100+ datasets found
  1. m

    Raw data outputs 1-18

    • bridges.monash.edu
    • researchdata.edu.au
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

  2. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  3. Scooter Sales - Excel Project

    • kaggle.com
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ann Truong (2023). Scooter Sales - Excel Project [Dataset]. https://www.kaggle.com/datasets/bvanntruong/scooter-sales-excel-project
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Kaggle
    Authors
    Ann Truong
    Description

    The link for the Excel project to download can be found on GitHub here. It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt=""> The link for the Tableau adjusted dashboard can be found here.

    A screenshot of the interactive Excel dashboard is also included below for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">

  4. Data on Bike Buyers by using MS EXCEL

    • kaggle.com
    zip
    Updated Mar 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umasri (2022). Data on Bike Buyers by using MS EXCEL [Dataset]. https://www.kaggle.com/datasets/unica02/data-on-bike-buyers-by-using-ms-excel
    Explore at:
    zip(6808899 bytes)Available download formats
    Dataset updated
    Mar 25, 2022
    Authors
    Umasri
    Description

    The dataset includes customer id,Martial Status,Gender,Income,Children,Education,Occupation,Home Owner,Cars,Commute Distance,Region,Age,Purchased Bike. Blog

  5. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  6. Excel dataset

    • kaggle.com
    zip
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pinky Verma (2023). Excel dataset [Dataset]. https://www.kaggle.com/datasets/pinkyverma0256/excel-dataset
    Explore at:
    zip(13123 bytes)Available download formats
    Dataset updated
    Jun 29, 2023
    Authors
    Pinky Verma
    Description

    Dataset

    This dataset was created by Pinky Verma

    Contents

  7. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  8. Enterprise Survey 2009-2019, Panel Data - Slovenia

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Aug 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (WBG) (2020). Enterprise Survey 2009-2019, Panel Data - Slovenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3762
    Explore at:
    Dataset updated
    Aug 6, 2020
    Dataset provided by
    European Investment Bankhttp://eib.org/
    World Bank Grouphttp://www.worldbank.org/
    European Bank for Reconstruction and Developmenthttp://ebrd.com/
    Time period covered
    2008 - 2019
    Area covered
    Slovenia
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.

    The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.

    Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.

    For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.

    For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).

    Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).

    For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.

    For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.

    Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.

    For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

    For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.

    For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.

    Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.

  9. New 1000 Sales Records Data 2

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Calvin Oko Mensah (2023). New 1000 Sales Records Data 2 [Dataset]. https://www.kaggle.com/datasets/calvinokomensah/new-1000-sales-records-data-2
    Explore at:
    zip(49305 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    Calvin Oko Mensah
    Description

    This is a dataset downloaded off excelbianalytics.com created off of random VBA logic. I recently performed an extensive exploratory data analysis on it and I included new columns to it, namely: Unit margin, Order year, Order month, Order weekday and Order_Ship_Days which I think can help with analysis on the data. I shared it because I thought it was a great dataset to practice analytical processes on for newbies like myself.

  10. Streaming Service Data

    • kaggle.com
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chad Wambles (2024). Streaming Service Data [Dataset]. https://www.kaggle.com/datasets/chadwambles/streaming-service-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Chad Wambles
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    A dataset I generated to showcase a sample set of user data for a fictional streaming service. This data is great for practicing SQL, Excel, Tableau, or Power BI.

    1000 rows and 25 columns of connected data.

    See below for column descriptions.

    Enjoy :)

  11. Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  12. THESIS EXCEL DATA ENTRY.xlsx

    • figshare.com
    xlsx
    Updated Dec 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr JITHIN SURENDRAN (2023). THESIS EXCEL DATA ENTRY.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.24709566.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 1, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dr JITHIN SURENDRAN
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel sheet of the data

  13. Superstore Dataset

    • kaggle.com
    zip
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivam Amrutkar (2023). Superstore Dataset [Dataset]. https://www.kaggle.com/datasets/yesshivam007/superstore-dataset
    Explore at:
    zip(2119716 bytes)Available download formats
    Dataset updated
    Sep 25, 2023
    Authors
    Shivam Amrutkar
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    The Superstore Sales Data dataset, available in an Excel format as "Superstore.xlsx," is a comprehensive collection of sales and customer-related information from a retail superstore. This dataset comprises* three distinct tables*, each providing specific insights into the store's operations and customer interactions.

  14. Datasets for manuscript "A Generic Scenario Analysis of End-of-Life Plastic...

    • catalog.data.gov
    • datasets.ai
    Updated Jul 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2022). Datasets for manuscript "A Generic Scenario Analysis of End-of-Life Plastic Management: Chemical Additives" [Dataset]. https://catalog.data.gov/dataset/datasets-for-manuscript-a-generic-scenario-analysis-of-end-of-life-plastic-management-chem
    Explore at:
    Dataset updated
    Jul 9, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This repository contains the data supporting the manuscript "A Generic Scenario Analysis of End-of-Life Plastic Management: Chemical Additives" (to be) submitted to the Energy and Environmental Science Journal https://pubs.rsc.org/en/journals/journalissues/ee#!recentarticles&adv This repository contains Excel spreadsheets used to calculate material flow throughout the plastics life cycle, with a strong emphasis on chemical additives in the end-of-life stages. Three major scenarios were presented in the manuscript: 1) mechanical recycling (existing recycling infrastructure), 2) implementing chemical recycling to the existing plastics recycling, and 3) extracting chemical additives before the manufacturing stage. Users would primarily modify values on the yellow tab "US 2018 Facts - Sensitivity". Values highlighted in yellow may be changed for sensitivity analysis purposes. Please note that the values shown for MSW generated, recycled, incinerated, landfilled, composted, imported, exported, re-exported, and other categories in this tab were based on 2018 data. Analysis for other years can be made possible with a replicate version of this spreadsheet and the necessary data to replace those of 2018. Most of the tabs, especially those that contain "Stream # - Description", do not require user interaction. They are intermediate calculations that change according to the user inputs. It is available for the user to see so that the calculation/method is transparent. The major results of these individual stream tabs are ultimately compiled into one summary tab. All streams throughout the plastics life cycle, for each respective scenario (1, 2, and 3), are shown in the "US Mat Flow Analysis 2018" tab. For each stream, we accounted the approximate mass of plastics found in MSW, additives that may be present, and non-plastics. Each spreadsheet contains a representative diagram that matches the stream label. This illustration is placed to aid the user with understanding the connection between each stage in the plastics' life cycle. For example, the Scenario 1 spreadsheet uniquely contains Material Flow Analysis Summary, in addition to the LCI. In the "Material Flow Analysis Summary" tab, we represented the input, output, releases, exposures, and greenhouse gas emissions based on the amount of materials inputted into a specific stage in the plastics life cycle. The "Life Cycle Inventory" tab contributes additional calculations to estimate land, air, and water releases. Figures and Data - A gs analysis on eol plastic management This word document contains the raw data used to create all the figures in the main manuscript. The major references used to obtain the data are also included where appropriate.

  15. PCB Data (excel file) and PFAS Data (excel file)

    • catalog.data.gov
    • s.cnmilf.com
    Updated Feb 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2023). PCB Data (excel file) and PFAS Data (excel file) [Dataset]. https://catalog.data.gov/dataset/pcb-data-excel-file-and-pfas-data-excel-file
    Explore at:
    Dataset updated
    Feb 10, 2023
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Analytical and field sampling data for each 2018-2019 NRSA Fish Tissue Study chemical contaminant are provided, along with a data dictionary that describes the contents of each data file. All results for the fillet tissue concentrations are reported on a wet weight basis. All the fish fillet samples analyzed contained detectable levels of mercury and PCBs, and PFAS were detected in 95% of the fillet samples. This dataset is associated with the following publication: Stahl, L., B.D. Snyder, H.B. McCarty, T. Kincaid, A. Olsen, T.R. Cohen, and J. Healey. Contaminants in Fish from U.S. Rivers: Probability-Based National Assessments. SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 861(25): 160557, (2023).

  16. f

    Excel spreadsheet containing detailed data matrices supporting all figures...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhuang, Kai; Wang, Shuzhong; Li, Huifang; Can, Dan; Zhang, Jie; Chen, Shaokun; Lin, Raozhou; Chen, Erqu; Li, Jing; Zhou, Jiechao; Liang, Chensi (2025). Excel spreadsheet containing detailed data matrices supporting all figures in the study. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0002093886
    Explore at:
    Dataset updated
    Jun 30, 2025
    Authors
    Zhuang, Kai; Wang, Shuzhong; Li, Huifang; Can, Dan; Zhang, Jie; Chen, Shaokun; Lin, Raozhou; Chen, Erqu; Li, Jing; Zhou, Jiechao; Liang, Chensi
    Description

    Complete annotations for the tabular data are presented below. Tab Fig 1: (A) The heatmap data of G protein family members in the hippocampal tissue of 6-month-old Wildtype (n = 6) and 5xFAD (n = 6) mice; (B) The heatmap data of G protein family members in the cortical tissue of 6-month-old Wildtype (n = 6) and 5xFAD (n = 6) mice; (C) The data in the overlapping part of the Venn diagram (132 elements); (D) The data information for creating volcano plot; (E) The data information for creating heatmap of GPCR-related DEGs; (F) Expression of Gnb5 in the large sample dataset GSE44772; Control, n = 303; AD, n = 387; (H) Statistical analysis of Gnb5 protein levels from panel G; Wildtype, n = 4; 5xFAD, n = 4; (J) Statistical analysis of Gnb5 protein levels from panel I; Wildtype, n = 4; 5xFAD, n = 4; (L) Quantitative analysis of Gnb5 fluorescence intensity in 5xFAD and Wildtype groups; Wildtype, n = 4; 5xFAD, n = 4. Tab Fig 2: (D) qPCR data of Gnb5 knockout in hippocampal tissue; Gnb5F/F, n = 6; Gnb5-CCKO, n = 6; (E–I, L–N) Animal behavioral tests in mice, Gnb5F/F, n = 22; Gnb5-CCKO, n = 16; (E) Total distance traveled in the open field experiment; (F) Training curve in the Morris water maze (MWM); (F-day6) Data from the sixth day of MWM training; (G) Percentage of time spent by the mouse in the target quadrant in the MWM; (H) Statistical analysis of the number of times the mouse traverses the target quadrant in the MWM; (I) Latency to first reach the target quadrant in the MWM; (L) Baseline freezing percentage of mice in an identical testing context; (M) Percentage of freezing time of mice during the Context phase; (N) Percentage of freezing time of mice during the Cue phase. Tab Fig 3: (D–F, H) MWM tests in mice; Wildtype+AAV-GFP, n = 20; Wildtype+AAV-Gnb5-GFP, n = 23; 5xFAD + AAV-GFP, n = 23; 5xFAD + AAV-Gnb5-GFP, n = 26; (D) Training curve in the MWM; (D-day6) Data from the sixth day of MWM training; (E) Percentage of time spent in the target quadrant in the MWM; (F) Statistical analysis of the number of entries in the target quadrant in the MWM; (H) Movement speed of mice in the MWM; (I–K) The contextual fear conditioning test in mice; 5xFAD + AAV-GFP, n = 23; 5xFAD + AAV-Gnb5-GFP, n = 26; (I) Baseline freezing percentage of mice in an identical testing context; (J) Percentage of freezing time of mice during the Context phase; (K) Percentage of freezing time of mice during the Cue phase; (L) Total distance traveled in the open field test; (M) Percentage of time spent in the center area during the open field test. Tab Fig 4: (B, C) Quantification of Aβ plaques in the hippocampus sections from Wildtype and 5xFAD mice injected with either AAV-Gnb5 or AAV-GFP; Wildtype+AAV-GFP, n = 4; Wildtype+AAV-Gnb5-GFP, n = 4; 5xFAD + AAV-GFP, n = 4; 5xFAD + AAV-Gnb5-GFP, n = 4; (B) Quantification of Aβ plaques number; (C) Quantification of Aβ plaques size; (F, G) Quantification of Aβ pylaques from indicted mice lines; WT&Gnb5F/F&CamKIIa-CreERT+Vehicle, n = 4; 5xFAD&Gnb5F/F&CamKIIa-CreERT+Vehicle, n = 4; 5xFAD&Gnb5F/F&CamKIIa-CreERT+Tamoxifen, n = 4; (F) Quantification of Aβ plaque size; (G) Quantification of Aβ plaque number. Tab Fig 5: (B) Overexpression of Gnb5-AAV in 5xFAD mice affects the expression of proteins related to APP cleavage (BACE1, β-CTF, Nicastrin and APP); Statistical analysis of protein levels; n = 4, respectively; (D) Tamoxifen-induced Gnb5 knockdown in 5xFAD mice affects APP-cleaving proteins; Statistical analysis of protein levels; n = 4, respectively; (F) Gnb5-CCKO mice show altered expression of APP-cleaving proteins; Statistical analysis of protein levels; n = 6, respectively. Tab Fig 7: (C, D) Quantification of Aβ plaques in the overexpressed full-length Gnb5, truncated fragments, and mutant truncated fragment AAV in 5xFAD mice; n = 4, respectively; (C) Quantification of Aβ plaques size; (D) Quantification of Aβ plaques number; (F) Effect of overexpressing full-length Gnb5, truncated fragments, and mutant truncated fragment viruses on the expression of proteins related to APP cleavage process in 5xFAD; Statistical analysis of protein levels; n = 3, respectively. (XLSX)

  17. SPORTS_DATA_ANALYSIS_ON_EXCEL

    • kaggle.com
    zip
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nil kamal Saha (2024). SPORTS_DATA_ANALYSIS_ON_EXCEL [Dataset]. https://www.kaggle.com/datasets/nilkamalsaha/sports-data-analysis-on-excel
    Explore at:
    zip(1203633 bytes)Available download formats
    Dataset updated
    Dec 12, 2024
    Authors
    Nil kamal Saha
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    PROJECT OBJECTIVE

    We are a part of XYZ Co Pvt Ltd company who is in the business of organizing the sports events at international level. Countries nominate sportsmen from different departments and our team has been given the responsibility to systematize the membership roster and generate different reports as per business requirements.

    Questions (KPIs)

    TASK 1: STANDARDIZING THE DATASET

    • Populate the FULLNAME consisting of the following fields ONLY, in the prescribed format: PREFIX FIRSTNAME LASTNAME.{Note: All UPPERCASE)
    • Get the COUNTRY NAME to which these sportsmen belong to. Make use of LOCATION sheet to get the required data
    • Populate the LANGUAGE_!poken by the sportsmen. Make use of LOCTION sheet to get the required data
    • Generate the EMAIL ADDRESS for those members, who speak English, in the prescribed format :lastname.firstnamel@xyz .org {Note: All lowercase) and for all other members, format should be lastname.firstname@xyz.com (Note: All lowercase)
    • Populate the SPORT LOCATION of the sport played by each player. Make use of SPORT sheet to get the required data

    TASK 2: DATA FORMATING

    • Display MEMBER IDas always 3 digit number {Note: 001,002 ...,D2D,..etc)
    • Format the BIRTHDATE as dd mmm'yyyy (Prescribed format example: 09 May' 1986)
    • Display the units for the WEIGHT column (Prescribed format example: 80 kg)
    • Format the SALARY to show the data In thousands. If SALARY is less than 100,000 then display data with 2 decimal places else display data with one decimal place. In both cases units should be thousands (k) e.g. 87670 -> 87.67 k and 12 250 -> 123.2 k

    TASK 3: SUMMARIZE DATA - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1) • Create a PIVOT table in the worksheet ANALYSIS, starting at cell B3,with the following details:

    • In COLUMNS; Group : GENDER.
    • In ROWS; Group : COUNTRY (Note: use COUNTRY NAMES).
    • In VALUES; calculate the count of candidates from each COUNTRY and GENDER type, Remove GRAND TOTALs.

    TASK 4: SUMMARIZE DATA - EXCEL FUNCTIONS (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a SUMMARY table in the worksheet ANALYSIS,starting at cell G4, with the following details:

    • Starting from range RANGE H4; get the distinct GENDER. Use remove duplicates option and transpose the data.
    • Starting from range RANGE GS; get the distinct COUNTRY (Note: use COUNTRY NAMES).
    • In the cross table,get the count of candidates from each COUNTRY and GENDER type.

    TASK 5: GENERATE REPORT - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a PIVOT table report in the worksheet REPORT, starting at cell A3, with the following information:

    • Change the report layout to TABULAR form.
    • Remove expand and collapse buttons.
    • Remove GRAND TOTALs.
    • Allow user to filter the data by SPORT LOCATION.

    Process

    • Verify data for any missing values and anomalies, and sort out the same.
    • Made sure data is consistent and clean with respect to data type, data format and values used.
    • Created pivot tables according to the questions asked.
  18. E

    Data from: Facebook Data for Sentiment Analysis

    • live.european-language-grid.eu
    binary format
    Updated Jul 16, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). Facebook Data for Sentiment Analysis [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/1057
    Explore at:
    binary formatAvailable download formats
    Dataset updated
    Jul 16, 2013
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Description

    Corpus consisting of 10,000 Facebook posts manually annotated on sentiment (2,587 positive, 5,174 neutral, 1,991 negative and 248 bipolar posts). The archive contains data and statistics in an Excel file (FBData.xlsx) and gold data in two text files with posts (gold-posts.txt) and labels (gols-labels.txt) on corresponding lines.

  19. Graph Input Data Example.xlsx

    • figshare.com
    xlsx
    Updated Dec 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Corynen (2018). Graph Input Data Example.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7506209.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 26, 2018
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dr Corynen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.

  20. p

    Business Activity Survey 2009 - Samoa

    • microdata.pacificdata.org
    Updated Jul 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samoa Bureau of Statistics (2019). Business Activity Survey 2009 - Samoa [Dataset]. https://microdata.pacificdata.org/index.php/catalog/253
    Explore at:
    Dataset updated
    Jul 2, 2019
    Dataset authored and provided by
    Samoa Bureau of Statistics
    Time period covered
    2009
    Area covered
    Samoa
    Description

    Abstract

    The intention is to collect data for the calendar year 2009 (or the nearest year for which each business keeps its accounts. The survey is considered a one-off survey, although for accurate NAs, such a survey should be conducted at least every five years to enable regular updating of the ratios, etc., needed to adjust the ongoing indicator data (mainly VAGST) to NA concepts. The questionnaire will be drafted by FSD, largely following the previous BAS, updated to current accounting terminology where necessary. The questionnaire will be pilot tested, using some accountants who are likely to complete a number of the forms on behalf of their business clients, and a small sample of businesses. Consultations will also include Ministry of Finance, Ministry of Commerce, Industry and Labour, Central Bank of Samoa (CBS), Samoa Tourism Authority, Chamber of Commerce, and other business associations (hotels, retail, etc.).

    The questionnaire will collect a number of items of information about the business ownership, locations at which it operates and each establishment for which detailed data can be provided (in the case of complex businesses), contact information, and other general information needed to clearly identify each unique business. The main body of the questionnaire will collect data on income and expenses, to enable value added to be derived accurately. The questionnaire will also collect data on capital formation, and will contain supplementary pages for relevant industries to collect volume of production data for selected commodities and to collect information to enable an estimate of value added generated by key tourism activities.

    The principal user of the data will be FSD which will incorporate the survey data into benchmarks for the NA, mainly on the current published production measure of GDP. The information on capital formation and other relevant data will also be incorporated into the experimental estimates of expenditure on GDP. The supplementary data on volumes of production will be used by FSD to redevelop the industrial production index which has recently been transferred under the SBS from the CBS. The general information about the business ownership, etc., will be used to update the Business Register.

    Outputs will be produced in a number of formats, including a printed report containing descriptive information of the survey design, data tables, and analysis of the results. The report will also be made available on the SBS website in “.pdf” format, and the tables will be available on the SBS website in excel tables. Data by region may also be produced, although at a higher level of aggregation than the national data. All data will be fully confidentialised, to protect the anonymity of all respondents. Consideration may also be made to provide, for selected analytical users, confidentialised unit record files (CURFs).

    A high level of accuracy is needed because the principal purpose of the survey is to develop revised benchmarks for the NA. The initial plan was that the survey will be conducted as a stratified sample survey, with full enumeration of large establishments and a sample of the remainder.

    Geographic coverage

    National Coverage

    Analysis unit

    The main statistical unit to be used for the survey is the establishment. For simple businesses that undertake a single activity at a single location there is a one-to-one relationship between the establishment and the enterprise. For large and complex enterprises, however, it is desirable to separate each activity of an enterprise into establishments to provide the most detailed information possible for industrial analysis. The business register will need to be developed in such a way that records the links between establishments and their parent enterprises. The business register will be created from administrative records and may not have enough information to recognize all establishments of complex enterprises. Large businesses will be contacted prior to the survey post-out to determine if they have separate establishments. If so, the extended structure of the enterprise will be recorded on the business register and a questionnaire will be sent to the enterprise to be completed for each establishment.

    SBS has decided to follow the New Zealand simplified version of its statistical units model for the 2009 BAS. Future surveys may consider location units and enterprise groups if they are found to be useful for statistical collections.

    It should be noted that while establishment data may enable the derivation of detailed benchmark accounts, it may be necessary to aggregate up to enterprise level data for the benchmarks if the ongoing data used to extrapolate the benchmark forward (mainly VAGST) are only available at the enterprise level.

    Universe

    The BAS's covered all employing units, and excluded small non-employing units such as the market sellers. The surveys also excluded central government agencies engaged in public administration (ministries, public education and health, etc.). It only covers businesses that pay the VAGST. (Threshold SAT$75,000 and upwards).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    -Total Sample Size was 1240 -Out of the 1240, 902 successfully completed the questionnaire. -The other remaining 338 either never responded or were omitted (some businesses were ommitted from the sample as they do not meet the requirement to be surveyed) -Selection was all employing units paying VAGST (Threshold SAT $75,000 upwards)

    WILL CONFIRM LATER!!

    OSO LE MEA E LE FAASA...AEA :-)

    Mode of data collection

    Mail Questionnaire [mail]

    Research instrument

    1. General instructions, authority for the survey, etc;
    2. Business demography information on ownership, contact details, structure, etc.;
    3. Employment;
    4. Income;
    5. Expenses;
    6. Inventories;
    7. Profit or loss and reconciliation to business accounts' profit and loss;
    8. Fixed assets - purchases, disposals, book values
    9. Thank you and signature of respondent.

    Supplementary Pages Additional pages have been prepared to collect data for a limited range of industries. 1.Production data. To rebase and redevelop the Industrial Production Index (IPI), it is intended to collect volume of production information from a selection of large manufacturing businesses. The selection of businesses and products is critical to the usefulness of the IPI. The products must be homogeneous, and be of enough importance to the economy to justify collecting the data. Significance criteria should be established for the selection of products to include in the IPI, and the 2009 BAS provides an opportunity to collect benchmark data for a range of products known to be significant (based on information in the existing IPI, CPI weights, export data, etc.) as well as open questions for respondents to provide information on other significant products. 2.Tourism. There is a strong demand for estimates of tourism value added. To estimate tourism value added using the international standard Tourism Satellite Account methodology requires the use of an input-output table, which is beyond the capacity of SBS at present. However, some indicative estimates of the main parts of the economy influenced by tourism can be derived if the necessary data are collected. Tourism is a demand concept, based on defining tourists (the international standard includes both international and domestic tourists), what products are characteristically purchased by tourists, and which industries supply those products. Some questions targeted at those industries that have significant involvement with tourists (hotels, restaurants, transport and tour operators, vehicle hire, etc.), on how much of their income is sourced from tourism would provide valuable indicators of the size of the direct impact of tourism.

    Cleaning operations

    Partial imputation was done at the time of receipt of questionnaires, after follow-up procedures to obtain fully completed questionnaires have been followed. Imputation followed a process, i.e., apply ratios from responding units in the imputation cell to the partial data that was supplied. Procedures were established during the editing stage (a) to preserve the integrity of the questionnaires as supplied by respondents, and (b) to record all changes made to the questionnaires during editing. If SBS staff writes on the form, for example, this should only be done in red pen, to distinguish the alterations from the original information.

    Additional edit checks were developed, including checking against external data at enterprise/establishment level. External data to be checked against include VAGST and SNPF for turnover and purchases, and salaries and wages and employment data respectively. Editing and imputation processes were undertaken by FSD using Excel.

    Sampling error estimates

    NOT APPLICABLE!!

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1

Raw data outputs 1-18

Related Article
Explore at:
xlsxAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
Monash University
Authors
Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

Search
Clear search
Close search
Google apps
Main menu