8 datasets found
  1. a

    Municipal Boundaries

    • gisdata-slco.opendata.arcgis.com
    • opendata.utah.gov
    • +1more
    Updated Jan 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salt Lake County (2017). Municipal Boundaries [Dataset]. https://gisdata-slco.opendata.arcgis.com/datasets/municipal-boundaries
    Explore at:
    Dataset updated
    Jan 7, 2017
    Dataset authored and provided by
    Salt Lake County
    Area covered
    Description

    Salt Lake County Municipal Boundaries, including Cities, Metro Townships and Unincorporated areas.Source:Salt Lake County Surveyor's Office

  2. TIGER/Line Shapefile, 2020, County, Salt Lake County, UT, All Roads

    • catalog.data.gov
    Updated Oct 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2021). TIGER/Line Shapefile, 2020, County, Salt Lake County, UT, All Roads [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2020-county-salt-lake-county-ut-all-roads
    Explore at:
    Dataset updated
    Oct 13, 2021
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    United States Department of Commercehttp://commerce.gov/
    Area covered
    Salt Lake County, Utah
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The All Roads Shapefile includes all features within the MTDB Super Class "Road/Path Features" distinguished where the MAF/TIGER Feature Classification Code (MTFCC) for the feature in MTDB that begins with "S". This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, stairways, and winter trails.

  3. u

    Utah Salt Lake County Parcels LIR

    • opendata.gis.utah.gov
    • hub.arcgis.com
    Updated Nov 20, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah Automated Geographic Reference Center (AGRC) (2019). Utah Salt Lake County Parcels LIR [Dataset]. https://opendata.gis.utah.gov/maps/utah-salt-lake-county-parcels-lir
    Explore at:
    Dataset updated
    Nov 20, 2019
    Dataset authored and provided by
    Utah Automated Geographic Reference Center (AGRC)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Update information can be found within the layer’s attributes and in a table on the Utah Parcel Data webpageunder LIR Parcels.In Spring of 2016, the Land Information Records work group, an informal committee organized by the Governor’s Office of Management and Budget’s State Planning Coordinator, produced recommendations for expanding the sharing of GIS-based parcel information. Participants in the LIR work group included representatives from county, regional, and state government, including the Utah Association of Counties (County Assessors and County Recorders), Wasatch Front Regional Council, Mountainland and Bear River AOGs, Utah League of Cities and Towns, UDOT, DNR, AGRC, the Division of Emergency Management, Blue Stakes, economic developers, and academic researchers. The LIR work group’s recommendations set the stage for voluntary sharing of additional objective/quantitative parcel GIS data, primarily around tax assessment-related information. Specifically the recommendations document establishes objectives, principles (including the role of local and state government), data content items, expected users, and a general process for data aggregation and publishing. An important realization made by the group was that ‘parcel data’ or ‘parcel record’ products have a different meaning to different users and data stewards. The LIR group focused, specifically, on defining a data sharing recommendation around a tax year parcel GIS data product, aligned with the finalization of the property tax roll by County Assessors on May 22nd of each year. The LIR recommendations do not impact the periodic sharing of basic parcel GIS data (boundary, ID, address) from the County Recorders to AGRC per 63F-1-506 (3.b.vi). Both the tax year parcel and the basic parcel GIS layers are designed for general purpose uses, and are not substitutes for researching and obtaining the most current, legal land records information on file in County records. This document, below, proposes a schedule, guidelines, and process for assembling county parcel and assessment data into an annual, statewide tax parcel GIS layer. gis.utah.gov/data/sgid-cadastre/ It is hoped that this new expanded parcel GIS layer will be put to immediate use supporting the best possible outcomes in public safety, economic development, transportation, planning, and the provision of public services. Another aim of the work group was to improve the usability of the data, through development of content guidelines and consistent metadata documentation, and the efficiency with which the data sharing is distributed.GIS Layer Boundary Geometry:GIS Format Data Files: Ideally, Tax Year Parcel data should be provided in a shapefile (please include the .shp, .shx, .dbf, .prj, and .xml component files) or file geodatabase format. An empty shapefile and file geodatabase schema are available for download at:At the request of a county, AGRC will provide technical assistance to counties to extract, transform, and load parcel and assessment information into the GIS layer format.Geographic Coverage: Tax year parcel polygons should cover the area of each county for which assessment information is created and digital parcels are available. Full coverage may not be available yet for each county. The county may provide parcels that have been adjusted to remove gaps and overlaps for administrative tax purposes or parcels that retain these expected discrepancies that take their source from the legally described boundary or the process of digital conversion. The diversity of topological approaches will be noted in the metadata.One Tax Parcel Record Per Unique Tax Notice: Some counties produce an annual tax year parcel GIS layer with one parcel polygon per tax notice. In some cases, adjacent parcel polygons that compose a single taxed property must be merged into a single polygon. This is the goal for the statewide layer but may not be possible in all counties. AGRC will provide technical support to counties, where needed, to merge GIS parcel boundaries into the best format to match with the annual assessment information.Standard Coordinate System: Parcels will be loaded into Utah’s statewide coordinate system, Universal Transverse Mercator coordinates (NAD83, Zone 12 North). However, boundaries stored in other industry standard coordinate systems will be accepted if they are both defined within the data file(s) and documented in the metadata (see below).Descriptive Attributes:Database Field/Column Definitions: The table below indicates the field names and definitions for attributes requested for each Tax Parcel Polygon record.FIELD NAME FIELD TYPE LENGTH DESCRIPTION EXAMPLE SHAPE (expected) Geometry n/a The boundary of an individual parcel or merged parcels that corresponds with a single county tax notice ex. polygon boundary in UTM NAD83 Zone 12 N or other industry standard coordinates including state plane systemsCOUNTY_NAME Text 20 - County name including spaces ex. BOX ELDERCOUNTY_ID (expected) Text 2 - County ID Number ex. Beaver = 1, Box Elder = 2, Cache = 3,..., Weber = 29ASSESSOR_SRC (expected) Text 100 - Website URL, will be to County Assessor in most all cases ex. webercounty.org/assessorBOUNDARY_SRC (expected) Text 100 - Website URL, will be to County Recorder in most all cases ex. webercounty.org/recorderDISCLAIMER (added by State) Text 50 - Disclaimer URL ex. gis.utah.gov...CURRENT_ASOF (expected) Date - Parcels current as of date ex. 01/01/2016PARCEL_ID (expected) Text 50 - County designated Unique ID number for individual parcels ex. 15034520070000PARCEL_ADD (expected, where available) Text 100 - Parcel’s street address location. Usually the address at recordation ex. 810 S 900 E #304 (example for a condo)TAXEXEMPT_TYPE (expected) Text 100 - Primary category of granted tax exemption ex. None, Religious, Government, Agriculture, Conservation Easement, Other Open Space, OtherSalt Lake County Tax Exempt codes below:AE - Airport - ExemptCC - Commercial Common AreaCE - Conservation EasementCM - CemeteryEC - Exempt CharitableEE - Exempt EducationER - Exempt ReligiousGB - GreenbeltHE - Homeowners Assoc ExemptIL - In LieuIR - Irrigation CompanyMC - Master CardOE - Owner ExemptPE - Part ExemptPR - Pro-RatedPT - Privilege TaxPY - Privilege Tax on a YieldSA - State AssessedSC - State and Cnty AssessedSE - Special - ExemptSU - Salt Lake - Utah CntyTD - Divided Tax DistrictUI - Undivided_Interest TAX_DISTRICT (expected, where applicable) Text 10 - The coding the county uses to identify a unique combination of property tax levying entities ex. 17ATOTAL_MKT_VALUE (expected) Decimal - Total market value of parcel's land, structures, and other improvements as determined by the Assessor for the most current tax year ex. 332000LAND _MKT_VALUE (expected) Decimal - The market value of the parcel's land as determined by the Assessor for the most current tax year ex. 80600PARCEL_ACRES (expected) Decimal - Parcel size in acres ex. 20.360PROP_CLASS (expected) Text 100 - Residential, Commercial, Industrial, Mixed, Agricultural, Vacant, Open Space, Other ex. ResidentialSalt Lake County Property Class codes below:R - Residential / CondoC - CommercialI - IndustrialRE - RecreationalA - AgriculturalMH - Multi HousingMore information about the PROP_CLASS and PROP_TYPE for Salt Lake County can be found at http://slco.org/assessor/new/queryproptyp.cfmPROP_TYPE (expected) Text 100 - Single Family Res.,Townhome, CondoPRIMARY_RES (expected) Text 1 - Is the property a primary residence(s): Y'(es), 'N'(o), or 'U'(nknown) ex. YHOUSING_CNT (expected, where applicable) Text 10 - Number of housing units, can be single number or range like '5-10' ex. 1SUBDIV_NAME (optional) Text 100 - Subdivision name if applicable ex. Highland Manor SubdivisionBLDG_SQFT (expected, where applicable) Integer - Square footage of primary bldg(s) ex. 2816BLDG_SQFT_INFO (expected, where applicable) Text 100 - Note for how building square footage is counted by the County ex. Only finished above and below grade areas are counted.FLOORS_CNT (expected, where applicable) Decimal - Number of floors as reported in county records ex. 2FLOORS_INFO (expected, where applicable) Text 100 - Note for how floors are counted by the County ex. Only above grade floors are countedBUILT_YR (expected, where applicable) Short - Estimated year of initial construction of primary buildings ex. 1968EFFBUILT_YR (optional, where applicable) Short - The 'effective' year built' of primary buildings that factors in updates after construction ex. 1980CONST_MATERIAL (optional, where applicable) Text 100 - Construction Material Types, Values for this field are expected to vary greatly by county ex. Wood Frame, Brick, etc Contact: Sean Fernandez, Cadastral Manager (email: sfernandez@utah.gov; office phone: 801-209-9359)

  4. S

    State of Utah Acquired Lidar Data - Wasatch Front

    • portal.opentopography.org
    • otportal.sdsc.edu
    • +3more
    raster
    Updated Mar 25, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2015). State of Utah Acquired Lidar Data - Wasatch Front [Dataset]. http://doi.org/10.5069/G9TH8JNQ
    Explore at:
    rasterAvailable download formats
    Dataset updated
    Mar 25, 2015
    Dataset provided by
    OpenTopography
    Time period covered
    Oct 18, 2013 - May 31, 2014
    Area covered
    Variables measured
    Area, Unit, RasterResolution
    Dataset funded by
    Utah Division of Emergency Management
    Federal Emergency Management Agency
    U.S. Geological Survey
    Salt Lake County Surveyors Office and partner cities
    Utah Geological Survey
    Description

    The State of Utah, including the Utah Automated Geographic Reference Center, Utah Geological Survey, and the Utah Division of Emergency Management, along with local and federal partners, including Salt Lake County and local cities, the Federal Emergency Management Agency, the U.S. Geological Survey, and the U.S. Environmental Protection Agency, have funded and collected over 8380 km2 (3236 mi2) of high-resolution (0.5 or 1 meter) Lidar data across the state since 2011, in support of a diverse set of flood mapping, geologic, transportation, infrastructure, solar energy, and vegetation projects. The datasets include point cloud, first return digital surface model (DSM), and bare-earth digital terrain/elevation model (DEM) data, along with appropriate metadata (XML, project tile indexes, and area completion reports).

    This 0.5-meter 2013-2014 Wasatch Front dataset includes most of the Salt Lake and Utah Valleys (Utah), and the Wasatch (Utah and Idaho), and West Valley fault zones (Utah).

    Other recently acquired State of Utah data include the 2011 Utah Geological Survey Lidar dataset covering Cedar and Parowan Valleys, the east shore/wetlands of Great Salt Lake, the Hurricane fault zone, the west half of Ogden Valley, North Ogden, and part of the Wasatch Plateau in Utah.

  5. u

    Utah Great Salt Lake Shoreline Flooding

    • opendata.gis.utah.gov
    • hub.arcgis.com
    • +1more
    Updated Nov 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah Automated Geographic Reference Center (AGRC) (2019). Utah Great Salt Lake Shoreline Flooding [Dataset]. https://opendata.gis.utah.gov/datasets/utah::utah-great-salt-lake-shoreline-flooding
    Explore at:
    Dataset updated
    Nov 22, 2019
    Dataset authored and provided by
    Utah Automated Geographic Reference Center (AGRC)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset represents the Flood Plain Management Services Study (FPMS) ares, 100-Year Flood for the Great Salt Lake. The area included Salt Lake City, Davis, Weber, tooele and box elder County The information was collected by digitzing the quad maps (Salt Lake, Tooele, boxelder county) and plate maps (weber and Davis county). The digital data contain the zone boundary and shoreline boundary. The FPMS study was limited to the general area along the Salt Lake County shoreline of the Great Salt Lake Only the 100-year flood elevation was evaluated and included wind and wave action for the Great Salt Lake. This dataset is the most current digital information available.

  6. a

    Waterways

    • gisdata-slco.opendata.arcgis.com
    • opendata.utah.gov
    • +2more
    Updated Nov 2, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salt Lake County (2016). Waterways [Dataset]. https://gisdata-slco.opendata.arcgis.com/datasets/7019d54d2dd14609aa2603b114e220e0
    Explore at:
    Dataset updated
    Nov 2, 2016
    Dataset authored and provided by
    Salt Lake County
    Area covered
    Description

    This data represents the waterways of Salt Lake County, including streams, rivers, canals, drains and ditches. The data indicates Designated Salt Lake County Flood Control Facilities as per County Ordinance Chapter 17.08.04 Permits are required, but not limited to, these specific canals, drains, ditches and streams. The data is accurate for identifying the general location of these facilities. For specific information about permits, contact the Flood Control Permit Coordinator in the Engineering Division. Addition, the waterways layer will have non ordinace facilites for general and historical purposes.The valley streams were originally digitized from 6-inch color aerial photgraphy 2009 and 2010. Tree canopy obscured some reaches and are less accurate in those cases. Mountain streams were originally digitized from the 2006 NAIP and has been since updated with 1-foot pixel color aerial photography in 2010, available mosty for the lower canyon areas. In 2011, the data has been updated with high-resolution alignment adjustments at 1:1000 to 1:2000 scale, using 2010 aerial imagery, 2009 LIDAR, historical flood control plans from 1983 and 1986. In 2013, the data has been updated with high resolution 2012 aerial imagery and the waterways was realigned at 1:600 to 1:1000 scale.

  7. d

    EnviroAtlas - Salt Lake City, UT - BenMAP Results by Block Group

    • catalog.data.gov
    • datasets.ai
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact) (2025). EnviroAtlas - Salt Lake City, UT - BenMAP Results by Block Group [Dataset]. https://catalog.data.gov/dataset/enviroatlas-salt-lake-city-ut-benmap-results-by-block-group4
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact)
    Area covered
    Salt Lake City, Utah
    Description

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 612 block groups in Salt Lake City, UT. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Salt Lake City and County, UT. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the USDA Forest Service with support from The Davey Tree Expert Company to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. Home Owners' Loan Corporation (HOLC) Neighborhood Redlining Grade

    • gis-for-racialequity.hub.arcgis.com
    Updated Jul 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Home Owners' Loan Corporation (HOLC) Neighborhood Redlining Grade [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/063cdb28dd3a449b92bc04f904256f62
    Explore at:
    Dataset updated
    Jul 24, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    The Home Owners' Loan Corporation (HOLC) was created in the New Deal Era and trained many home appraisers in the 1930s. The HOLC created a neighborhood ranking system infamously known today as redlining. Local real estate developers and appraisers in over 200 cities assigned grades to residential neighborhoods. These maps and neighborhood ratings set the rules for decades of real estate practices. The grades ranged from A to D. A was traditionally colored in green, B was traditionally colored in blue, C was traditionally colored in yellow, and D was traditionally colored in red. A (Best): Always upper- or upper-middle-class White neighborhoods that HOLC defined as posing minimal risk for banks and other mortgage lenders, as they were "ethnically homogeneous" and had room to be further developed.B (Still Desirable): Generally nearly or completely White, U.S. -born neighborhoods that HOLC defined as "still desirable" and sound investments for mortgage lenders.C (Declining): Areas where the residents were often working-class and/or first or second generation immigrants from Europe. These areas often lacked utilities and were characterized by older building stock.D (Hazardous): Areas here often received this grade because they were "infiltrated" with "undesirable populations" such as Jewish, Asian, Mexican, and Black families. These areas were more likely to be close to industrial areas and to have older housing.Banks received federal backing to lend money for mortgages based on these grades. Many banks simply refused to lend to areas with the lowest grade, making it impossible for people in many areas to become homeowners. While this type of neighborhood classification is no longer legal thanks to the Fair Housing Act of 1968 (which was passed in large part due to the activism and work of the NAACP and other groups), the effects of disinvestment due to redlining are still observable today. For example, the health and wealth of neighborhoods in Chicago today can be traced back to redlining (Chicago Tribune). In addition to formerly redlined neighborhoods having fewer resources such as quality schools, access to fresh foods, and health care facilities, new research from the Science Museum of Virginia finds a link between urban heat islands and redlining (Hoffman, et al., 2020). This layer comes out of that work, specifically from University of Richmond's Digital Scholarship Lab. More information on sources and digitization process can be found on the Data and Download and About pages. NOTE: This map has been updated as of 1/16/24 to use a newer version of the data layer which contains more cities than it previously did. As mentioned above, over 200 cities were redlined and therefore this is not a complete dataset of every city that experienced redlining by the HOLC in the 1930s. Map opens in Sacramento, CA. Use bookmarks or the search bar to get to other cities.Cities included in this mapAlabama: Birmingham, Mobile, MontgomeryArizona: PhoenixArkansas: Arkadelphia, Batesville, Camden, Conway, El Dorado, Fort Smith, Little Rock, Russellville, TexarkanaCalifornia: Fresno, Los Angeles, Oakland, Sacramento, San Diego, San Francisco, San Jose, StocktonColorado: Boulder, Colorado Springs, Denver, Fort Collins, Fort Morgan, Grand Junction, Greeley, Longmont, PuebloConnecticut: Bridgeport and Fairfield; Hartford; New Britain; New Haven; Stamford, Darien, and New Canaan; WaterburyFlorida: Crestview, Daytona Beach, DeFuniak Springs, DeLand, Jacksonville, Miami, New Smyrna, Orlando, Pensacola, St. Petersburg, TampaGeorgia: Atlanta, Augusta, Columbus, Macon, SavannahIowa: Boone, Cedar Rapids, Council Bluffs, Davenport, Des Moines, Dubuque, Sioux City, WaterlooIllinois: Aurora, Chicago, Decatur, East St. Louis, Joliet, Peoria, Rockford, SpringfieldIndiana: Evansville, Fort Wayne, Indianapolis, Lake County Gary, Muncie, South Bend, Terre HauteKansas: Atchison, Greater Kansas City, Junction City, Topeka, WichitaKentucky: Covington, Lexington, LouisvilleLouisiana: New Orleans, ShreveportMaine: Augusta, Boothbay, Portland, Sanford, WatervilleMaryland: BaltimoreMassachusetts: Arlington, Belmont, Boston, Braintree, Brockton, Brookline, Cambridge, Chelsea, Dedham, Everett, Fall River, Fitchburg, Haverhill, Holyoke Chicopee, Lawrence, Lexington, Lowell, Lynn, Malden, Medford, Melrose, Milton, Needham, New Bedford, Newton, Pittsfield, Quincy, Revere, Salem, Saugus, Somerville, Springfield, Waltham, Watertown, Winchester, Winthrop, WorcesterMichigan: Battle Creek, Bay City, Detroit, Flint, Grand Rapids, Jackson, Kalamazoo, Lansing, Muskegon, Pontiac, Saginaw, ToledoMinnesota: Austin, Duluth, Mankato, Minneapolis, Rochester, Staples, St. Cloud, St. PaulMississippi: JacksonMissouri: Cape Girardeau, Carthage, Greater Kansas City, Joplin, Springfield, St. Joseph, St. LouisNorth Carolina: Asheville, Charlotte, Durham, Elizabeth City, Fayetteville, Goldsboro, Greensboro, Hendersonville, High Point, New Bern, Rocky Mount, Statesville, Winston-SalemNorth Dakota: Fargo, Grand Forks, Minot, WillistonNebraska: Lincoln, OmahaNew Hampshire: ManchesterNew Jersey: Atlantic City, Bergen County, Camden, Essex County, Monmouth, Passaic County, Perth Amboy, Trenton, Union CountyNew York: Albany, Binghamton/Johnson City, Bronx, Brooklyn, Buffalo, Elmira, Jamestown, Lower Westchester County, Manhattan, Niagara Falls, Poughkeepsie, Queens, Rochester, Schenectady, Staten Island, Syracuse, Troy, UticaOhio: Akron, Canton, Cleveland, Columbus, Dayton, Hamilton, Lima, Lorain, Portsmouth, Springfield, Toledo, Warren, YoungstownOklahoma: Ada, Alva, Enid, Miami Ottawa County, Muskogee, Norman, Oklahoma City, South McAlester, TulsaOregon: PortlandPennsylvania: Allentown, Altoona, Bethlehem, Chester, Erie, Harrisburg, Johnstown, Lancaster, McKeesport, New Castle, Philadelphia, Pittsburgh, Wilkes-Barre, YorkRhode Island: Pawtucket & Central Falls, Providence, WoonsocketSouth Carolina: Aiken, Charleston, Columbia, Greater Anderson, Greater Greensville, Orangeburg, Rock Hill, Spartanburg, SumterSouth Dakota: Aberdeen, Huron, Milbank, Mitchell, Rapid City, Sioux Falls, Vermillion, WatertownTennessee: Chattanooga, Elizabethton, Erwin, Greenville, Johnson City, Knoxville, Memphis, NashvilleTexas: Amarillo, Austin, Beaumont, Dallas, El Paso, Forth Worth, Galveston, Houston, Port Arthur, San Antonio, Waco, Wichita FallsUtah: Ogden, Salt Lake CityVirginia: Bristol, Danville, Harrisonburg, Lynchburg, Newport News, Norfolk, Petersburg, Phoebus, Richmond, Roanoke, StauntonVermont: Bennington, Brattleboro, Burlington, Montpelier, Newport City, Poultney, Rutland, Springfield, St. Albans, St. Johnsbury, WindsorWashington: Seattle, Spokane, TacomaWisconsin: Kenosha, Madison, Milwaukee County, Oshkosh, RacineWest Virginia: Charleston, Huntington, WheelingAn example of a map produced by the HOLC of Philadelphia:

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Salt Lake County (2017). Municipal Boundaries [Dataset]. https://gisdata-slco.opendata.arcgis.com/datasets/municipal-boundaries

Municipal Boundaries

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 7, 2017
Dataset authored and provided by
Salt Lake County
Area covered
Description

Salt Lake County Municipal Boundaries, including Cities, Metro Townships and Unincorporated areas.Source:Salt Lake County Surveyor's Office

Search
Clear search
Close search
Google apps
Main menu