors has led to house prices rocketing and making homeownership unaffordable for the average buyer. A survey among owners and renters found that the high home prices and unfavorable economic conditions were the two main barriers to making a home purchase. People who would like to purchase their own home need to save up a deposit, have a good credit score, and a steady and sufficient income to be approved for a mortgage. In 2022, mortgage rates experienced the most aggressive increase in history, making the total cost of homeownership substantially higher. Are U.S. home prices expected to fall? The median sales price of existing homes stood at 413,000 U.S. dollars in 2024 and was forecast to increase slightly until 2026. The development of the S&P/Case Shiller U.S. National Home Price Index shows that home prices experienced seven consecutive months of decline between June 2022 and January 2023, but this trend reversed in the following months. Despite mild fluctuations throughout the year, home prices in many metros are forecast to continue to grow, albeit at a much slower rate.
Facebook
TwitterRedfin is a real estate brokerage and publishes the US housing market data on a regular basis. Using this dataset, you can analyze and visualize housing market data for US cities. Timeline: Starting from February 2012 until the present time (Data is refreshed and updated on a monthly basis)
The dataset has the following columns:
- period_begin
- period_end
- period_duration
- region_type
- region_type_id
- table_id
- is_seasonally_adjusted. (indicates if prices are seasonally adjusted; f represents False)
- region
- city
- state
- state_code
- property_type
- property_type_id
- median_sale_price
- median_sale_price_mom (median sale price changes month over month)
- median_sale_price_yoy (median sale price changes year over year)
- median_list_price
- median_list_price_mom (median list price changes month over month)
- median_list_price_yoy (median list price changes year over year)
- median_ppsf (median sale price per square foot)
- median_ppsf_mom (median sale price per square foot changes month over month)
- median_ppsf_yoy (median sale price per square foot changes year over year)
- median_list_ppsf (median list price per square foot)
- median_list_ppsf_mom (median list price per square foot changes month over month)
- median_list_ppsf_yoy. (median list price per square foot changes year over year)
- homes_sold (number of homes sold)
- homes_sold_mom (number of homes sold month over month)
- homes_sold_yoy (number of homes sold year over year)
- pending_sales
- pending_sales_mom
- pending_sales_yoy
- new_listings
- new_listings_mom
- new_listings_yoy
- inventory
- inventory_mom
- inventory_yoy
- months_of_supply
- months_of_supply_mom
- months_of_supply_yoy
- median_dom (median days on market until property is sold)
- median_dom_mom (median days on market changes month over month)
- median_dom_yoy (median days on market changes year over year)
- avg_sale_to_list (average sale price to list price ratio)
- avg_sale_to_list_mom (average sale price to list price ratio changes month over month)
- avg_sale_to_list_yoy (average sale price to list price ratio changes year over year)
- sold_above_list
- sold_above_list_mom
- sold_above_list_yoy
- price_drops
- price_drops_mom
- price_drops_yoy
- off_market_in_two_weeks (number of properties that will be taken off the market within 2 weeks)
- off_market_in_two_weeks_mom (changes in number of properties that will be taken off the market within 2 weeks, month over month)
- off_market_in_two_weeks_yoy (changes in number of properties that will be taken off the market within 2 weeks, year over year)
- parent_metro_region
- parent_metro_region_metro_code
- last_updated
Filetype: gzip (gz) Support for gzip files in Python: https://docs.python.org/3/library/gzip.html
Data Source & Credit: Redfin.com
Facebook
TwitterThe average price of detached and duplex houses in the biggest cities in Germany varied between approximately ***** euros and 10,000 euros per square meter in 2024. Housing was most expensive in Munich, where the square meter price of houses amounted to ***** euros. Conversely, Berlin was most affordable, with the square meter price at ***** euros. How have German house prices evolved? House prices maintained an upward trend for more than a decade, with 2020 and 2021 experiencing exceptionally high growth rates. In 2021, the nominal year-on-year change exceeded 10 percent. Nevertheless, the second half of 2022 saw the market slowing, with the annual percentage change turning negative for the first time in 12 years. Another way to examine the price growth is through the house price index, which uses 2015 as a base. At its peak in 2022, the German house price index measured about *** percent, which means that a house bought in 2015 would have appreciated by ** percent. Is housing affordable in Germany? Housing affordability depends greatly on income: High-income areas often tend to have more expensive housing, which does not necessarily make them unaffordable. The house price to income index measures the development of the cost of housing relative to income. In the first quarter of 2024, the index value stood at ***, meaning that since 2015, house price growth has outpaced income growth by about ** percent. Compared with the average for the euro area, this value was lower.
Facebook
TwitterThe median sales price of new homes sold in the United States increased steadily from 1965 to 2022, followed by two years of decline. In 2024, a newly built home cost approximately ******* U.S. dollars. That was a decline from the peak price of 434,500 U.S. dollars in 2022. Prices varied greatly across different regions in the country, with the most expensive housing found in the Northeast region.
Facebook
TwitterReal Estate Sales 2001-2020 GL Metadata Updated: August 12, 2023
The Office of Policy and Management maintains a listing of all real estate sales with a sales price of $2,000 or greater that occur between October 1 and September 30 of each year. For each sale record, the file includes: town, property address, date of sale, property type (residential, apartment, commercial, industrial or vacant land), sales price, and property assessment.
Data are collected in accordance with Connecticut General Statutes, section 10-261a and 10-261b: https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261a and https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261b. Annual real estate sales are reported by grand list year (October 1 through September 30 each year). For instance, sales from 2018 GL are from 10/01/2018 through 9/30/2019. Access & Use Information Public: This dataset is intended for public access and use. Non-Federal: This dataset is covered by different Terms of Use than Data.gov. License: No license information was provided.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This data gives different sales prices with respect to type of houses in USA
There are 72 Variables gives house property and predicted variable is in last Sales price of the house
Please compare all the variable with respect to sales price and try to create different model, come up with the solution for Sales price predictions of the house
business probes is predicting sales price
Facebook
TwitterThis dataset is about house sale prices in Seattle. It has information about a number of features of the houses. It is very useful for regression.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset originates from the book "Practical Statistics for Data Scientists" by Peter Bruce, Andrew Bruce, and Peter Gedeck.
Context:
You work for a real estate agency in the King County area, USA, and the company aims to develop a prediction model to estimate house prices based on various characteristics. The goal is to provide accurate estimates that help clients set the right sale or purchase price.
To achieve this, you use a detailed dataset that includes information about past sales, such as sale price, property size, number of bedrooms and bathrooms, as well as specific variables like the year of construction and real estate value indices. You use this data to create a predictive model that analyzes the impact of these factors on house prices in the region.
The objective is to provide a powerful tool for the agency’s real estate agents, allowing them to quickly and accurately estimate house prices and thus help clients make informed decisions.
Content:
The dataset has 22 variables and 22 688 sales.
Facebook
TwitterThe average home in the U.S. sold for several percent below its asking price in December 2022, as a result of the housing market slowing. Just a few months before that, In the second quarter of 2022, the so-called sale-to-list price ratio went above ***. This reflected the high housing demand and the need of prospective home buyers to bid above the asking price. Housing demand - as measured in pending home sales - went up, as mortgage rates were historically low and plummeted once rates were increased.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average House Prices in the United States increased to 534100 USD in August from 478200 USD in July of 2025. This dataset includes a chart with historical data for the United States New Home Average Sales Price.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.
The dataset is designed to capture essential attributes for predicting house prices, including:
Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.
Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.
3. Correlation Between Features
A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.
The dataset is well-suited for various machine learning and data analysis applications, including:
House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Here's a short description of the dataset:
Serial Number: Is just a unique set of digits to identify each transaction
List year: This is the year that the particular property was put up for sale.
Date Recorded: Is the date that the transaction was completed. That is, the year the property was bought.
Town: The town where this property is located.
Address: The property's address.
Assessed Value: How much the property is generally considered to be worth.
Sale Amount: How much the property was actually sold for.
Sales Ratio: The ratio measures how close the selling price of the property is to it's assessed value.
Property Type: What kind of property it is.
Residential Type: If it is a residential property, what type is it.
Years until sold: Number of years before the property was finally sold
This dataset can be used for analysis and even machine learning projects. For those doing analysis, I invite you to try and answer these questions: * Average assessed value of properties from year to year? * Average sale amount of properties from year to year? * Average sales ratio of properties from year to year? * How long, on average, did it take for the different property types to get sold? * How long, on average, did it take for the different residential types to get sold? * Which towns saw the most property sales in 2021?
For those more interested in using this dataset in machine learning projects to forecast future property prices, I invite you also. Let's learn from your work.
Facebook
TwitterPurpose and brief description The house price index measures the inflation in the residential property market. The house price index reflects price developments for all residential properties purchased by households (apartments, terraced houses, detached houses), regardless of whether they are new or existing. Only market prices are taken into account, so self-build homes are excluded. The price of the land is included in the price of the properties. Population Real estate transactions involving residential properties Periodicity Quarterly. Release calendar Results available 3 months after the reference period Definitions House price index: The house price index measures changes in the prices of new or existing dwellings, regardless of their use or previous owner. Inflation - house price index: Inflation is defined as the ratio between the value of a given quarter and that of the same quarter of the previous year. Weighting - house price index: Weighting based on the national accounts (gross fixed capital formation in housing) and the total number of real estate transactions involving residential properties. Type of dwelling according to the classification set out in Regulation (EU) No 93/2013 on housing price indices. Technical information The house price index measures the price evolution of real estate prices on the market of private property. The index follows price changes of new or existing residential real estate purchased by households, irrespective of their purpose (letting or owner-occupying). Only market prices are taken into account. Houses built by their owners are therefore not included. The price of the building plot is included in the house price. The house price index is based on real estate transaction data from the General Administration of the Patrimonial Documentation of the FPS Finances. The prices used are those included in the deeds of sale. Given the time between the date on which the preliminary sales agreement is signed and the date on which the deed is executed (between three and four months), this index measures the price evolution with a delay compared to the actual date on which the sales price is set. This delay is inherent to the data source. The house price index is calculated by the European Union Member States, Norway and Iceland. Eurostat calculates the index for the Euro area (as well as for the European Union as a whole) using the harmonised indices of the Member States. Given the role of the housing market in the economic and financial crisis of 2008, the house price index was included in the indicators used in the procedure to prevent and correct macroeconomic imbalances in the European Union. The house price index is calculated under the European Regulation 2016/792 on harmonised indices of consumer prices and the house price index and 2023/1470 laying down the methodological and technical specifications as regards the house price index and the owner-occupied housing price index. Data are available from 2005 onward for Belgium as well as for the European Union and the majority of European countries. The house price index can be broken down by new houses and existing houses. The weights of these two items in the overall index are determined by the gross fixed capital formation in houses (for the new houses) and the total value of transactions of the previous year (for the existing houses). Until 2013, the house price index of new houses was roughly estimated based on the output price index in the construction sector. Since 2014, it is also based on real estate transaction data. House price index for existing houses is available per region since 2010. The data have therefore been completely reviewed when the results for the fourth quarter of 2023 were published in March 2024. Since the houses that are put up for sale differ from one quarter to another, the changes in characteristics are processed with hedonic regression models to eliminate price fluctuations due to changes in characteristics of the properties sold. These models aim to estimate the theoretical price based on the characteristics and location of the houses sold. The index is then calculated based on changes in the average prices observed and adjusted by a factor depending on the differences in quality observed between dwellings sold during the different periods.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.