10 datasets found
  1. a

    Municipal Boundaries

    • gisdata-slco.opendata.arcgis.com
    • opendata.utah.gov
    • +1more
    Updated Jan 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salt Lake County (2017). Municipal Boundaries [Dataset]. https://gisdata-slco.opendata.arcgis.com/datasets/municipal-boundaries
    Explore at:
    Dataset updated
    Jan 6, 2017
    Dataset authored and provided by
    Salt Lake County
    Area covered
    Description

    Salt Lake County Municipal Boundaries, including Cities, Metro Townships and Unincorporated areas.Source:Salt Lake County Surveyor's Office

  2. TIGER/Line Shapefile, 2020, County, Salt Lake County, UT, All Roads

    • catalog.data.gov
    Updated Oct 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2021). TIGER/Line Shapefile, 2020, County, Salt Lake County, UT, All Roads [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2020-county-salt-lake-county-ut-all-roads
    Explore at:
    Dataset updated
    Oct 13, 2021
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    Salt Lake County, Utah
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The All Roads Shapefile includes all features within the MTDB Super Class "Road/Path Features" distinguished where the MAF/TIGER Feature Classification Code (MTFCC) for the feature in MTDB that begins with "S". This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, stairways, and winter trails.

  3. S

    State of Utah Acquired Lidar Data - Wasatch Front

    • portal.opentopography.org
    • otportal.sdsc.edu
    • +4more
    raster
    Updated Mar 25, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2015). State of Utah Acquired Lidar Data - Wasatch Front [Dataset]. http://doi.org/10.5069/G9TH8JNQ
    Explore at:
    rasterAvailable download formats
    Dataset updated
    Mar 25, 2015
    Dataset provided by
    OpenTopography
    Time period covered
    Oct 18, 2013 - May 31, 2014
    Area covered
    Variables measured
    Area, Unit, RasterResolution
    Dataset funded by
    Utah Division of Emergency Management
    Federal Emergency Management Agency
    U.S. Geological Survey
    Salt Lake County Surveyors Office and partner cities
    Utah Geological Survey
    Description

    The State of Utah, including the Utah Automated Geographic Reference Center, Utah Geological Survey, and the Utah Division of Emergency Management, along with local and federal partners, including Salt Lake County and local cities, the Federal Emergency Management Agency, the U.S. Geological Survey, and the U.S. Environmental Protection Agency, have funded and collected over 8380 km2 (3236 mi2) of high-resolution (0.5 or 1 meter) Lidar data across the state since 2011, in support of a diverse set of flood mapping, geologic, transportation, infrastructure, solar energy, and vegetation projects. The datasets include point cloud, first return digital surface model (DSM), and bare-earth digital terrain/elevation model (DEM) data, along with appropriate metadata (XML, project tile indexes, and area completion reports).

    This 0.5-meter 2013-2014 Wasatch Front dataset includes most of the Salt Lake and Utah Valleys (Utah), and the Wasatch (Utah and Idaho), and West Valley fault zones (Utah).

    Other recently acquired State of Utah data include the 2011 Utah Geological Survey Lidar dataset covering Cedar and Parowan Valleys, the east shore/wetlands of Great Salt Lake, the Hurricane fault zone, the west half of Ogden Valley, North Ogden, and part of the Wasatch Plateau in Utah.

  4. a

    Utah Great Salt Lake Shoreline Flooding

    • gis-support-utah-em.hub.arcgis.com
    Updated Nov 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah Automated Geographic Reference Center (AGRC) (2019). Utah Great Salt Lake Shoreline Flooding [Dataset]. https://gis-support-utah-em.hub.arcgis.com/datasets/275cc3a094d142bb979f23ff7b036843
    Explore at:
    Dataset updated
    Nov 22, 2019
    Dataset authored and provided by
    Utah Automated Geographic Reference Center (AGRC)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset represents the Flood Plain Management Services Study (FPMS) ares, 100-Year Flood for the Great Salt Lake. The area included Salt Lake City, Davis, Weber, tooele and box elder County The information was collected by digitzing the quad maps (Salt Lake, Tooele, boxelder county) and plate maps (weber and Davis county). The digital data contain the zone boundary and shoreline boundary. The FPMS study was limited to the general area along the Salt Lake County shoreline of the Great Salt Lake Only the 100-year flood elevation was evaluated and included wind and wave action for the Great Salt Lake. This dataset is the most current digital information available.

  5. EnviroAtlas - Salt Lake City, UT - BenMAP Results by Block Group

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Oct 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact) (2024). EnviroAtlas - Salt Lake City, UT - BenMAP Results by Block Group [Dataset]. https://catalog.data.gov/dataset/enviroatlas-salt-lake-city-ut-benmap-results-by-block-group3
    Explore at:
    Dataset updated
    Oct 14, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    Salt Lake City, Utah
    Description

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 612 block groups in Salt Lake City, UT. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Salt Lake City and County, UT. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the USDA Forest Service with support from The Davey Tree Expert Company to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. a

    Waterways

    • gisdata-slco.opendata.arcgis.com
    • opendata.utah.gov
    • +1more
    Updated Nov 1, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salt Lake County (2016). Waterways [Dataset]. https://gisdata-slco.opendata.arcgis.com/datasets/7019d54d2dd14609aa2603b114e220e0
    Explore at:
    Dataset updated
    Nov 1, 2016
    Dataset authored and provided by
    Salt Lake County
    Area covered
    Description

    This data represents the waterways of Salt Lake County, including streams, rivers, canals, drains and ditches. The data indicates Designated Salt Lake County Flood Control Facilities as per County Ordinance Chapter 17.08.04 Permits are required, but not limited to, these specific canals, drains, ditches and streams. The data is accurate for identifying the general location of these facilities. For specific information about permits, contact the Flood Control Permit Coordinator in the Engineering Division. Addition, the waterways layer will have non ordinace facilites for general and historical purposes.The valley streams were originally digitized from 6-inch color aerial photgraphy 2009 and 2010. Tree canopy obscured some reaches and are less accurate in those cases. Mountain streams were originally digitized from the 2006 NAIP and has been since updated with 1-foot pixel color aerial photography in 2010, available mosty for the lower canyon areas. In 2011, the data has been updated with high-resolution alignment adjustments at 1:1000 to 1:2000 scale, using 2010 aerial imagery, 2009 LIDAR, historical flood control plans from 1983 and 1986. In 2013, the data has been updated with high resolution 2012 aerial imagery and the waterways was realigned at 1:600 to 1:1000 scale.

  7. u

    Utah Cities by Population

    • utah-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Utah Cities by Population [Dataset]. https://www.utah-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.utah-demographics.com/terms_and_conditionshttps://www.utah-demographics.com/terms_and_conditions

    Area covered
    Utah
    Description

    A dataset listing Utah cities by population for 2024.

  8. u

    20 Richest Counties in Utah

    • utah-demographics.com
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). 20 Richest Counties in Utah [Dataset]. https://www.utah-demographics.com/counties_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.utah-demographics.com/terms_and_conditionshttps://www.utah-demographics.com/terms_and_conditions

    Area covered
    Utah
    Description

    A dataset listing Utah counties by population for 2024.

  9. Home Owners' Loan Corporation (HOLC) Neighborhood Redlining Grade

    • gis-for-racialequity.hub.arcgis.com
    Updated Jul 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Home Owners' Loan Corporation (HOLC) Neighborhood Redlining Grade [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/063cdb28dd3a449b92bc04f904256f62
    Explore at:
    Dataset updated
    Jul 23, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    The Home Owners' Loan Corporation (HOLC) was created in the New Deal Era and trained many home appraisers in the 1930s. The HOLC created a neighborhood ranking system infamously known today as redlining. Local real estate developers and appraisers in over 200 cities assigned grades to residential neighborhoods. These maps and neighborhood ratings set the rules for decades of real estate practices. The grades ranged from A to D. A was traditionally colored in green, B was traditionally colored in blue, C was traditionally colored in yellow, and D was traditionally colored in red. A (Best): Always upper- or upper-middle-class White neighborhoods that HOLC defined as posing minimal risk for banks and other mortgage lenders, as they were "ethnically homogeneous" and had room to be further developed.B (Still Desirable): Generally nearly or completely White, U.S. -born neighborhoods that HOLC defined as "still desirable" and sound investments for mortgage lenders.C (Declining): Areas where the residents were often working-class and/or first or second generation immigrants from Europe. These areas often lacked utilities and were characterized by older building stock.D (Hazardous): Areas here often received this grade because they were "infiltrated" with "undesirable populations" such as Jewish, Asian, Mexican, and Black families. These areas were more likely to be close to industrial areas and to have older housing.Banks received federal backing to lend money for mortgages based on these grades. Many banks simply refused to lend to areas with the lowest grade, making it impossible for people in many areas to become homeowners. While this type of neighborhood classification is no longer legal thanks to the Fair Housing Act of 1968 (which was passed in large part due to the activism and work of the NAACP and other groups), the effects of disinvestment due to redlining are still observable today. For example, the health and wealth of neighborhoods in Chicago today can be traced back to redlining (Chicago Tribune). In addition to formerly redlined neighborhoods having fewer resources such as quality schools, access to fresh foods, and health care facilities, new research from the Science Museum of Virginia finds a link between urban heat islands and redlining (Hoffman, et al., 2020). This layer comes out of that work, specifically from University of Richmond's Digital Scholarship Lab. More information on sources and digitization process can be found on the Data and Download and About pages. NOTE: This map has been updated as of 1/16/24 to use a newer version of the data layer which contains more cities than it previously did. As mentioned above, over 200 cities were redlined and therefore this is not a complete dataset of every city that experienced redlining by the HOLC in the 1930s. Map opens in Sacramento, CA. Use bookmarks or the search bar to get to other cities.Cities included in this mapAlabama: Birmingham, Mobile, MontgomeryArizona: PhoenixArkansas: Arkadelphia, Batesville, Camden, Conway, El Dorado, Fort Smith, Little Rock, Russellville, TexarkanaCalifornia: Fresno, Los Angeles, Oakland, Sacramento, San Diego, San Francisco, San Jose, StocktonColorado: Boulder, Colorado Springs, Denver, Fort Collins, Fort Morgan, Grand Junction, Greeley, Longmont, PuebloConnecticut: Bridgeport and Fairfield; Hartford; New Britain; New Haven; Stamford, Darien, and New Canaan; WaterburyFlorida: Crestview, Daytona Beach, DeFuniak Springs, DeLand, Jacksonville, Miami, New Smyrna, Orlando, Pensacola, St. Petersburg, TampaGeorgia: Atlanta, Augusta, Columbus, Macon, SavannahIowa: Boone, Cedar Rapids, Council Bluffs, Davenport, Des Moines, Dubuque, Sioux City, WaterlooIllinois: Aurora, Chicago, Decatur, East St. Louis, Joliet, Peoria, Rockford, SpringfieldIndiana: Evansville, Fort Wayne, Indianapolis, Lake County Gary, Muncie, South Bend, Terre HauteKansas: Atchison, Greater Kansas City, Junction City, Topeka, WichitaKentucky: Covington, Lexington, LouisvilleLouisiana: New Orleans, ShreveportMaine: Augusta, Boothbay, Portland, Sanford, WatervilleMaryland: BaltimoreMassachusetts: Arlington, Belmont, Boston, Braintree, Brockton, Brookline, Cambridge, Chelsea, Dedham, Everett, Fall River, Fitchburg, Haverhill, Holyoke Chicopee, Lawrence, Lexington, Lowell, Lynn, Malden, Medford, Melrose, Milton, Needham, New Bedford, Newton, Pittsfield, Quincy, Revere, Salem, Saugus, Somerville, Springfield, Waltham, Watertown, Winchester, Winthrop, WorcesterMichigan: Battle Creek, Bay City, Detroit, Flint, Grand Rapids, Jackson, Kalamazoo, Lansing, Muskegon, Pontiac, Saginaw, ToledoMinnesota: Austin, Duluth, Mankato, Minneapolis, Rochester, Staples, St. Cloud, St. PaulMississippi: JacksonMissouri: Cape Girardeau, Carthage, Greater Kansas City, Joplin, Springfield, St. Joseph, St. LouisNorth Carolina: Asheville, Charlotte, Durham, Elizabeth City, Fayetteville, Goldsboro, Greensboro, Hendersonville, High Point, New Bern, Rocky Mount, Statesville, Winston-SalemNorth Dakota: Fargo, Grand Forks, Minot, WillistonNebraska: Lincoln, OmahaNew Hampshire: ManchesterNew Jersey: Atlantic City, Bergen County, Camden, Essex County, Monmouth, Passaic County, Perth Amboy, Trenton, Union CountyNew York: Albany, Binghamton/Johnson City, Bronx, Brooklyn, Buffalo, Elmira, Jamestown, Lower Westchester County, Manhattan, Niagara Falls, Poughkeepsie, Queens, Rochester, Schenectady, Staten Island, Syracuse, Troy, UticaOhio: Akron, Canton, Cleveland, Columbus, Dayton, Hamilton, Lima, Lorain, Portsmouth, Springfield, Toledo, Warren, YoungstownOklahoma: Ada, Alva, Enid, Miami Ottawa County, Muskogee, Norman, Oklahoma City, South McAlester, TulsaOregon: PortlandPennsylvania: Allentown, Altoona, Bethlehem, Chester, Erie, Harrisburg, Johnstown, Lancaster, McKeesport, New Castle, Philadelphia, Pittsburgh, Wilkes-Barre, YorkRhode Island: Pawtucket & Central Falls, Providence, WoonsocketSouth Carolina: Aiken, Charleston, Columbia, Greater Anderson, Greater Greensville, Orangeburg, Rock Hill, Spartanburg, SumterSouth Dakota: Aberdeen, Huron, Milbank, Mitchell, Rapid City, Sioux Falls, Vermillion, WatertownTennessee: Chattanooga, Elizabethton, Erwin, Greenville, Johnson City, Knoxville, Memphis, NashvilleTexas: Amarillo, Austin, Beaumont, Dallas, El Paso, Forth Worth, Galveston, Houston, Port Arthur, San Antonio, Waco, Wichita FallsUtah: Ogden, Salt Lake CityVirginia: Bristol, Danville, Harrisonburg, Lynchburg, Newport News, Norfolk, Petersburg, Phoebus, Richmond, Roanoke, StauntonVermont: Bennington, Brattleboro, Burlington, Montpelier, Newport City, Poultney, Rutland, Springfield, St. Albans, St. Johnsbury, WindsorWashington: Seattle, Spokane, TacomaWisconsin: Kenosha, Madison, Milwaukee County, Oshkosh, RacineWest Virginia: Charleston, Huntington, WheelingAn example of a map produced by the HOLC of Philadelphia:

  10. a

    National Agriculture Imagery Program (NAIP) History 2002-2021

    • hub.arcgis.com
    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    Updated May 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). National Agriculture Imagery Program (NAIP) History 2002-2021 [Dataset]. https://hub.arcgis.com/documents/8eb6c5e7adc54ec889dd6fc9cc2c14c4
    Explore at:
    Dataset updated
    May 25, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Description

    What is NAIP?The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the contiguous U.S. A primary goal of the NAIP program is to make digital ortho photography available to governmental agencies and the public within a year of acquisition.NAIP is administered by the USDA's Farm Production and Conservation Business Center through the Aerial Photography Field Office in Salt Lake City. The APFO as of August 16, 2020 has transitioned to the USDA FPAC-BC's Geospatial Enterprise Operations Branch (GEO). This "leaf-on" imagery is used as a base layer for GIS programs in FSA's County Service Centers, and is used to maintain the Common Land Unit (CLU) boundaries.How can I Access NAIP?On the web GEO (APFO) public image services can be accessed through the REST endpoint here. Compressed County Mosaics (CCMs) are available to the general public through the USDA Geospatial Data Gateway. All years of available imagery may be downloaded as 1/2, 1, or 2 meter CCMs depending on the original spatial resolution. CCMs with a file size larger than 8 GB are not able to be downloaded from the Gateway. Full resolution 4 band quarter quads (DOQQs) are available for purchase from FPAC GEO. Contact the GEO Customer Service Section for information on pricing for DOQQs and how to obtain CCMs larger than 8 GB. A NAIP image service is also available on ArcGIS Online through an organizational subscription.How can NAIP be used?NAIP is used by many non-FSA public and private sector customers for a wide variety of projects. A detailed study is available in the Qualitative and Quantitative Synopsis on NAIP Usage from 2004 -2008: Click here for a list of NAIP Information and Distribution Nodes.When is NAIP acquired?NAIP projects are contracted each year based upon available funding and the FSA imagery acquisition cycle. Beginning in 2003, NAIP was acquired on a 5-year cycle. 2008 was a transition year, a three-year cycle began in 2009, NAIP was on a two-year cycle until 2016, currently NAIP is on a 3 year refresh cycle. Click here >> for an interactive PDF status map of NAIP acquisitions from 2002 - 2018. 2021 acquisition status dashboard is available here.What are NAIP Specifications?NAIP imagery is currently acquired at 60cm ground sample distance (GSD) with a horizontal accuracy that matches within four meters of photo-identifiable ground control points.The default spectral resolution beginning in 2010 is four bands: Red, Green, Blue and Near Infrared.Contractually, every attempt will be made to comply with the specification of no more than 10% cloud cover per quarter quad tile, weather conditions permitting.All imagery is inspected for horizontal accuracy and tonal quality. Make Comments/Observations about current NAIP imagery.If you use NAIP imagery and have comments or find a problem with the imagery please use the NAIP Imagery Feedback Map to let us know what you find or how you are using NAIP imagery. Click here to access the map.**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**Title: National Agriculture Imagery Program (NAIP) History 2002-2021Item Type: Web Mapping Application URL Summary: Story map depicting the highlights and changes throughout the National Agriculture Imagery Program (NAIP) from 2002-2021.Notes: Prepared by: Uploaded by EMcRae_NMCDCSource: URL referencing this original map product: https://nmcdc.maps.arcgis.com/home/item.html?id=445e3dfd16c4401f95f78ad5905a4cceFeature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=8eb6c5e7adc54ec889dd6fc9cc2c14c4UID: 26Data Requested: Ag CensusMethod of Acquisition: Living AtlasDate Acquired: May 2022Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 8Tags: PENDING

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Salt Lake County (2017). Municipal Boundaries [Dataset]. https://gisdata-slco.opendata.arcgis.com/datasets/municipal-boundaries

Municipal Boundaries

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 6, 2017
Dataset authored and provided by
Salt Lake County
Area covered
Description

Salt Lake County Municipal Boundaries, including Cities, Metro Townships and Unincorporated areas.Source:Salt Lake County Surveyor's Office

Search
Clear search
Close search
Google apps
Main menu