100+ datasets found
  1. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  2. Excel dataset

    • kaggle.com
    zip
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pinky Verma (2023). Excel dataset [Dataset]. https://www.kaggle.com/datasets/pinkyverma0256/excel-dataset
    Explore at:
    zip(13123 bytes)Available download formats
    Dataset updated
    Jun 29, 2023
    Authors
    Pinky Verma
    Description

    Dataset

    This dataset was created by Pinky Verma

    Contents

  3. Data on Bike Buyers by using MS EXCEL

    • kaggle.com
    zip
    Updated Mar 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umasri (2022). Data on Bike Buyers by using MS EXCEL [Dataset]. https://www.kaggle.com/datasets/unica02/data-on-bike-buyers-by-using-ms-excel
    Explore at:
    zip(6808899 bytes)Available download formats
    Dataset updated
    Mar 25, 2022
    Authors
    Umasri
    Description

    The dataset includes customer id,Martial Status,Gender,Income,Children,Education,Occupation,Home Owner,Cars,Commute Distance,Region,Age,Purchased Bike. Blog

  4. m

    Raw data outputs 1-18

    • bridges.monash.edu
    • researchdata.edu.au
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

  5. Scooter Sales - Excel Project

    • kaggle.com
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ann Truong (2023). Scooter Sales - Excel Project [Dataset]. https://www.kaggle.com/datasets/bvanntruong/scooter-sales-excel-project
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Kaggle
    Authors
    Ann Truong
    Description

    The link for the Excel project to download can be found on GitHub here. It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt=""> The link for the Tableau adjusted dashboard can be found here.

    A screenshot of the interactive Excel dashboard is also included below for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">

  6. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  7. Enterprise Survey 2009-2019, Panel Data - Slovenia

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Aug 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (WBG) (2020). Enterprise Survey 2009-2019, Panel Data - Slovenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3762
    Explore at:
    Dataset updated
    Aug 6, 2020
    Dataset provided by
    European Investment Bankhttp://eib.org/
    World Bank Grouphttp://www.worldbank.org/
    European Bank for Reconstruction and Developmenthttp://ebrd.com/
    Time period covered
    2008 - 2019
    Area covered
    Slovenia
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.

    The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.

    Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.

    For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.

    For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).

    Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).

    For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.

    For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.

    Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.

    For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

    For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.

    For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.

    Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.

  8. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  9. Superstore Dataset

    • kaggle.com
    zip
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivam Amrutkar (2023). Superstore Dataset [Dataset]. https://www.kaggle.com/datasets/yesshivam007/superstore-dataset
    Explore at:
    zip(2119716 bytes)Available download formats
    Dataset updated
    Sep 25, 2023
    Authors
    Shivam Amrutkar
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    The Superstore Sales Data dataset, available in an Excel format as "Superstore.xlsx," is a comprehensive collection of sales and customer-related information from a retail superstore. This dataset comprises* three distinct tables*, each providing specific insights into the store's operations and customer interactions.

  10. THESIS EXCEL DATA ENTRY.xlsx

    • figshare.com
    xlsx
    Updated Dec 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr JITHIN SURENDRAN (2023). THESIS EXCEL DATA ENTRY.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.24709566.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 1, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dr JITHIN SURENDRAN
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel sheet of the data

  11. Streaming Service Data

    • kaggle.com
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chad Wambles (2024). Streaming Service Data [Dataset]. https://www.kaggle.com/datasets/chadwambles/streaming-service-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Chad Wambles
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    A dataset I generated to showcase a sample set of user data for a fictional streaming service. This data is great for practicing SQL, Excel, Tableau, or Power BI.

    1000 rows and 25 columns of connected data.

    See below for column descriptions.

    Enjoy :)

  12. Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  13. New 1000 Sales Records Data 2

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Calvin Oko Mensah (2023). New 1000 Sales Records Data 2 [Dataset]. https://www.kaggle.com/datasets/calvinokomensah/new-1000-sales-records-data-2
    Explore at:
    zip(49305 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    Calvin Oko Mensah
    Description

    This is a dataset downloaded off excelbianalytics.com created off of random VBA logic. I recently performed an extensive exploratory data analysis on it and I included new columns to it, namely: Unit margin, Order year, Order month, Order weekday and Order_Ship_Days which I think can help with analysis on the data. I shared it because I thought it was a great dataset to practice analytical processes on for newbies like myself.

  14. Datasets for manuscript "A Generic Scenario Analysis of End-of-Life Plastic...

    • catalog.data.gov
    • datasets.ai
    Updated Jul 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2022). Datasets for manuscript "A Generic Scenario Analysis of End-of-Life Plastic Management: Chemical Additives" [Dataset]. https://catalog.data.gov/dataset/datasets-for-manuscript-a-generic-scenario-analysis-of-end-of-life-plastic-management-chem
    Explore at:
    Dataset updated
    Jul 9, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This repository contains the data supporting the manuscript "A Generic Scenario Analysis of End-of-Life Plastic Management: Chemical Additives" (to be) submitted to the Energy and Environmental Science Journal https://pubs.rsc.org/en/journals/journalissues/ee#!recentarticles&adv This repository contains Excel spreadsheets used to calculate material flow throughout the plastics life cycle, with a strong emphasis on chemical additives in the end-of-life stages. Three major scenarios were presented in the manuscript: 1) mechanical recycling (existing recycling infrastructure), 2) implementing chemical recycling to the existing plastics recycling, and 3) extracting chemical additives before the manufacturing stage. Users would primarily modify values on the yellow tab "US 2018 Facts - Sensitivity". Values highlighted in yellow may be changed for sensitivity analysis purposes. Please note that the values shown for MSW generated, recycled, incinerated, landfilled, composted, imported, exported, re-exported, and other categories in this tab were based on 2018 data. Analysis for other years can be made possible with a replicate version of this spreadsheet and the necessary data to replace those of 2018. Most of the tabs, especially those that contain "Stream # - Description", do not require user interaction. They are intermediate calculations that change according to the user inputs. It is available for the user to see so that the calculation/method is transparent. The major results of these individual stream tabs are ultimately compiled into one summary tab. All streams throughout the plastics life cycle, for each respective scenario (1, 2, and 3), are shown in the "US Mat Flow Analysis 2018" tab. For each stream, we accounted the approximate mass of plastics found in MSW, additives that may be present, and non-plastics. Each spreadsheet contains a representative diagram that matches the stream label. This illustration is placed to aid the user with understanding the connection between each stage in the plastics' life cycle. For example, the Scenario 1 spreadsheet uniquely contains Material Flow Analysis Summary, in addition to the LCI. In the "Material Flow Analysis Summary" tab, we represented the input, output, releases, exposures, and greenhouse gas emissions based on the amount of materials inputted into a specific stage in the plastics life cycle. The "Life Cycle Inventory" tab contributes additional calculations to estimate land, air, and water releases. Figures and Data - A gs analysis on eol plastic management This word document contains the raw data used to create all the figures in the main manuscript. The major references used to obtain the data are also included where appropriate.

  15. Graph Input Data Example.xlsx

    • figshare.com
    xlsx
    Updated Dec 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Corynen (2018). Graph Input Data Example.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7506209.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 26, 2018
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dr Corynen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.

  16. SPORTS_DATA_ANALYSIS_ON_EXCEL

    • kaggle.com
    zip
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nil kamal Saha (2024). SPORTS_DATA_ANALYSIS_ON_EXCEL [Dataset]. https://www.kaggle.com/datasets/nilkamalsaha/sports-data-analysis-on-excel
    Explore at:
    zip(1203633 bytes)Available download formats
    Dataset updated
    Dec 12, 2024
    Authors
    Nil kamal Saha
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    PROJECT OBJECTIVE

    We are a part of XYZ Co Pvt Ltd company who is in the business of organizing the sports events at international level. Countries nominate sportsmen from different departments and our team has been given the responsibility to systematize the membership roster and generate different reports as per business requirements.

    Questions (KPIs)

    TASK 1: STANDARDIZING THE DATASET

    • Populate the FULLNAME consisting of the following fields ONLY, in the prescribed format: PREFIX FIRSTNAME LASTNAME.{Note: All UPPERCASE)
    • Get the COUNTRY NAME to which these sportsmen belong to. Make use of LOCATION sheet to get the required data
    • Populate the LANGUAGE_!poken by the sportsmen. Make use of LOCTION sheet to get the required data
    • Generate the EMAIL ADDRESS for those members, who speak English, in the prescribed format :lastname.firstnamel@xyz .org {Note: All lowercase) and for all other members, format should be lastname.firstname@xyz.com (Note: All lowercase)
    • Populate the SPORT LOCATION of the sport played by each player. Make use of SPORT sheet to get the required data

    TASK 2: DATA FORMATING

    • Display MEMBER IDas always 3 digit number {Note: 001,002 ...,D2D,..etc)
    • Format the BIRTHDATE as dd mmm'yyyy (Prescribed format example: 09 May' 1986)
    • Display the units for the WEIGHT column (Prescribed format example: 80 kg)
    • Format the SALARY to show the data In thousands. If SALARY is less than 100,000 then display data with 2 decimal places else display data with one decimal place. In both cases units should be thousands (k) e.g. 87670 -> 87.67 k and 12 250 -> 123.2 k

    TASK 3: SUMMARIZE DATA - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1) • Create a PIVOT table in the worksheet ANALYSIS, starting at cell B3,with the following details:

    • In COLUMNS; Group : GENDER.
    • In ROWS; Group : COUNTRY (Note: use COUNTRY NAMES).
    • In VALUES; calculate the count of candidates from each COUNTRY and GENDER type, Remove GRAND TOTALs.

    TASK 4: SUMMARIZE DATA - EXCEL FUNCTIONS (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a SUMMARY table in the worksheet ANALYSIS,starting at cell G4, with the following details:

    • Starting from range RANGE H4; get the distinct GENDER. Use remove duplicates option and transpose the data.
    • Starting from range RANGE GS; get the distinct COUNTRY (Note: use COUNTRY NAMES).
    • In the cross table,get the count of candidates from each COUNTRY and GENDER type.

    TASK 5: GENERATE REPORT - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a PIVOT table report in the worksheet REPORT, starting at cell A3, with the following information:

    • Change the report layout to TABULAR form.
    • Remove expand and collapse buttons.
    • Remove GRAND TOTALs.
    • Allow user to filter the data by SPORT LOCATION.

    Process

    • Verify data for any missing values and anomalies, and sort out the same.
    • Made sure data is consistent and clean with respect to data type, data format and values used.
    • Created pivot tables according to the questions asked.
  17. f

    Excel spreadsheet containing detailed data matrices supporting all figures...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhuang, Kai; Wang, Shuzhong; Li, Huifang; Can, Dan; Zhang, Jie; Chen, Shaokun; Lin, Raozhou; Chen, Erqu; Li, Jing; Zhou, Jiechao; Liang, Chensi (2025). Excel spreadsheet containing detailed data matrices supporting all figures in the study. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0002093886
    Explore at:
    Dataset updated
    Jun 30, 2025
    Authors
    Zhuang, Kai; Wang, Shuzhong; Li, Huifang; Can, Dan; Zhang, Jie; Chen, Shaokun; Lin, Raozhou; Chen, Erqu; Li, Jing; Zhou, Jiechao; Liang, Chensi
    Description

    Complete annotations for the tabular data are presented below. Tab Fig 1: (A) The heatmap data of G protein family members in the hippocampal tissue of 6-month-old Wildtype (n = 6) and 5xFAD (n = 6) mice; (B) The heatmap data of G protein family members in the cortical tissue of 6-month-old Wildtype (n = 6) and 5xFAD (n = 6) mice; (C) The data in the overlapping part of the Venn diagram (132 elements); (D) The data information for creating volcano plot; (E) The data information for creating heatmap of GPCR-related DEGs; (F) Expression of Gnb5 in the large sample dataset GSE44772; Control, n = 303; AD, n = 387; (H) Statistical analysis of Gnb5 protein levels from panel G; Wildtype, n = 4; 5xFAD, n = 4; (J) Statistical analysis of Gnb5 protein levels from panel I; Wildtype, n = 4; 5xFAD, n = 4; (L) Quantitative analysis of Gnb5 fluorescence intensity in 5xFAD and Wildtype groups; Wildtype, n = 4; 5xFAD, n = 4. Tab Fig 2: (D) qPCR data of Gnb5 knockout in hippocampal tissue; Gnb5F/F, n = 6; Gnb5-CCKO, n = 6; (E–I, L–N) Animal behavioral tests in mice, Gnb5F/F, n = 22; Gnb5-CCKO, n = 16; (E) Total distance traveled in the open field experiment; (F) Training curve in the Morris water maze (MWM); (F-day6) Data from the sixth day of MWM training; (G) Percentage of time spent by the mouse in the target quadrant in the MWM; (H) Statistical analysis of the number of times the mouse traverses the target quadrant in the MWM; (I) Latency to first reach the target quadrant in the MWM; (L) Baseline freezing percentage of mice in an identical testing context; (M) Percentage of freezing time of mice during the Context phase; (N) Percentage of freezing time of mice during the Cue phase. Tab Fig 3: (D–F, H) MWM tests in mice; Wildtype+AAV-GFP, n = 20; Wildtype+AAV-Gnb5-GFP, n = 23; 5xFAD + AAV-GFP, n = 23; 5xFAD + AAV-Gnb5-GFP, n = 26; (D) Training curve in the MWM; (D-day6) Data from the sixth day of MWM training; (E) Percentage of time spent in the target quadrant in the MWM; (F) Statistical analysis of the number of entries in the target quadrant in the MWM; (H) Movement speed of mice in the MWM; (I–K) The contextual fear conditioning test in mice; 5xFAD + AAV-GFP, n = 23; 5xFAD + AAV-Gnb5-GFP, n = 26; (I) Baseline freezing percentage of mice in an identical testing context; (J) Percentage of freezing time of mice during the Context phase; (K) Percentage of freezing time of mice during the Cue phase; (L) Total distance traveled in the open field test; (M) Percentage of time spent in the center area during the open field test. Tab Fig 4: (B, C) Quantification of Aβ plaques in the hippocampus sections from Wildtype and 5xFAD mice injected with either AAV-Gnb5 or AAV-GFP; Wildtype+AAV-GFP, n = 4; Wildtype+AAV-Gnb5-GFP, n = 4; 5xFAD + AAV-GFP, n = 4; 5xFAD + AAV-Gnb5-GFP, n = 4; (B) Quantification of Aβ plaques number; (C) Quantification of Aβ plaques size; (F, G) Quantification of Aβ pylaques from indicted mice lines; WT&Gnb5F/F&CamKIIa-CreERT+Vehicle, n = 4; 5xFAD&Gnb5F/F&CamKIIa-CreERT+Vehicle, n = 4; 5xFAD&Gnb5F/F&CamKIIa-CreERT+Tamoxifen, n = 4; (F) Quantification of Aβ plaque size; (G) Quantification of Aβ plaque number. Tab Fig 5: (B) Overexpression of Gnb5-AAV in 5xFAD mice affects the expression of proteins related to APP cleavage (BACE1, β-CTF, Nicastrin and APP); Statistical analysis of protein levels; n = 4, respectively; (D) Tamoxifen-induced Gnb5 knockdown in 5xFAD mice affects APP-cleaving proteins; Statistical analysis of protein levels; n = 4, respectively; (F) Gnb5-CCKO mice show altered expression of APP-cleaving proteins; Statistical analysis of protein levels; n = 6, respectively. Tab Fig 7: (C, D) Quantification of Aβ plaques in the overexpressed full-length Gnb5, truncated fragments, and mutant truncated fragment AAV in 5xFAD mice; n = 4, respectively; (C) Quantification of Aβ plaques size; (D) Quantification of Aβ plaques number; (F) Effect of overexpressing full-length Gnb5, truncated fragments, and mutant truncated fragment viruses on the expression of proteins related to APP cleavage process in 5xFAD; Statistical analysis of protein levels; n = 3, respectively. (XLSX)

  18. Excel spreadsheet containing gene expression data for all MPS samples...

    • plos.figshare.com
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kim M. Summers; Stephen J. Bush; David A. Hume (2023). Excel spreadsheet containing gene expression data for all MPS samples expressed as TPM. [Dataset]. http://doi.org/10.1371/journal.pbio.3000859.s009
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Kim M. Summers; Stephen J. Bush; David A. Hume
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Separate sheet highlights genes of interest encoding surface markers and transcription factors. Analysis includes means, standard deviation, CoV, and Mac:DC expression ratios. CoV, coefficient of variance; DC, dendritic cell; Mac, macrophage; MPS, mononuclear phagocyte system. (XLSX)

  19. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  20. E

    Data from: Facebook Data for Sentiment Analysis

    • live.european-language-grid.eu
    binary format
    Updated Jul 16, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). Facebook Data for Sentiment Analysis [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/1057
    Explore at:
    binary formatAvailable download formats
    Dataset updated
    Jul 16, 2013
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Description

    Corpus consisting of 10,000 Facebook posts manually annotated on sentiment (2,587 positive, 5,174 neutral, 1,991 negative and 248 bipolar posts). The archive contains data and statistics in an Excel file (FBData.xlsx) and gold data in two text files with posts (gold-posts.txt) and labels (gols-labels.txt) on corresponding lines.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
Organization logo

18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry.

Explore at:
Dataset updated
Aug 17, 2024
Dataset provided by
United States Environmental Protection Agencyhttp://www.epa.gov/
Description

Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

Search
Clear search
Close search
Google apps
Main menu