7 datasets found
  1. a

    Salt Lake County Subdivisions

    • gisdata-slco.opendata.arcgis.com
    • opendata.utah.gov
    • +1more
    Updated Mar 17, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salt Lake County (2015). Salt Lake County Subdivisions [Dataset]. https://gisdata-slco.opendata.arcgis.com/datasets/salt-lake-county-subdivisions
    Explore at:
    Dataset updated
    Mar 17, 2015
    Dataset authored and provided by
    Salt Lake County
    Area covered
    Description

    Subdivision boundaries in Salt Lake County maintained by the Salt Lake County Surveyor's Office.

  2. d

    EnviroAtlas - Salt Lake City, UT - EnviroAtlas Community Boundary

    • catalog.data.gov
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact) (2025). EnviroAtlas - Salt Lake City, UT - EnviroAtlas Community Boundary [Dataset]. https://catalog.data.gov/dataset/enviroatlas-salt-lake-city-ut-enviroatlas-community-boundary5
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact)
    Area covered
    Salt Lake City, Utah
    Description

    This EnviroAtlas dataset shows the Salt Lake City, UT EnviroAtlas community boundary. It represents the outside edge of all the block groups included in the EnviroAtlas Community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. d

    Utah's Water Future - 2014 Household Survey

    • search.dataone.org
    • hydroshare.org
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Douglas Jackson-Smith; Courtney Flint (2021). Utah's Water Future - 2014 Household Survey [Dataset]. https://search.dataone.org/view/sha256%3A38db8d8e0120b5d3061bedcaeb98600c8ce64dc549fa338ed7a8c8843662b2e7
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Douglas Jackson-Smith; Courtney Flint
    Time period covered
    Jan 1, 2014 - Dec 31, 2014
    Area covered
    Description

    These data reflect results of a household survey implemented in the summer of 2014. The survey randomly sampled households from 23 neighborhoods (census block groups) across 12 cities and 3 counties. Neighborhoods were purposively selected to represent different configurations of social, built, and natural environmental characteristics using the "iUTAH Urban Typology" (https://www.hydroshare.org/resource/84f00a1d8ae641a8af2d994a74f4ccfb/). Data were collected using a drop-off/pick-up methodology, and produced an overall response rate of over 62% (~2,400 respondents). The questionnaire included detailed questions related to household water use and landscaping behaviors, perceptions of water supply and quality, participation in water based recreation, concerns about water issues, and preferences for a range of local and state water policies.

    Here we are making public an anonymized version of the large household survey dataset. To protect the identity of respondents, we have removed a few variables and truncated other variables.

    Files included here: englishsurveys and spanishsurveys: These folders contain the survey questionnaires used specific to each neighborhood. Codebook in various formats: Tables (xls and csv files) with a list and definition of questions/variables, which correspond to the columns in the data files, and the encoding of the responses. Dataset in various formats: Tables (csv, xls, sas, sav, dta files) containing numeric responses to each question. Each participant's responses correspond to a row of data. Each question corresponds to a column of data. Interpretation of the coded responses is found in the data codebook. Maps: maps of the neighborhoods surveyed. SummaryReports: Summaries of the results that compare across three counties, summary reports for each county, highlight reports for each city.

    Summary reports are also available at http://data.iutahepscor.org/mdf/Data/household_survey/ including an overall report that provides comparisons of how these vary across the three counties where we collected data (Cache, Salt Lake, and Wasatch) as well as summary reports for each county and highlights reports for each city.

  4. Home Owners' Loan Corporation (HOLC) Neighborhood Redlining Grade

    • cityscapes-projects-gisanddata.hub.arcgis.com
    Updated Jul 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Home Owners' Loan Corporation (HOLC) Neighborhood Redlining Grade [Dataset]. https://cityscapes-projects-gisanddata.hub.arcgis.com/items/063cdb28dd3a449b92bc04f904256f62
    Explore at:
    Dataset updated
    Jul 24, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    The Home Owners' Loan Corporation (HOLC) was created in the New Deal Era and trained many home appraisers in the 1930s. The HOLC created a neighborhood ranking system infamously known today as redlining. Local real estate developers and appraisers in over 200 cities assigned grades to residential neighborhoods. These maps and neighborhood ratings set the rules for decades of real estate practices. The grades ranged from A to D. A was traditionally colored in green, B was traditionally colored in blue, C was traditionally colored in yellow, and D was traditionally colored in red. A (Best): Always upper- or upper-middle-class White neighborhoods that HOLC defined as posing minimal risk for banks and other mortgage lenders, as they were "ethnically homogeneous" and had room to be further developed.B (Still Desirable): Generally nearly or completely White, U.S. -born neighborhoods that HOLC defined as "still desirable" and sound investments for mortgage lenders.C (Declining): Areas where the residents were often working-class and/or first or second generation immigrants from Europe. These areas often lacked utilities and were characterized by older building stock.D (Hazardous): Areas here often received this grade because they were "infiltrated" with "undesirable populations" such as Jewish, Asian, Mexican, and Black families. These areas were more likely to be close to industrial areas and to have older housing.Banks received federal backing to lend money for mortgages based on these grades. Many banks simply refused to lend to areas with the lowest grade, making it impossible for people in many areas to become homeowners. While this type of neighborhood classification is no longer legal thanks to the Fair Housing Act of 1968 (which was passed in large part due to the activism and work of the NAACP and other groups), the effects of disinvestment due to redlining are still observable today. For example, the health and wealth of neighborhoods in Chicago today can be traced back to redlining (Chicago Tribune). In addition to formerly redlined neighborhoods having fewer resources such as quality schools, access to fresh foods, and health care facilities, new research from the Science Museum of Virginia finds a link between urban heat islands and redlining (Hoffman, et al., 2020). This layer comes out of that work, specifically from University of Richmond's Digital Scholarship Lab. More information on sources and digitization process can be found on the Data and Download and About pages. NOTE: This map has been updated as of 1/16/24 to use a newer version of the data layer which contains more cities than it previously did. As mentioned above, over 200 cities were redlined and therefore this is not a complete dataset of every city that experienced redlining by the HOLC in the 1930s. Map opens in Sacramento, CA. Use bookmarks or the search bar to get to other cities.Cities included in this mapAlabama: Birmingham, Mobile, MontgomeryArizona: PhoenixArkansas: Arkadelphia, Batesville, Camden, Conway, El Dorado, Fort Smith, Little Rock, Russellville, TexarkanaCalifornia: Fresno, Los Angeles, Oakland, Sacramento, San Diego, San Francisco, San Jose, StocktonColorado: Boulder, Colorado Springs, Denver, Fort Collins, Fort Morgan, Grand Junction, Greeley, Longmont, PuebloConnecticut: Bridgeport and Fairfield; Hartford; New Britain; New Haven; Stamford, Darien, and New Canaan; WaterburyFlorida: Crestview, Daytona Beach, DeFuniak Springs, DeLand, Jacksonville, Miami, New Smyrna, Orlando, Pensacola, St. Petersburg, TampaGeorgia: Atlanta, Augusta, Columbus, Macon, SavannahIowa: Boone, Cedar Rapids, Council Bluffs, Davenport, Des Moines, Dubuque, Sioux City, WaterlooIllinois: Aurora, Chicago, Decatur, East St. Louis, Joliet, Peoria, Rockford, SpringfieldIndiana: Evansville, Fort Wayne, Indianapolis, Lake County Gary, Muncie, South Bend, Terre HauteKansas: Atchison, Greater Kansas City, Junction City, Topeka, WichitaKentucky: Covington, Lexington, LouisvilleLouisiana: New Orleans, ShreveportMaine: Augusta, Boothbay, Portland, Sanford, WatervilleMaryland: BaltimoreMassachusetts: Arlington, Belmont, Boston, Braintree, Brockton, Brookline, Cambridge, Chelsea, Dedham, Everett, Fall River, Fitchburg, Haverhill, Holyoke Chicopee, Lawrence, Lexington, Lowell, Lynn, Malden, Medford, Melrose, Milton, Needham, New Bedford, Newton, Pittsfield, Quincy, Revere, Salem, Saugus, Somerville, Springfield, Waltham, Watertown, Winchester, Winthrop, WorcesterMichigan: Battle Creek, Bay City, Detroit, Flint, Grand Rapids, Jackson, Kalamazoo, Lansing, Muskegon, Pontiac, Saginaw, ToledoMinnesota: Austin, Duluth, Mankato, Minneapolis, Rochester, Staples, St. Cloud, St. PaulMississippi: JacksonMissouri: Cape Girardeau, Carthage, Greater Kansas City, Joplin, Springfield, St. Joseph, St. LouisNorth Carolina: Asheville, Charlotte, Durham, Elizabeth City, Fayetteville, Goldsboro, Greensboro, Hendersonville, High Point, New Bern, Rocky Mount, Statesville, Winston-SalemNorth Dakota: Fargo, Grand Forks, Minot, WillistonNebraska: Lincoln, OmahaNew Hampshire: ManchesterNew Jersey: Atlantic City, Bergen County, Camden, Essex County, Monmouth, Passaic County, Perth Amboy, Trenton, Union CountyNew York: Albany, Binghamton/Johnson City, Bronx, Brooklyn, Buffalo, Elmira, Jamestown, Lower Westchester County, Manhattan, Niagara Falls, Poughkeepsie, Queens, Rochester, Schenectady, Staten Island, Syracuse, Troy, UticaOhio: Akron, Canton, Cleveland, Columbus, Dayton, Hamilton, Lima, Lorain, Portsmouth, Springfield, Toledo, Warren, YoungstownOklahoma: Ada, Alva, Enid, Miami Ottawa County, Muskogee, Norman, Oklahoma City, South McAlester, TulsaOregon: PortlandPennsylvania: Allentown, Altoona, Bethlehem, Chester, Erie, Harrisburg, Johnstown, Lancaster, McKeesport, New Castle, Philadelphia, Pittsburgh, Wilkes-Barre, YorkRhode Island: Pawtucket & Central Falls, Providence, WoonsocketSouth Carolina: Aiken, Charleston, Columbia, Greater Anderson, Greater Greensville, Orangeburg, Rock Hill, Spartanburg, SumterSouth Dakota: Aberdeen, Huron, Milbank, Mitchell, Rapid City, Sioux Falls, Vermillion, WatertownTennessee: Chattanooga, Elizabethton, Erwin, Greenville, Johnson City, Knoxville, Memphis, NashvilleTexas: Amarillo, Austin, Beaumont, Dallas, El Paso, Forth Worth, Galveston, Houston, Port Arthur, San Antonio, Waco, Wichita FallsUtah: Ogden, Salt Lake CityVirginia: Bristol, Danville, Harrisonburg, Lynchburg, Newport News, Norfolk, Petersburg, Phoebus, Richmond, Roanoke, StauntonVermont: Bennington, Brattleboro, Burlington, Montpelier, Newport City, Poultney, Rutland, Springfield, St. Albans, St. Johnsbury, WindsorWashington: Seattle, Spokane, TacomaWisconsin: Kenosha, Madison, Milwaukee County, Oshkosh, RacineWest Virginia: Charleston, Huntington, WheelingAn example of a map produced by the HOLC of Philadelphia:

  5. TIGER/Line Shapefile, 2020, County, Salt Lake County, UT, All Roads

    • catalog.data.gov
    Updated Oct 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2021). TIGER/Line Shapefile, 2020, County, Salt Lake County, UT, All Roads [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2020-county-salt-lake-county-ut-all-roads
    Explore at:
    Dataset updated
    Oct 13, 2021
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    United States Department of Commercehttp://commerce.gov/
    Area covered
    Salt Lake County, Utah
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The All Roads Shapefile includes all features within the MTDB Super Class "Road/Path Features" distinguished where the MAF/TIGER Feature Classification Code (MTFCC) for the feature in MTDB that begins with "S". This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, stairways, and winter trails.

  6. Sentinel-2 10m Land Use/Land Cover Time Series

    • keep-cool-global-community.hub.arcgis.com
    • colorado-river-portal.usgs.gov
    • +10more
    Updated Oct 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Time Series [Dataset]. https://keep-cool-global-community.hub.arcgis.com/datasets/cfcb7609de5f478eb7666240902d4d3d
    Explore at:
    Dataset updated
    Oct 19, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2024 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2024. Key Properties Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryAnalysis: Optimized for analysisClass Definitions: ValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Usage Information and Best PracticesProcessing TemplatesThis layer includes a number of preconfigured processing templates (raster function templates) to provide on-the-fly data rendering and class isolation for visualization and analysis. Each processing template includes labels and descriptions to characterize the intended usage. This may include for visualization, for analysis, or for both visualization and analysis. VisualizationThe default rendering on this layer displays all classes.There are a number of on-the-fly renderings/processing templates designed specifically for data visualization.By default, the most recent year is displayed. To discover and isolate specific years for visualization in Map Viewer, try using the Image Collection Explorer. AnalysisIn order to leverage the optimization for analysis, the capability must be enabled by your ArcGIS organization administrator. More information on enabling this feature can be found in the ‘Regional data hosting’ section of this help doc.Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See this group for a complete list of imagery layers optimized for analysis.Prior to running analysis, users should always provide some form of data selection with either a layer filter (e.g. for a specific date range, cloud cover percent, mission, etc.) or by selecting specific images. To discover and isolate specific images for analysis in Map Viewer, try using the Image Collection Explorer.Zonal Statistics is a common tool used for understanding the composition of a specified area by reporting the total estimates for each of the classes. GeneralIf you are new to Sentinel-2 LULC, the Sentinel-2 Land Cover Explorer provides a good introductory user experience for working with this imagery layer. For more information, see this Quick Start Guide.Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.

  7. n

    Maps of Vegetation Types and Physiographic Features, Imnavait Creek, Alaska

    • access.earthdata.nasa.gov
    • s.cnmilf.com
    • +5more
    zip
    Updated Dec 31, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Maps of Vegetation Types and Physiographic Features, Imnavait Creek, Alaska [Dataset]. http://doi.org/10.3334/ORNLDAAC/1385
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 31, 2018
    Time period covered
    Jun 1, 1970 - Aug 31, 2015
    Area covered
    Description

    This dataset provides the spatial distribution of vegetation types, soil carbon, and physiographic features in the Imnavait Creek area, Alaska. Specific attributes include vegetation, percent water, glacial geology, soil carbon, a digital elevation model (DEM), surficial geology and surficial geomorphology. Data are also provided on the research grids for georeferencing. The map data are from a variety of sources and encompass the period 1970-06-01 to 2015-08-31.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Salt Lake County (2015). Salt Lake County Subdivisions [Dataset]. https://gisdata-slco.opendata.arcgis.com/datasets/salt-lake-county-subdivisions

Salt Lake County Subdivisions

Explore at:
Dataset updated
Mar 17, 2015
Dataset authored and provided by
Salt Lake County
Area covered
Description

Subdivision boundaries in Salt Lake County maintained by the Salt Lake County Surveyor's Office.

Search
Clear search
Close search
Google apps
Main menu