32 datasets found
  1. C

    China Population Statistics: Sample Survey: Sampling Fraction

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). China Population Statistics: Sample Survey: Sampling Fraction [Dataset]. https://www.ceicdata.com/en/china/population-sample-survey-level-of-education/population-statistics-sample-survey-sampling-fraction
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    China
    Variables measured
    Population
    Description

    China Population Statistics: Sample Survey: Sampling Fraction data was reported at 0.105 % in 2023. This records an increase from the previous number of 0.102 % for 2022. China Population Statistics: Sample Survey: Sampling Fraction data is updated yearly, averaging 0.100 % from Dec 1982 (Median) to 2023, with 37 observations. The data reached an all-time high of 100.000 % in 2020 and a record low of 0.063 % in 1994. China Population Statistics: Sample Survey: Sampling Fraction data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Sample Survey: Level of Education.

  2. n

    Census Microdata Samples Project

    • neuinfo.org
    • scicrunch.org
    • +1more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Census Microdata Samples Project [Dataset]. http://identifiers.org/RRID:SCR_008902
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219

  3. i

    Population and Family Health Survey 1997 - Jordan

    • catalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DOS) (2019). Population and Family Health Survey 1997 - Jordan [Dataset]. http://catalog.ihsn.org/catalog/182
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Department of Statistics (DOS)
    Time period covered
    1997
    Area covered
    Jordan
    Description

    Abstract

    The 1997 Jordan Population and Family Health Survey (JPFHS) is a national sample survey carried out by the Department of Statistics (DOS) as part of its National Household Surveys Program (NHSP). The JPFHS was specifically aimed at providing information on fertility, family planning, and infant and child mortality. Information was also gathered on breastfeeding, on maternal and child health care and nutritional status, and on the characteristics of households and household members. The survey will provide policymakers and planners with important information for use in formulating informed programs and policies on reproductive behavior and health.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE DESIGN AND IMPLEMENTATION

    The 1997 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, for urban and rural areas, for the three regions (each composed of a group of governorates), and for the three major governorates, Amman, Irbid, and Zarqa.

    The 1997 JPFHS sample is a subsample of the master sample that was designed using the frame obtained from the 1994 Population and Housing Census. A two-stage sampling procedure was employed. First, primary sampling units (PSUs) were selected with probability proportional to the number of housing units in the PSU. A total of 300 PSUs were selected at this stage. In the second stage, in each selected PSU, occupied housing units were selected with probability inversely proportional to the number of housing units in the PSU. This design maintains a self-weighted sampling fraction within each governorate.

    UPDATING OF SAMPLING FRAME

    Prior to the main fieldwork, mapping operations were carried out and the sample units/blocks were selected and then identified and located in the field. The selected blocks were delineated and the outer boundaries were demarcated with special signs. During this process, the numbers on buildings and housing units were updated, listed and documented, along with the name of the owner/tenant of the unit or household and the name of the household head. These activities took place between January 7 and February 28, 1997.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    The 1997 JPFHS used two questionnaires, one for the household interview and the other for eligible women. Both questionnaires were developed in English and then translated into Arabic. The household questionnaire was used to list all members of the sampled households, including usual residents as well as visitors. For each member of the household, basic demographic and social characteristics were recorded and women eligible for the individual interview were identified. The individual questionnaire was developed utilizing the experience gained from previous surveys, in particular the 1983 and 1990 Jordan Fertility and Family Health Surveys (JFFHS).

    The 1997 JPFHS individual questionnaire consists of 10 sections: - Respondent’s background - Marriage - Reproduction (birth history) - Contraception - Pregnancy, breastfeeding, health and immunization - Fertility preferences - Husband’s background, woman’s work and residence - Knowledge of AIDS - Maternal mortality - Height and weight of children and mothers.

    Cleaning operations

    Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding.

    Data entry started after a week of office data processing. The process of data entry, editing, and cleaning was done by means of the ISSA (Integrated System for Survey Analysis) program DHS has developed especially for such surveys. The ISSA program allows data to be edited while being entered. Data entry was completed on November 14, 1997. A data processing specialist from Macro made a trip to Jordan in November and December 1997 to identify problems in data entry, editing, and cleaning, and to work on tabulations for both the preliminary and final report.

    Response rate

    A total of 7,924 occupied housing units were selected for the survey; from among those, 7,592 households were found. Of the occupied households, 7,335 (97 percent) were successfully interviewed. In those households, 5,765 eligible women were identified, and complete interviews were obtained with 5,548 of them (96 percent of all eligible women). Thus, the overall response rate of the 1997 JPFHS was 93 percent. The principal reason for nonresponse among the women was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are subject to two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing (such as failure to locate and interview the correct household, misunderstanding questions either by the interviewer or the respondent, and data entry errors). Although during the implementation of the 1997 JPFHS numerous efforts were made to minimize this type of error, nonsampling errors are not only impossible to avoid but also difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The respondents selected in the 1997 JPFHS constitute only one of many samples that could have been selected from the same population, given the same design and expected size. Each of those samples would have yielded results differing somewhat from the results of the sample actually selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, since the 1997 JDHS-II sample resulted from a multistage stratified design, formulae of higher complexity had to be used. The computer software used to calculate sampling errors for the 1997 JDHS-II was the ISSA Sampling Error Module, which uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics, such as fertility and mortality rates.

    Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  4. N

    Weston, OR Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Weston, OR Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/weston-or-population-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Weston
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Weston by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Weston across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 51.46% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Weston is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Weston total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Weston Population by Race & Ethnicity. You can refer the same here

  5. General Population Census of 1968 - IPUMS Subset - France

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Apr 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minnesota Population Center (2019). General Population Census of 1968 - IPUMS Subset - France [Dataset]. https://microdata.worldbank.org/index.php/catalog/2143
    Explore at:
    Dataset updated
    Apr 18, 2019
    Dataset provided by
    The National Institute of Statistics and Economic Studieshttp://insee.fr/
    Minnesota Population Center
    Time period covered
    1968
    Area covered
    France
    Description

    Abstract

    IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.

    The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.

    Geographic coverage

    National coverage

    Analysis unit

    Dwelling

    UNITS IDENTIFIED: - Dwellings: No - Households: Yes - Individuals: Yes - Group quarters: Yes

    UNIT DESCRIPTIONS: - Group quarters: A collective household is a group of persons that does not live in an ordinary household, but lives in a collective establishment, sharing meal times.

    Universe

    Residents in France, of any nationality. Does not include French citizens living in other countries, foreign tourists, or people passing through.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    SAMPLE DESIGN: Systematic manual sorting into lots with different sample units according to target population. Lots divide the population into different samples (1/20,1/5,3/4).

    SAMPLE UNIT: Private dwellings and individuals for group quarters and compte a part

    SAMPLE FRACTION: 5%

    SAMPLE UNIVERSE: The microdata sample includes mainland France and Corsica.

    SAMPLE SIZE (person records): 2,487,778

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Separate forms for buildings, group quarters (collective households), group quarters (compte a part), private households, and boats. Four forms for individuals (living in group quarters and private dwellings; two different forms for people compte a part; living in boats).

  6. Namibia Population and Housing Census 2011 - Namibia

    • microdata.nsanamibia.com
    Updated Sep 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Namibia Statistics Agency (2024). Namibia Population and Housing Census 2011 - Namibia [Dataset]. https://microdata.nsanamibia.com/index.php/catalog/9
    Explore at:
    Dataset updated
    Sep 30, 2024
    Dataset authored and provided by
    Namibia Statistics Agencyhttps://nsa.org.na/
    Time period covered
    2011
    Area covered
    Namibia
    Description

    Abstract

    The 2011 Population and Housing Census is the third national Census to be conducted in Namibia after independence. The first was conducted 1991 followed by the 2001 Census. Namibia is therefore one of the countries in sub-Saharan Africa that has participated in the 2010 Round of Censuses and followed the international best practice of conducting decennial Censuses, each of which attempts to count and enumerate every person and household in a country every ten years. Surveys, by contrast, collect data from samples of people and/or households.

    Censuses provide reliable and critical data on the socio-economic and demographic status of any country. In Namibia, Census data has provided crucial information for development planning and programme implementation. Specifically, the information has assisted in setting benchmarks, formulating policy and the evaluation and monitoring of national development programmes including NDP4, Vision 2030 and several sector programmes. The information has also been used to update the national sampling frame which is used to select samples for household-based surveys, including labour force surveys, demographic and health surveys, household income and expenditure surveys. In addition, Census information will be used to guide the demarcation of Namibia's administrative boundaries where necessary.

    At the international level, Census information has been used extensively in monitoring progress towards Namibia's achievement of international targets, particularly the Millennium Development Goals (MDGs).

    The latest and most comprehensive Census was conducted in August 2011. Preparations for the Census started in the 2007/2008 financial year under the auspices of the then Central Bureau of Statistics (CBS) which was later transformed into the Namibia Statistics Agency (NSA). The NSA was established under the Statistics Act No. 9 of 2011, with the legal mandate and authority to conduct population Censuses every 10 years. The Census was implemented in three broad phases; pre-enumeration, enumeration and post enumeration.

    During the first pre-enumeration phase, activities accomplished including the preparation of a project document, establishing Census management and technical committees, and establishing the Census cartography unit which demarcated the Enumeration Areas (EAs). Other activities included the development of Census instruments and tools, such as the questionnaires, manuals and field control forms.

    Field staff were recruited, trained and deployed during the initial stages of the enumeration phase. The actual enumeration exercise was undertaken over a period of about three weeks from 28 August to 15 September 2011, while 28 August 2011 was marked as the reference period or 'Census Day'.

    Great efforts were made to check and ensure that the Census data was of high quality to enhance its credibility and increase its usage. Various quality controls were implemented to ensure relevance, timeliness, accuracy, coherence and proper data interpretation. Other activities undertaken to enhance quality included the demarcation of the country into small enumeration areas to ensure comprehensive coverage; the development of structured Census questionnaires after consultat.The post-enumeration phase started with the sending of completed questionnaires to Head Office and the preparation of summaries for the preliminary report, which was published in April 2012. Processing of the Census data began with manual editing and coding, which focused on the household identification section and un-coded parts of the questionnaire. This was followed by the capturing of data through scanning. Finally, the data were verified and errors corrected where necessary. This took longer than planned due to inadequate technical skills.

    Geographic coverage

    National coverage

    Analysis unit

    Households and persons

    Universe

    The sampling universe is defined as all households (private and institutions) from 2011 Census dataset.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    Sample Design

    The stratified random sample was applied on the constituency and urban/rural variables of households list from Namibia 2011 Population and Housing Census for the Public Use Microdata Sample (PUMS) file. The sampling universe is defined as all households (private and institutions) from 2011 Census dataset. Since urban and rural are very important factor in the Namibia situation, it was then decided to take the stratum at the constituency and urban/rural levels. Some constituencies have very lower households in the urban or rural, the office therefore decided for a threshold (low boundary) for sampling within stratum. Based on data analysis, the threshold for stratum of PUMS file is 250 households. Thus, constituency and urban/rural areas with less than 250 households in total were included in the PUMS file. Otherwise, a simple random sampling (SRS) at a 20% sample rate was applied for each stratum. The sampled households include 93,674 housing units and 418,362 people.

    Sample Selection

    The PUMS sample is selected from households. The PUMS sample of persons in households is selected by keeping all persons in PUMS households. Sample selection process is performed using Census and Survey Processing System (CSPro).

    The sample selection program first identifies the 7 census strata with less than 250 households and the households (private and institutions) with more than 50 people. The households in these areas and with this large size are all included in the sample. For the other households, the program randomly generates a number n from 0 to 4. Out of every 5 households, the program selects the nth household to export to the PUMS data file, creating a 20 percent sample of households. Private households and institutions are equally sampled in the PUMS data file.

    Note: The 7 census strata with less than 250 households are: Arandis Constituency Rural, Rehoboth East Urban Constituency Rural, Walvis Bay Rural Constituency Rural, Mpungu Constituency Urban, Etayi Constituency Urban, Kalahari Constituency Urban, and Ondobe Constituency Urban.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following questionnaire instruments were used for the Namibia 2011 Population and and Housing Census:

    Form A (Long Form): For conventional households and residential institutions

    Form B1 (Short Form): For special population groups such as persons in transit (travellers), police cells, homeless and off-shore populations

    Form B2 (Short Form): For hotels/guesthouses

    Form B3 (Short Form): For foreign missions/diplomatic corps

    Cleaning operations

    Data editing took place at a number of stages throughout the processing, including: a) During data collection in the field b) Manual editing and coding in the office c) During data entry (Primary validation/editing) Structure checking and completeness using Structured Query Language (SQL) program d) Secondary editing: i. Imputations of variables ii. Structural checking in Census and Survey Processing System (CSPro) program

    Sampling error estimates

    Sampling Error The standard errors of survey estimates are needed to evaluate the precision of the survey estimation. The statistical software package such as SPSS or SAS can accurately estimate the mean and variance of estimates from the survey. SPSS or SAS software package makes use of the Taylor series approach in computing the variance.

    Data appraisal

    Data quality Great efforts were made to check and ensure that the Census data was of high quality to enhance its credibility and increase its usage. Various quality controls were implemented to ensure relevance, timeliness, accuracy, coherence and proper data interpretation. Other activities undertaken to enhance quality included the demarcation of the country into small enumeration areas to ensure comprehensive coverage; the development of structured Census questionnaires after consultation with government ministries, university expertise and international partners; the preparation of detailed supervisors' and enumerators' instruction manuals to guide field staff during enumeration; the undertaking of comprehensive publicity and advocacy programmes to ensure full Government support and cooperation from the general public; the testing of questionnaires and other procedures; the provision of adequate training and undertaking of intensive supervision using four supervisory layers; the editing of questionnaires at field level; establishing proper mechanisms which ensured that all completed questionnaires were properly accounted for; ensuring intensive verification, validating all information and error corrections; and developing capacity in data processing with support from the international community.

  7. China Population: County

    • ceicdata.com
    Updated Apr 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). China Population: County [Dataset]. https://www.ceicdata.com/en/china/population-sample-survey
    Explore at:
    Dataset updated
    Apr 14, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    China
    Variables measured
    Population
    Description

    Population: County data was reported at 502.967 Person th in 2022. This records a decrease from the previous number of 527.827 Person th for 2021. Population: County data is updated yearly, averaging 753.829 Person th from Dec 1982 (Median) to 2022, with 34 observations. The data reached an all-time high of 797,604.783 Person th in 1982 and a record low of 430.197 Person th in 2019. Population: County data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Sample Survey.

  8. ACS Population Variables - Centroids

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    Updated Oct 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Population Variables - Centroids [Dataset]. https://hub.arcgis.com/maps/babfd093d1f645e092edcb2cf301eaab
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows total population count by sex and age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent and count of the dependent population (ages 65+ and <18). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  9. f

    'Dataset2' - Who Tweets with Their Location? Understanding the Relationship...

    • figshare.com
    zip
    Updated Jan 20, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luke Sloan (2016). 'Dataset2' - Who Tweets with Their Location? Understanding the Relationship Between Demographic Characteristics and the Use of Geoservices and Geotagging on Twitter [Dataset]. http://doi.org/10.6084/m9.figshare.1572292.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 20, 2016
    Dataset provided by
    figshare
    Authors
    Luke Sloan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    'Dataset2' associated with: Who Tweets with Their Location? Understanding the Relationship Between Demographic Characteristics and the Use of Geoservices and Geotagging on Twitter

    Luke Sloan and Jeffrey Morgan.

  10. 2021 American Community Survey: DP05 | ACS DEMOGRAPHIC AND HOUSING ESTIMATES...

    • test.data.census.gov
    • data.census.gov
    Updated Aug 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2021). 2021 American Community Survey: DP05 | ACS DEMOGRAPHIC AND HOUSING ESTIMATES (ACS 5-Year Estimates Selected Population Data Profiles) [Dataset]. https://test.data.census.gov/table/ACSDP5YSPT2021.DP05?g=060XX00US0900901220
    Explore at:
    Dataset updated
    Aug 15, 2021
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2021
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..For more information on understanding Hispanic origin and race data, please see the America Counts: Stories Behind the Numbers article entitled, 2020 Census Illuminates Racial and Ethnic Composition of the Country, issued August 2021..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  11. N

    Malta, OH Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Malta, OH Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/6703b61d-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ohio, Malta
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Malta by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Malta. The dataset can be utilized to understand the population distribution of Malta by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Malta. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Malta.

    Key observations

    Largest age group (population): Male # 35-39 years (52) | Female # 25-29 years (62). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Malta population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Malta is shown in the following column.
    • Population (Female): The female population in the Malta is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Malta for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Malta Population by Gender. You can refer the same here

  12. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Michigan State University (MSU)
    Time period covered
    1999 - 2000
    Area covered
    Zimbabwe, Botswana, Lesotho, Africa, Namibia, Zambia, South Africa, Malawi
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  13. w

    Integrated Living Conditions Survey 2015 - Armenia

    • microdata.worldbank.org
    • microdata.armstat.am
    • +1more
    Updated Apr 24, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Service of the Republic of Armenia (NSS RA) (2018). Integrated Living Conditions Survey 2015 - Armenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/2964
    Explore at:
    Dataset updated
    Apr 24, 2018
    Dataset authored and provided by
    National Statistical Service of the Republic of Armenia (NSS RA)
    Time period covered
    2015
    Area covered
    Armenia
    Description

    Abstract

    The Integrated Living Conditions Survey (ILCS), conducted annually by the NSS National Statistical Service of the Republic of Armenia, formed the basis for monitoring living conditions in Armenia. The ILCS is a universally recognized best-practice survey for collecting data to inform about the living standards of households. The ILCS comprises comprehensive and valuable data on the welfare of households and separate individuals which gives the NSS an opportunity to provide the public with up to date information on the population’s income, expenditures, the level of poverty and the other changes in living standards on an annual basis.

    Geographic coverage

    Urban and rural communities

    Analysis unit

    • Households;
    • Individuals.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    During the 2001-2003 surveys two-stage random sample was used; the first stage covered the selection of settlements - cities and villages, while the second stage was focused on the selection of households in these settlements. The surveys were conducted on the principle of monthly rotation of households by clusters (sample units). In 2002 and 2003 the number of households was 387 with the sample covering 14 cities and 30 villages in 2002 and 17 cities and 20 villages in 2003.

    During the 2004-2006 surveys the sampling frame for the ILCS was built using the database of addresses for the 2001 Population Census; the database was developed with the World Bank technical assistance. The database of addresses of all households in Armenia was divided into 48 strata including 12 communities of Yerevan city. The households from other regions (marzes) were grouped according to the following three categories: big towns with 15,000 and more population; villages, and other towns. Big towns formed 16 strata (the only exception was the Vayots Dzor marz where there are no big towns). The villages and other towns formed 10 strata each. According to this division, a random, two-step sample stratified at marz level was developed. All marzes, as well as all urban and rural settlements were included in the sample population according to the share of population residing in those settlements as percent to the total population in the country. In the first step, the settlements, i.e. primary sample units, were selected: 43 towns out of 48 or 90 percent of all towns in Armenia were surveyed during the year; also 216 villages out of 951 or 23 percent of all villages in the country were covered by the survey. In the second step, the respondent households were selected: 6,816 households (5,088 from urban and 1,728 from rural settlements). As a result, for the first time since 1996 survey data were representative at the marz level.

    During the 2007-2012 surveys the sampling frame for ILCS was designed according to the database of addresses for the 2001 Population Census, which was developed with the World Bank technical assistance. The sample consisted of two parts: core sample and oversample.

    1) For the creation of core sample, the sample frame (database of addresses of all households in Armenia) was divided into 48 strata including 12 communities of Yerevan city. The households from other regions (marzes) were grouped according to three categories: large towns (with population of 15000 and higher), villages and other towns. Large towns formed by 16 groups (strata), while the villages and towns formed by 10 strata each. According to that division, a random, two-step sample stratified at the marz level was developed. All marzes, as well as all urban and rural settlements were included in the sample population according to the share of households residing in those settlements as percent to the total households in the country. In the first step, using the PPS method the enumeration units (i.e., primary sample units to be surveyed during the year) were selected. 2007 sample includes 48 urban and 18 rural enumeration areas per month. 2) The oversample was drawn from the list of villages included in MCA-Armenia Rural Roads Rehabilitation Project. The enumeration areas of villages that were already in the core sample were excluded from that list. From the remaining enumeration areas 18 enumeration areas were selected per month. Thus, the rural sample size was doubled. 3) After merging the core sample and oversample, the survey households were selected in the second step. 656 households were surveyed per month, from which 368 from urban and 288 from rural settlements. Each month 82 interviewers had conducted field work, and their workload included 8 households per month. In 2007 number of surveyed households was 7,872 (4,416 from urban and 3,456 from rural areas).

    For the survey 2013 the sample frame for ILCS was designed in accordance with the database of addresses of all private households in the country developed on basis of the 2001 Population Census results, with the technical assistance of the World Bank. The method of systematic representative probability sampling was used to frame the sample. For the purpose of drawing the sample, the sample frame was divided into 32 strata including 12 communities of Yerevan City (currently, the administrative districts). According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all urban and rural communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration areas - that is primary sample units to be surveyed during the year - were selected. The ILCS 2013 sample included 32 enumeration areas in urban and 16 enumeration areas in rural communities per month. The households to be surveyed were selected in the second round. A total of 432 households were surveyed per month, of which 279 and 153 households from urban and rural communities, respectively. Every month 48 interviewers went on field work with a workload of 9 households per month.

    The sample frame for 2014-2016 was designed in accordance with the database of addresses of all private households in the country developed on basis of the 2011 Population Census results, with the technical assistance of the World Bank. The method of systematic representative probability sampling was used to frame the sample.
    For drawing the sample, the sample frame was divided into 32 strata including 12 communities of Yerevan City (currently, the administrative districts). According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all urban and rural communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration areas - that is primary sample units to be surveyed during the year - were selected. The ILCS 2014 sample included 30 enumeration areas in urban and 18 enumeration areas in rural communities per month. The method of representative probability sampling was used to frame the sample. At regional level, all communities were grouped into two categories - towns and villages. According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all rural and urban communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration districts - that is primary sample units to be surveyed during the year - were selected. The ILCS 2015 sample included 30 enumeration districts in urban and 18 enumeration districts in rural communities per month.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Questionnaire is filled in by the interviewer during the least five visits to households per month. During face-to-face interviews with the household head or another knowledgeable adult member, the interviewer collects information on the composition and housing conditions of the household, the employment status, educational level and health condition of the members, availability and use of land, livestock, and agricultural machinery, monetary and commodity flows between households, and other information.

    The 2015 survey questionnaire had the following sections: (1) "List of Household Members", (2) "Migration", (3) "Housing and Dwelling Conditions", (4) "Employment", (5) "Education", (6) "Agriculture", (7) "Food Production", (8) "Monetary and Commodity Flows between Households", (9) "Health (General) and Healthcare", (10) "Debts", (11) "Subjective Assessment of Living Conditions", (12) "Provision of Services", (13) "Social Assistance", (14) "Households as Employers for Service Personnel", and (15) "Household Monthly Consumption of Energy Resources".

    The Diary is completed directly by the household for one month. Every day the household would record all its expenditures on food, non-food products and services, also giving a detailed description of such purchases; e.g. for food products the name, quantity, cost, and place of purchase of the product is recorded. Besides, the household records its consumption of food products received and used from its own land and livestock, as well as from other sources (e.g. gifts, humanitarian aid). Non-food products and services purchased or received for free are also recorded in the diary. Then, the household records its income received during the month. At the end of the month, information on rarely used food products, durable goods and ceremonies is recorded, as well. The records in the diary are verified by the interviewer in the course of 5

  14. C

    China Population: City: Age 15 to 64: Guangdong

    • ceicdata.com
    Updated Apr 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). China Population: City: Age 15 to 64: Guangdong [Dataset]. https://www.ceicdata.com/en/china/population-sample-survey-by-age-and-region-city
    Explore at:
    Dataset updated
    Apr 4, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    China
    Variables measured
    Population
    Description

    Population: City: Age 15 to 64: Guangdong data was reported at 57.726 Person th in 2023. This records a decrease from the previous number of 58.178 Person th for 2022. Population: City: Age 15 to 64: Guangdong data is updated yearly, averaging 32.179 Person th from Dec 1997 (Median) to 2023, with 27 observations. The data reached an all-time high of 59,155.611 Person th in 2020 and a record low of 10.178 Person th in 1999. Population: City: Age 15 to 64: Guangdong data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Sample Survey: By Age and Region: City.

  15. a

    GPCD of Sample Cities served by the Colorado River

    • community-water-uagis.hub.arcgis.com
    Updated May 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Arizona GIS (2020). GPCD of Sample Cities served by the Colorado River [Dataset]. https://community-water-uagis.hub.arcgis.com/datasets/gpcd-of-sample-cities-served-by-the-colorado-river
    Explore at:
    Dataset updated
    May 21, 2020
    Dataset authored and provided by
    University of Arizona GIS
    Area covered
    Description

    When comparing residential water use as GPCD (gallons per capita per day) in the U.S., western states tend to have higher rates of water usage based on 2015 USGS data. For instance, the U.S. average GPCD was 83 and the state of Arizona was substantially higher at 146 GPCD. While USGS provides state and county water use data, this data layer records GPCD for Sample Cities in the Colorado River Basin. Cities were selected based on attributes from US Census Bureau population statistics for census-designated places. Sample City status determined by: 1) a population base under 300,000, and 2) average population growth rate over 8 percent between 2008-2015.

  16. e

    Data from: The Global Population Dynamics Database

    • knb.ecoinformatics.org
    Updated May 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Prendergast; Ellen Bazeley-White; Owen Smith; John Lawton; Pablo Inchausti; David Kidd; Sarah Knight (2020). The Global Population Dynamics Database [Dataset]. http://doi.org/10.5063/F1BZ63Z8
    Explore at:
    Dataset updated
    May 18, 2020
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    John Prendergast; Ellen Bazeley-White; Owen Smith; John Lawton; Pablo Inchausti; David Kidd; Sarah Knight
    Time period covered
    Jan 1, 1538 - Jan 1, 2003
    Area covered
    Earth
    Variables measured
    End, Area, East, EorW, NorS, West, Year, Begin, LatDD, North, and 71 more
    Description

    As a source of animal and plant population data, the Global Population Dynamics Database (GPDD) is unrivalled. Nearly five thousand separate time series are available here. In addition to all the population counts, there are taxonomic details of over 1400 species. The type of data contained in the GPDD varies enormously, from annual counts of mammals or birds at individual sampling sites, to weekly counts of zooplankton and other marine fauna. The project commenced in October 1994, following discussions on ways in which the collaborating partners could make a practical and enduring contribution to research into population dynamics. A small team was assembled and, with assistance and advice from numerous interested parties we decided to construct the database using the popular Microsoft Access platform. After an initial design phase, the major task has been that of locating, extracting, entering and validating the data in all the various tables. Now, nearly 5000 individual datasets have been entered onto the GPDD. The Global Population Dynamics Database comprises six Tables of data and information. The tables are linked to each other as shown in the diagram shown in figure 3 of the GPDD User Guide (GPDD-User-Guide.pdf). Referential integrity is maintained through record ID numbers which are held, along with other information in the Main Table. It's structure obeys all the rules of a standard relational database.

  17. 2010 American Community Survey: DP03 | SELECTED ECONOMIC CHARACTERISTICS...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2010 American Community Survey: DP03 | SELECTED ECONOMIC CHARACTERISTICS (ACS 5-Year Estimates Selected Population Data Profiles) [Dataset]. https://data.census.gov/table/ACSDP5YSPT2010.DP03?tid=ACSDP5YSPT2010.DP03
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2010
    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2010, the 2010 Census provides the official counts of the population and housing units for the nation, states, counties, cities and towns. For 2006 to 2009, the Population Estimates Program provides intercensal estimates of the population for the nation, states, and counties..Explanation of Symbols:.An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2000 data. Boundaries for urban areas have not been updated since Census 2000. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2006-2010 American Community Survey (ACS) data generally reflect the December 2009 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Occupation codes are 4-digit codes and are based on the Standard Occupational Classification (SOC) 2010. The 2010 Census occupation codes were updated in accordance with the 2010 revision of the SOC. To allow for the creation of 2006-2010 and 2008-2010 tables, occupation data in the multiyear files (2006-2010 and 2008-2010) were recoded to 2010 Census occupation codes. We recommend using caution when comparing data coded using 2010 Census occupation codes with data coded using previous Census occupation codes. For more information on the Census occupation code changes, please visit our website at http://www.census.gov/hhes/www/ioindex/..Industry codes are 4-digit codes and are based on the North American Industry Classification System 2007. The Industry categories adhere to the guidelines issued in Clarification Memorandum No. 2, "NAICS Alternate Aggregation Structure for Use By U.S. Statistical Agencies," issued by the Office of Management and Budget..Workers include members of the Armed Forces and civilians who were at work last week..There were changes in the edit between 2009 and 2010 regarding Supplemental Security Income (SSI) and Social Security. The changes in the edit loosened restrictions on disability requirements for receipt of SSI resulting in an increase in the total number of SSI recipients in the American Community Survey. The changes also loosened restrictions on possible reported monthly amounts in Social Security income resulting in higher Social Security aggregate amounts. These results more closely match administrative counts compiled by the Social Security Administration..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence ...

  18. 2010 American Community Survey: DP04 | SELECTED HOUSING CHARACTERISTICS (ACS...

    • data.census.gov
    Updated Apr 1, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2010). 2010 American Community Survey: DP04 | SELECTED HOUSING CHARACTERISTICS (ACS 5-Year Estimates Selected Population Data Profiles) [Dataset]. https://data.census.gov/table/ACSDP5YSPT2010.DP04?q=McKinley%20County,%20New%20Mexico%20Populations%20and%20People&t=Heating%20and%20Air%20Conditioning%20(HVAC)
    Explore at:
    Dataset updated
    Apr 1, 2010
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2010
    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2010, the 2010 Census provides the official counts of the population and housing units for the nation, states, counties, cities and towns. For 2006 to 2009, the Population Estimates Program provides intercensal estimates of the population for the nation, states, and counties..Explanation of Symbols:.An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2000 data. Boundaries for urban areas have not been updated since Census 2000. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2006-2010 American Community Survey (ACS) data generally reflect the December 2009 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..The 2009 and 2010 plumbing data for Puerto Rico will not be shown. Research indicates that the questions on plumbing facilities that were introduced in 2008 in the stateside American Community Survey and the 2008 Puerto Rico Community Survey may not have been appropriate for Puerto Rico..In prior years, the universe included all renter-occupied units. It is now restricted to include only those units where GRAPI is computed, that is, gross rent and household Income are valid values..In prior years, the universe included all owner-occupied units without a mortgage. It is now restricted to include only those units where SMOCAPI is computed, that is, SMOC and household income are valid values..In prior years, the universe included all owner-occupied units with a mortgage. It is now restricted to include only those units where SMOCAPI is computed, that is, SMOC and household income are valid values..The median gross rent excludes no cash renters..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2006-2010 American Community Survey

  19. d

    Ministry of the Interior's selected 21 village sample results of...

    • data.gov.tw
    api, csv
    Updated Nov 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dept. of Statistics (2023). Ministry of the Interior's selected 21 village sample results of telecommunications signaling and population statistics. [Dataset]. https://data.gov.tw/en/datasets/166178
    Explore at:
    csv, apiAvailable download formats
    Dataset updated
    Nov 1, 2023
    Dataset authored and provided by
    Dept. of Statistics
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    Contains county/city codes, county/city names, weekday morning trips, weekday afternoon trips, weekday evening trips, weekday night trips, weekend morning trips, weekend afternoon trips, weekend evening trips, weekend night trips, data time.

  20. Financial Literacy and Financial Services Survey 2011 - Bosnia and...

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IPSOS (2021). Financial Literacy and Financial Services Survey 2011 - Bosnia and Herzegovina [Dataset]. https://microdata.unhcr.org/index.php/catalog/396
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    IPSOShttp://www.ipsos.com/
    Time period covered
    2011
    Area covered
    Bosnia and Herzegovina
    Description

    Abstract

    The survey on financial literacy among the citizens of Bosnia and Herzegovina was conducted within a larger project that aims at creating the Action Plan for Consumer Protection in Financial Services.

    The conclusion about the need for an Action Plan was reached by the representatives of the World Bank, the Federal Ministry of Finance, the Central Bank of Bosnia and Herzegovina, supervisory authorities for entity financial institutions and non-governmental organizations for the protection of consumer rights, based on the Diagnostic Review on Consumer Protection and Financial Literacy in Bosnia and Herzegovina conducted by the World Bank in 2009-2010. This diagnostic review was conducted at the request of the Federal Ministry of Finance, as part of a larger World Bank pilot program to assess consumer protection and financial literacy in developing countries and middle-income countries. The diagnostic review in Bosnia and Herzegovina was the eighth within this project.

    The financial literacy survey, whose results are presented in this report, aims at establishing the basic situation with respect to financial literacy, serving on the one hand as a preparation for the educational activities plan, and on the other as a basis for measuring the efficiency of activities undertaken.

    Geographic coverage

    Data collection was based on a random, nation-wide sample of citizens of Bosnia and Herzegovina aged 18 or older (N = 1036).

    Analysis unit

    Household, individual

    Universe

    Population aged 18 or older

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SUMMARY

    In Bosnia and Herzegovina, as is well known, there is no completely reliable sample frame or information about universe. The main reasons for such a situation are migrations caused by war and lack of recent census data. The last census dates back to 1991, but since then the size and distribution of population has significantly changed. In such a situation, researchers have to combine all available sources of population data to estimate the present size and structure of the population: estimates by official statistical offices and international organizations, voters? lists, list of polling stations, registries of passport and ID holders, data from large random surveys etc.

    The sample was three-stage stratified: in the first stage by entity, in the second by county/region and in the third by type of settlement (urban/rural). This means that, in the first stage, the total sample size was divided in two parts proportionally to number of inhabitants by entity, while in the second stage the subsample size for each entity was further divided by regions/counties. In the third stage, the subsample for each region/county was divided in two categories according to settlement type (rural/urban).

    Taking into the account the lack of a reliable and complete list of citizens to be used as a sample frame, a multistage sampling method was applied. The list of polling stations was used as a frame for the selection of primary sampling units (PSU). Polling station territories are a good choice for such a procedure since they have been recently updated, for the general elections held in October 2010. The list of polling station territories contains a list of addresses of housing units that are certainly occupied.

    In the second stage, households were used as a secondary sampling unit. Households were selected randomly by a random route technique. In total, 104 PSU were selected with an average of 10 respondents per PSU. The respondent from the selected household was selected randomly using the Trohdal-Bryant scheme.

    In total, 1036 citizens were interviewed with a satisfactory response rate of around 60% (table 1). A higher refusal rate is recorded among middle-age groups (table 2). The theoretical margin of error for a random sample of this size is +/-3.0%.

    Due to refusals, the sample structure deviated from the estimated population structure by gender, age and education level. Deviations were corrected by RIM weighting procedure.

    MORE DETAILED INFORMATION

    IPSOS designed a representative sample of approximately 1.000 residents age 18 and over, proportional to the adult populations of each region, based on age, sex, region and town (settlement) type.

    For this research we designed three-stage stratified representative sample. First we stratify sample at entity level, regional level and then at settlement type level for each region.

    Sample universe:

    Population of B&H -18+; 1991 Census figures and estimated population dynamics, census figures of refugees and IDPs, 1996. Central Election Commision - 2008; CIPS - 2008;

    Sampling frame:

    Polling stations territory (approximate size of census units) within strata defined by regions and type of settlements (urban and rural) Polling stations territories are chosen to be used as primary units because it enables the most reliable sample selection, due to the fact that for these units the most complete data are available (dwelling register - addresses)

    Type of sample:

    Three stage random representative stratified sample

    Definition and number of PSU, SSU, TSU, and sampling points

    • PSU - Polling station territory Definition: Polling stations territories are defined by street(s) name(s) and dwelling numbers; each polling station territory comprises approximately 300 households, with exception of the settlements with less than 300 HH which are defined as one unite. Number of PSUs in sample universe: 4710
    • SSU - Household Definition: One household comprises people living in the same apartment and sharing the expenditure for food
    • TSU - Respondent Definition: Member of the HH , 18+ Number of TSUs in sample universe: = 2.966.766
    • Sampling points Approximately 10 respondents per one PSU, total 104

    Stratification, purpose and method

    • First level strata: Federation of B&H Republika Srpska Brc ko District
    • Second level strata: 10 cantons 2 regions -
    • Third level strata: urban and rural settlements
    • Purpose: Optimisation of the sample plan, and reducing the sampling error
    • Method: The strata are defined by criteria of optimal geographical and cultural uniformity

    • Selection procedure of PSU, SSU, and respondent Stratification, purpose and method

    • PSU Type of sampling of the PSU: Polling station territory chosen with probability proportional to size (PPS) Method of selection: Cumulative (Lachirie method)

    • SSU Type of sampling of the SSU: Sample random sampling without replacement Method of selection: Random walk - Random choice of the starting point

    • TSU - Respondent Type of sampling of respondent: Sample random sampling without replacement Method of selection: TCB (Trohdal-Bryant scheme)

    • Sample size N=1036 respondents

    • Sampling error Marginal error +/-3.0%

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey was modelled after the identical survey conducted in Romania. The questionnaire used in the Financial Literacy Survey in Romania was localized for Bosnia and Herzegovina, including adaptations to match the Bosnian context and methodological improvements in wording of questions.

    Cleaning operations

    Before data entry, 100% logic and consistency controls are performed first by local supervisors and once later by staff in central office.

    Verification of correct data entry is assured by using BLAISE system for data entry (commercial product of Netherlands statistics), where criteria for logical and consistency control are defined in advance.

    Response rate

    • Nobody at home: 2,8%
    • Eligible person is not home: 2,8%
    • Refusal : 32,79%
    • Given up after a minimum of two visits: 0,82%
    • Other (excluded after control): 0,29%
    • Finished: 60,5%
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com (2024). China Population Statistics: Sample Survey: Sampling Fraction [Dataset]. https://www.ceicdata.com/en/china/population-sample-survey-level-of-education/population-statistics-sample-survey-sampling-fraction

China Population Statistics: Sample Survey: Sampling Fraction

Explore at:
Dataset updated
Dec 15, 2024
Dataset provided by
CEICdata.com
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 2012 - Dec 1, 2023
Area covered
China
Variables measured
Population
Description

China Population Statistics: Sample Survey: Sampling Fraction data was reported at 0.105 % in 2023. This records an increase from the previous number of 0.102 % for 2022. China Population Statistics: Sample Survey: Sampling Fraction data is updated yearly, averaging 0.100 % from Dec 1982 (Median) to 2023, with 37 observations. The data reached an all-time high of 100.000 % in 2020 and a record low of 0.063 % in 1994. China Population Statistics: Sample Survey: Sampling Fraction data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Sample Survey: Level of Education.

Search
Clear search
Close search
Google apps
Main menu