https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
A csv file containing the tidal frequencies used for statistical analyses in the paper "Estimating Freshwater Flows From Tidally-Affected Hydrographic Data" by Dan Pagendam and Don Percival.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains >800K CSV files behind the GitTables 1M corpus.
For more information about the GitTables corpus, visit:
- our website for GitTables, or
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: none of the data sets published here contain actual data, they are for testing purposes only.
This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:
dataset_30_nodes_interactions.csv
:contains 30 rows (nodes).dataset_30_edges_interactions.csv
: contains 47 rows (edges).dataset_30
refers to the same graph.Each dataset contains the following columns:
Name of the Column | Type | Description |
UniProt ID | string | protein identification |
label | string | protein label (type of node) |
properties | string | a dictionary containing properties related to the protein. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
Relationship ID | string | relationship identification |
Source ID | string | identification of the source protein in the relationship |
Target ID | string | identification of the target protein in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_30* |
30 | 47 |
Y |
dataset_60* |
60 |
181 |
Y |
dataset_120* |
120 |
689 |
Y |
dataset_240* |
240 |
2819 |
Y |
dataset_300* |
300 |
4658 |
Y |
dataset_600* |
600 |
18004 |
Y |
dataset_1200* |
1200 |
71785 |
Y |
dataset_2400* |
2400 |
288600 |
Y |
dataset_3000* |
3000 |
449727 |
Y |
dataset_6000* |
6000 |
1799413 |
Y |
dataset_12000* |
12000 |
7199863 |
Y |
dataset_24000* |
24000 |
28792361 |
Y |
dataset_30000* |
30000 |
44991744 |
Y |
This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | node identification |
label | string | node label (type of node) |
properties | string | a dictionary containing properties related to the node. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | relationship identification |
source | string | identification of the source node in the relationship |
target | string | identification of the target node in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_dummy* | 3 | 6 | N |
dataset_dummy2* | 3 | 6 | N |
This dataset was created by Naman Kumar
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets contain pixel-level hyperspectral data of six snow and glacier classes. They have been extracted from a Hyperspectral image. The dataset "data.csv" has 5417 * 142 samples belonging to the classes: Clean snow, Dirty ice, Firn, Glacial ice, Ice mixed debris, and Water body. The dataset "_labels1.csv" has corresponding labels of the "data.csv" file. The dataset "RGB.csv" has only 5417 * 3 samples. There are only three band values in this file while "data.csv" has 142 band values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A diverse selection of 1000 empirical time series, along with results of an hctsa feature extraction, using v1.06 of hctsa and Matlab 2019b, computed on a server at The University of Sydney.The results of the computation are in the hctsa file, HCTSA_Empirical1000.mat for use in Matlab using v1.06 of hctsa.The same data is also provided in .csv format for the hctsa_datamatrix.csv (results of feature computation), with information about rows (time series) in hctsa_timeseries-info.csv, information about columns (features) in hctsa_features.csv (and corresponding hctsa code used to compute each feature in hctsa_masterfeatures.csv), and the data of individual time series (each line a time series, for time series described in hctsa_timeseries-info.csv) is in hctsa_timeseries-data.csv. These .csv files were produced by running >>OutputToCSV(HCTSA_Empirical1000.mat,true,true); in hctsa.The input file, INP_Empirical1000.mat, is for use with hctsa, and contains the time-series data and metadata for the 1000 time series. For example, massive feature extraction from these data on the user's machine, using hctsa, can proceed as>> TS_Init('INP_Empirical1000.mat');Some visualizations of the dataset are in CarpetPlot.png (first 1000 samples of all time series as a carpet (color) plot) and 150TS-250samples.png (conventional time-series plots of the first 250 samples of a sample of 150 time series from the dataset). More visualizations can be performed by the user using TS_PlotTimeSeries from the hctsa package.See links in references for more comprehensive documentation for performing methodological comparison using this dataset, and on how to download and use v1.06 of hctsa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This CSV represents a dummy dataset to test the functionality of trusted repository search capabilities and of research data governance practices. The associated dummy dissertation is entitled Financial Econometrics Dummy Dissertation. The dummy file is a 7KB CSV containing 5000 rows of notional demographic tabular data.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset was developed by NREL's distributed energy systems integration group as part of a study on high penetrations of distributed solar PV [1]. It consists of hourly load data in CSV format for use with the PNNL taxonomy of distribution feeders [2]. These feeders were developed in the open source GridLAB-D modelling language [3]. In this dataset each of the load points in the taxonomy feeders is populated with hourly averaged load data from a utility in the feeder’s geographical region, scaled and randomized to emulate real load profiles. For more information on the scaling and randomization process, see [1].
The taxonomy feeders are statistically representative of the various types of distribution feeders found in five geographical regions of the U.S. Efforts are underway (possibly complete) to translate these feeders into the OpenDSS modelling language.
This data set consists of one large CSV file for each feeder. Within each CSV, each column represents one load bus on the feeder. The header row lists the name of the load bus. The subsequent 8760 rows represent the loads for each hour of the year. The loads were scaled and randomized using a Python script, so each load series represents only one of many possible randomizations. In the header row, "rl" = residential load and "cl" = commercial load. Commercial loads are followed by a phase letter (A, B, or C). For regions 1-3, the data is from 2009. For regions 4-5, the data is from 2000.
For use in GridLAB-D, each column will need to be separated into its own CSV file without a header. The load value goes in the second column, and corresponding datetime values go in the first column, as shown in the sample file, sample_individual_load_file.csv. Only the first value in the time column needs to written as an absolute time; subsequent times may be written in relative format (i.e. "+1h", as in the sample). The load should be written in P+Qj format, as seen in the sample CSV, in units of Watts (W) and Volt-amps reactive (VAr). This dataset was derived from metered load data and hence includes only real power; reactive power can be generated by assuming an appropriate power factor. These loads were used with GridLAB-D version 2.2.
Browse files in this dataset, accessible as individual files and as a single ZIP file. This dataset is approximately 242MB compressed or 475MB uncompressed.
For questions about this dataset, contact andy.hoke@nrel.gov.
If you find this dataset useful, please mention NREL and cite [1] in your work.
References:
[1] A. Hoke, R. Butler, J. Hambrick, and B. Kroposki, “Steady-State Analysis of Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders,” IEEE Transactions on Sustainable Energy, April 2013, available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6357275 .
[2] K. Schneider, D. P. Chassin, R. Pratt, D. Engel, and S. Thompson, “Modern Grid Initiative Distribution Taxonomy Final Report”, PNNL, Nov. 2008. Accessed April 27, 2012: http://www.gridlabd.org/models/feeders/taxonomy of prototypical feeders.pdf
[3] K. Schneider, D. Chassin, Y. Pratt, and J. C. Fuller, “Distribution power flow for smart grid technologies”, IEEE/PES Power Systems Conference and Exposition, Seattle, WA, Mar. 2009, pp. 1-7, 15-18.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These four labeled data sets are targeted at ordinal quantification. The goal of quantification is not to predict the label of each individual instance, but the distribution of labels in unlabeled sets of data.
With the scripts provided, you can extract CSV files from the UCI machine learning repository and from OpenML. The ordinal class labels stem from a binning of a continuous regression label.
We complement this data set with the indices of data items that appear in each sample of our evaluation. Hence, you can precisely replicate our samples by drawing the specified data items. The indices stem from two evaluation protocols that are well suited for ordinal quantification. To this end, each row in the files app_val_indices.csv, app_tst_indices.csv, app-oq_val_indices.csv, and app-oq_tst_indices.csv represents one sample.
Our first protocol is the artificial prevalence protocol (APP), where all possible distributions of labels are drawn with an equal probability. The second protocol, APP-OQ, is a variant thereof, where only the smoothest 20% of all APP samples are considered. This variant is targeted at ordinal quantification tasks, where classes are ordered and a similarity of neighboring classes can be assumed.
Usage
You can extract four CSV files through the provided script extract-oq.jl, which is conveniently wrapped in a Makefile. The Project.toml and Manifest.toml specify the Julia package dependencies, similar to a requirements file in Python.
Preliminaries: You have to have a working Julia installation. We have used Julia v1.6.5 in our experiments.
Data Extraction: In your terminal, you can call either
make
(recommended), or
julia --project="." --eval "using Pkg; Pkg.instantiate()" julia --project="." extract-oq.jl
Outcome: The first row in each CSV file is the header. The first column, named "class_label", is the ordinal class.
Further Reading
Implementation of our experiments: https://github.com/mirkobunse/regularized-oq
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ransomware is considered as a significant threat for most enterprises since past few years. In scenarios wherein users can access all files on a shared server, one infected host is capable of locking the access to all shared files. In the article related to this repository, we detect ransomware infection based on file-sharing traffic analysis, even in the case of encrypted traffic. We compare three machine learning models and choose the best for validation. We train and test the detection model using more than 70 ransomware binaries from 26 different families and more than 2500 h of ‘not infected’ traffic from real users. The results reveal that the proposed tool can detect all ransomware binaries, including those not used in the training phase (zero-days). This paper provides a validation of the algorithm by studying the false positive rate and the amount of information from user files that the ransomware could encrypt before being detected.
This dataset directory contains the 'infected' and 'not infected' samples and the models used for each T configuration, each one in a separated folder.
The folders are named NxSy where x is the number of 1-second interval per sample and y the sliding step in seconds.
Each folder (for example N10S10/) contains: - tree.py -> Python script with the Tree model. - ensemble.json -> JSON file with the information about the Ensemble model. - NN_XhiddenLayer.json -> JSON file with the information about the NN model with X hidden layers (1, 2 or 3). - N10S10.csv -> All samples used for training each model in this folder. It is in csv format for using in bigML application. - zeroDays.csv -> All zero-day samples used for testing each model in this folder. It is in csv format for using in bigML application. - userSamples_test -> All samples used for validating each model in this folder. It is in csv format for using in bigML application. - userSamples_train -> User samples used for training the models. - ransomware_train -> Ransomware samples used for training the models - scaler.scaler -> Standard Scaler from python library used for scale the samples. - zeroDays_notFiltered -> Folder with the zeroDay samples.
In the case of N30S30 folder, there is an additional folder (SMBv2SMBv3NFS) with the samples extracted from the SMBv2, SMBv3 and NFS traffic traces. There are more binaries than the ones presented in the article, but it is because some of them are not "unseen" binaries (the families are present in the training set).
The files containing samples (NxSy.csv, zeroDays.csv and userSamples_test.csv) are structured as follows: - Each line is one sample. - Each sample has 3*T features and the label (1 if it is 'infected' sample and 0 if it is not). - The features are separated by ',' because it is a csv file. - The last column is the label of the sample.
Additionally we have placed two pcap files in root directory. There are the traces used for compare both versions of SMB.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is a set of network traffic traces in pcap/csv format captured from a single user. The traffic is classified in 5 different activities (Video, Bulk, Idle, Web, and Interactive) and the label is shown in the filename. There is also a file (mapping.csv) with the mapping of the host's IP address, the csv/pcap filename and the activity label.
Activities:
Interactive: applications that perform real-time interactions in order to provide a suitable user experience, such as editing a file in google docs and remote CLI's sessions by SSH. Bulk data transfer: applications that perform a transfer of large data volume files over the network. Some examples are SCP/FTP applications and direct downloads of large files from web servers like Mediafire, Dropbox or the university repository among others. Web browsing: contains all the generated traffic while searching and consuming different web pages. Examples of those pages are several blogs and new sites and the moodle of the university. Vídeo playback: contains traffic from applications that consume video in streaming or pseudo-streaming. The most known server used are Twitch and Youtube but the university online classroom has also been used. Idle behaviour: is composed by the background traffic generated by the user computer when the user is idle. This traffic has been captured with every application closed and with some opened pages like google docs, YouTube and several web pages, but always without user interaction.
The capture is performed in a network probe, attached to the router that forwards the user network traffic, using a SPAN port. The traffic is stored in pcap format with all the packet payload. In the csv file, every non TCP/UDP packet is filtered out, as well as every packet with no payload. The fields in the csv files are the following (one line per packet): Timestamp, protocol, payload size, IP address source and destination, UDP/TCP port source and destination. The fields are also included as a header in every csv file.
The amount of data is stated as follows:
Bulk : 19 traces, 3599 s of total duration, 8704 MBytes of pcap files Video : 23 traces, 4496 s, 1405 MBytes Web : 23 traces, 4203 s, 148 MBytes Interactive : 42 traces, 8934 s, 30.5 MBytes Idle : 52 traces, 6341 s, 0.69 MBytes
The code of our machine learning approach is also included. There is a README.txt file with the documentation of how to use the code.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential School Locations Dataset [IRS_Locations.csv] contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Indian Residential School Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites.
Data are provide for four samples of unexpanded vermiculite ore from mines near Enoree, South Carolina; Libby, Montana; Louisa, Virginia; Palabora, and South Africa. ASCII text files listings of Mossbauer data for each sample are provided in comma-separated by value (csv) files. These files have the file naming structure sampleid_mossbauer_spectra.csv, where sampleid is a unique alphanumeric code for each sample. These samples were chosen as representative of the ores from their various mine sources, having documentation verifying that they were collected directly from their sources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”
A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org
Please cite this when using the dataset.
Detailed description of the dataset:
1 Film Dataset: Festival Programs
The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.
The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.
The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.
The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.
2 Survey Dataset
The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.
The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.
The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.
The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.
3 IMDb & Scripts
The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.
The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.
The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.
The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.
The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.
The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.
The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.
The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.
The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.
The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.
The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.
The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.
The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.
The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.
The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.
The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.
The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.
The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.
The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.
4 Festival Library Dataset
The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.
The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories,
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
format. This dataset provides comprehensive details on a wide range of beauty products listed on Mecca Australia, one of the leading beauty retailers in the country.
Perfect for market researchers, data analysts, and beauty industry professionals, this dataset enables a deep dive into product offerings and trends without the clutter of customer reviews.
With the "Mecca Australia Extracted Data" in CSV format, you can easily access and analyze crucial product data, enabling informed decision-making and strategic planning in the beauty industry.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The event logs in CSV format. The dataset contains both correlated and uncorrelated logs
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides electricity consumption data collected from the building management system of GreEn-ER. This building, located in Grenoble, hosts Grenoble-INP Ense³ Engineering School and the G2ELab (Grenoble Electrical Engineering Laboratory). It brings together in one place the teaching and research actors around new energy technologies. The electricity consumption of the building is highly monitored with plus than 300 meters. The data from each meter is available in one csv file, which contains two columns. One contains the Timestamp and the other contains de electricity consumption in kWh. The sampling rate for all data is 10 min. There are data available for 2017 and 2018. The dataset also contains data of the external temperature for 2017 and 2018. The files are structured as follows: - The main folder called "Data" contains 2 sub-folders, each one corresponding to one year (2017 and 2018). - Each sub-folder contains 3 other sub-folders, each one corresponding to a sector of the building. - The main folder "Data" also contains the csv files with the electricity consumption data of the whole building and a file called "Temp.csv" with the temperature data. - The separator used in the csv files is ";". - The sampling rate is 10 min and the unity of the consumption is kWh. It means that each sample corresponds to the energy consumption in these 10 minutes. So if the user wants to retrieve the mean power in this period (that corresponds to each sample), the value must be multiplied by 6. - Four Jupyter Notebook files, a format that allows combining text, graphics and code in python are also available. These files allow exploring all the data within the dataset. - These jupyter notebook files contains all the metadata necessary for understanding the system, like drawings of the system design, of the building etc. - Each file is named by the number of its meter. These numbers can be retrieved in tables and drawings available in the Jupyter Notebooks. - A couple of csv files with the system design are also available. They are called "TGBT1_n.csv", "TGBT2_n.csv" and "PREDIS-MHI_n.csv".
Download Service provides pre-defined data on relationship between selected territorial elements and units of territorial registration using the ATOM technology. The service is publicly available and free-of-charge (data covers the whole territory of the Czech Republic) and enables downloading of predefined data file containing data for the whole Czech Republic. Files are created during the first day of each month with data valid to the last day of previous month. The whole dataset (7 files) is compressed (ZIP) for downloading.
Precipitation, volumetric soil-water content, videos, and geophone data characterizing postfire debris flows were collected at the 2022 Hermit’s Peak Calf-Canyon Fire in New Mexico. This dataset contains data from June 22, 2022, to June 26, 2024. The data were obtained from a station located at 35° 42’ 28.86” N, 105° 27’ 18.03” W (geographic coordinate system). Each data type is described below. Raw Rainfall Data: Rainfall data, Rainfall.csv, are contained in a comma separated value (.csv) file. The data are continuous and sampled at 1-minute intervals. The columns in the csv file are TIMESTAMP(UTC), RainSlowInt (the depth of rain in each minute [mm]), CumRain (cumulative rainfall since the beginning of the record [mm]), and VWC# (volumetric water content [V/V]) at three depths (1 = 10 cm, 2=30 cm, and 3=50 cm). VWC values outside of the range of 0 to 0.5 represent sensor malfunctions and were replaced with -99999 . Storm Record: We summarized the rainfall, volumetric soil-water content, and geophone data based on rainstorms. We defined a storm as rain for a duration >= 5 minutes or with an accumulation > 2.54 mm. Each storm was then assigned a storm ID starting at 0. The storm record data, StormRecord.csv, provides peak rainfall intensities and times and volumetric soil-water content information for each storm. The columns from left to right provide the information as follows: ID, StormStart yyyy-mm-dd hh:mm:ss-tz, StormStop yyyy-mm-dd hh:mm:ss-tz, StormDepth mm, StormDuration h, I-5 mm h-1, I-10 mm h-1, I-15 mm h-1, I-30 mm h-1, I-60 mm h-1, I-5 time yyyy-mm-dd hh:mm:ss-tz, I-10 time yyyy-mm-dd hh:mm:ss-tz, I-15 time yyyy-mm-dd hh:mm:ss-tz] ([UTC], the time of the peak 15-minute rainfall intensity), I-30 time yyyy-mm-dd hh:mm:ss-tz] ] ([UTC], the time of the peak 30-minute rainfall intensity), I-60 time [yyyy-mm-dd hh:mm:ss-tz] [UTC], (the time of the peak 60-minute rainfall intensity), VWC (volumetric water content [V/V] at three depths (1 = 10 cm, 2 = 30 cm, 3 = 50 cm) at the start of the storm, the time of the peak 15-minute rainfall intensity, and the end of the storm), Velocity [m s-1] of the flow, and Event (qualitative observation of type of flow from video footage). VWC values outside of the range of 0 to 0.5 represent sensor malfunctions and were replaced with -99999. Velocity was only calculated for flows with a noticeable surge as the rest of the signal is not sufficient for a cross-correlation, and Event was only filled for storms with quality video data. Values of -99999 were assigned for these columns for all other storms. Geophone Data: Geophone data, GeophoneData.zip, are contained in comma separated value (.csv) files labeled by ‘storm’ and the corresponding storm ID in the storm record and labeled IDa and IDb if the geophone stopped recording for more than an hour during the storm. The data was recorded at two geophones sampled at 50 Hz, one 11.5 m upstream from the station and one 9.75 m downstream from the station. Geophones were triggered to record when 1.6 mm of rain was detected during a period of 10 minutes, and they continued to record for 30 minutes past the last timestamp when this criteria was met. The columns in each csv file are TIMESTAMP [UTC], GeophoneUp_mV (the upstream geophone [mV]), GeophoneDn_mV (the downstream geophone [mV]). Note that there are occasional missed samples when the data logger did not record due to geophone malfunction when data points are 0.04 s or more apart. Videos: The videos stormID_mmdd.mp4 (or .mov) are organized by storm ID where one folder contains data for one storm. Within folders for each storm, videos are labeled by the timestamp in UTC of the end of the video as IMGPhhmm. Some videos in the early mornings or late evenings, or in very intense rainfall, have had brightness and contrast adjustments in Adobe Premiere Pro for better video quality and are in MP4 format. All raw videos are in MOV format. The camera triggered when a minimum of 1.6 mm of rain fell in a 10-minute interval and it recorded in 16-minute video clips until it was 30 minutes since the last trigger. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Trends in nutrient fluxes and streamflow for selected tributaries in the Lake Erie watershed were calculated using monitoring data at 10 locations. Trends in flow-normalized nutrient fluxes were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Site information and streamflow and water-quality records are contained in 3 zipped files named as follows: INFO (site information), Daily (daily streamflow records), and Sample (water-quality records). The INFO, Daily (flow), and Sample files contain the input data, by water-quality parameter and by site as .csv files, used to run trend analyses. These files were generated by the R (version 3.1.2) software package called EGRET - Exploration and Graphics for River Trends (version 2.5.1) (Hirsch and DeCicco, 2015), and can be used directly as input to run graphical procedures and WRTDS trend analyses using EGRET R software. The .csv files are identified according to water-quality parameter (TP, SRP, TN, NO23, and TKN) and site reference number (e.g. TPfiles.1.INFO.csv, SRPfiles.1.INFO.csv, TPfiles.2.INFO.csv, etc.). Water-quality parameter abbreviations and site reference numbers are defined in the file "Site-summary_table.csv" on the landing page, where there is also a site-location map ("Site_map.pdf"). Parameter information details, including abbreviation definitions, appear in the abstract on the Landing Page. SRP data records were available at only 6 of the 10 trend sites, which are identified in the file "site-summary_table.csv" (see landing page) as monitored by the organization NCWQR (National Center for Water Quality Research). The SRP sites are: RAIS, MAUW, SAND, HONE, ROCK, and CUYA. The model-input dataset is presented in 3 parts: 1. INFO.zip (site information) 2. Daily.zip (daily streamflow records) 3. Sample.zip (water-quality records) Reference: Hirsch, R.M., and De Cicco, L.A., 2015 (revised). User Guide to Exploration and Graphics for RivEr Trends (EGRET) and dataRetrieval: R Packages for Hydrologic Data, Version 2.0, U.S. Geological Survey Techniques Methods, 4-A10. U.S. Geological Survey, Reston, VA., 93 p. (at: http://dx.doi.org/10.3133/tm4A10).
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
A csv file containing the tidal frequencies used for statistical analyses in the paper "Estimating Freshwater Flows From Tidally-Affected Hydrographic Data" by Dan Pagendam and Don Percival.