57 datasets found
  1. m

    Raw data outputs 1-18

    • bridges.monash.edu
    • researchdata.edu.au
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

  2. Excel dataset

    • kaggle.com
    zip
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pinky Verma (2023). Excel dataset [Dataset]. https://www.kaggle.com/datasets/pinkyverma0256/excel-dataset
    Explore at:
    zip(13123 bytes)Available download formats
    Dataset updated
    Jun 29, 2023
    Authors
    Pinky Verma
    Description

    Dataset

    This dataset was created by Pinky Verma

    Contents

  3. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  4. Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  5. f

    Excel spreadsheet containing detailed data matrices supporting all figures...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xlsx
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaokun Chen; Jiechao Zhou; Shuzhong Wang; Erqu Chen; Kai Zhuang; Raozhou Lin; Chensi Liang; Dan Can; Huifang Li; Jing Li; Jie Zhang (2025). Excel spreadsheet containing detailed data matrices supporting all figures in the study. [Dataset]. http://doi.org/10.1371/journal.pbio.3003259.s009
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset provided by
    PLOS Biology
    Authors
    Shaokun Chen; Jiechao Zhou; Shuzhong Wang; Erqu Chen; Kai Zhuang; Raozhou Lin; Chensi Liang; Dan Can; Huifang Li; Jing Li; Jie Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Complete annotations for the tabular data are presented below. Tab Fig 1: (A) The heatmap data of G protein family members in the hippocampal tissue of 6-month-old Wildtype (n = 6) and 5xFAD (n = 6) mice; (B) The heatmap data of G protein family members in the cortical tissue of 6-month-old Wildtype (n = 6) and 5xFAD (n = 6) mice; (C) The data in the overlapping part of the Venn diagram (132 elements); (D) The data information for creating volcano plot; (E) The data information for creating heatmap of GPCR-related DEGs; (F) Expression of Gnb5 in the large sample dataset GSE44772; Control, n = 303; AD, n = 387; (H) Statistical analysis of Gnb5 protein levels from panel G; Wildtype, n = 4; 5xFAD, n = 4; (J) Statistical analysis of Gnb5 protein levels from panel I; Wildtype, n = 4; 5xFAD, n = 4; (L) Quantitative analysis of Gnb5 fluorescence intensity in 5xFAD and Wildtype groups; Wildtype, n = 4; 5xFAD, n = 4. Tab Fig 2: (D) qPCR data of Gnb5 knockout in hippocampal tissue; Gnb5F/F, n = 6; Gnb5-CCKO, n = 6; (E–I, L–N) Animal behavioral tests in mice, Gnb5F/F, n = 22; Gnb5-CCKO, n = 16; (E) Total distance traveled in the open field experiment; (F) Training curve in the Morris water maze (MWM); (F-day6) Data from the sixth day of MWM training; (G) Percentage of time spent by the mouse in the target quadrant in the MWM; (H) Statistical analysis of the number of times the mouse traverses the target quadrant in the MWM; (I) Latency to first reach the target quadrant in the MWM; (L) Baseline freezing percentage of mice in an identical testing context; (M) Percentage of freezing time of mice during the Context phase; (N) Percentage of freezing time of mice during the Cue phase. Tab Fig 3: (D–F, H) MWM tests in mice; Wildtype+AAV-GFP, n = 20; Wildtype+AAV-Gnb5-GFP, n = 23; 5xFAD + AAV-GFP, n = 23; 5xFAD + AAV-Gnb5-GFP, n = 26; (D) Training curve in the MWM; (D-day6) Data from the sixth day of MWM training; (E) Percentage of time spent in the target quadrant in the MWM; (F) Statistical analysis of the number of entries in the target quadrant in the MWM; (H) Movement speed of mice in the MWM; (I–K) The contextual fear conditioning test in mice; 5xFAD + AAV-GFP, n = 23; 5xFAD + AAV-Gnb5-GFP, n = 26; (I) Baseline freezing percentage of mice in an identical testing context; (J) Percentage of freezing time of mice during the Context phase; (K) Percentage of freezing time of mice during the Cue phase; (L) Total distance traveled in the open field test; (M) Percentage of time spent in the center area during the open field test. Tab Fig 4: (B, C) Quantification of Aβ plaques in the hippocampus sections from Wildtype and 5xFAD mice injected with either AAV-Gnb5 or AAV-GFP; Wildtype+AAV-GFP, n = 4; Wildtype+AAV-Gnb5-GFP, n = 4; 5xFAD + AAV-GFP, n = 4; 5xFAD + AAV-Gnb5-GFP, n = 4; (B) Quantification of Aβ plaques number; (C) Quantification of Aβ plaques size; (F, G) Quantification of Aβ pylaques from indicted mice lines; WT&Gnb5F/F&CamKIIa-CreERT+Vehicle, n = 4; 5xFAD&Gnb5F/F&CamKIIa-CreERT+Vehicle, n = 4; 5xFAD&Gnb5F/F&CamKIIa-CreERT+Tamoxifen, n = 4; (F) Quantification of Aβ plaque size; (G) Quantification of Aβ plaque number. Tab Fig 5: (B) Overexpression of Gnb5-AAV in 5xFAD mice affects the expression of proteins related to APP cleavage (BACE1, β-CTF, Nicastrin and APP); Statistical analysis of protein levels; n = 4, respectively; (D) Tamoxifen-induced Gnb5 knockdown in 5xFAD mice affects APP-cleaving proteins; Statistical analysis of protein levels; n = 4, respectively; (F) Gnb5-CCKO mice show altered expression of APP-cleaving proteins; Statistical analysis of protein levels; n = 6, respectively. Tab Fig 7: (C, D) Quantification of Aβ plaques in the overexpressed full-length Gnb5, truncated fragments, and mutant truncated fragment AAV in 5xFAD mice; n = 4, respectively; (C) Quantification of Aβ plaques size; (D) Quantification of Aβ plaques number; (F) Effect of overexpressing full-length Gnb5, truncated fragments, and mutant truncated fragment viruses on the expression of proteins related to APP cleavage process in 5xFAD; Statistical analysis of protein levels; n = 3, respectively. (XLSX)

  6. Supplement excel sheet

    • aip.figshare.com
    csv
    Updated Oct 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krishna Kumar Pandey; Naseem Khayum; Jakeer Shaik (2024). Supplement excel sheet [Dataset]. http://doi.org/10.60893/figshare.jrse.27018523.v1
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 2, 2024
    Dataset provided by
    AIP Publishing LLC
    Authors
    Krishna Kumar Pandey; Naseem Khayum; Jakeer Shaik
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This excel sheet contains the sample data set used for the training for ML models can be provided to the reader.

  7. Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm

    • plos.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic (2023). Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm [Dataset]. http://doi.org/10.1371/journal.pbio.1002128
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.

  8. Adventure Works 2022 CSVs

    • kaggle.com
    zip
    Updated Nov 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Algorismus (2022). Adventure Works 2022 CSVs [Dataset]. https://www.kaggle.com/datasets/algorismus/adventure-works-in-excel-tables
    Explore at:
    zip(567646 bytes)Available download formats
    Dataset updated
    Nov 2, 2022
    Authors
    Algorismus
    License

    http://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html

    Description

    Adventure Works 2022 dataset

    How this Dataset is created?

    On the official website the dataset is available over SQL server (localhost) and CSVs to be used via Power BI Desktop running on Virtual Lab (Virtaul Machine). As per first two steps of Importing data are executed in the virtual lab and then resultant Power BI tables are copied in CSVs. Added records till year 2022 as required.

    How this Dataset may help you?

    this dataset will be helpful in case you want to work offline with Adventure Works data in Power BI desktop in order to carry lab instructions as per training material on official website. The dataset is useful in case you want to work on Power BI desktop Sales Analysis example from Microsoft website PL 300 learning.

    How to use this Dataset?

    Download the CSV file(s) and import in Power BI desktop as tables. The CSVs are named as tables created after first two steps of importing data as mentioned in the PL-300 Microsoft Power BI Data Analyst exam lab.

  9. B

    National Survey of Information Technology Occupations, 2002 [Canada] [Excel...

    • borealisdata.ca
    • dataone.org
    • +1more
    Updated Feb 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2024). National Survey of Information Technology Occupations, 2002 [Canada] [Excel files] [Dataset]. http://doi.org/10.5683/SP3/RQTHKB
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 21, 2024
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.5683/SP3/RQTHKBhttps://borealisdata.ca/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.5683/SP3/RQTHKB

    Area covered
    Canada
    Description

    The national Survey of Information Technology Occupations, conducted in 2002 on behalf of the Software Human Resource Council (SHRC), is the first to shed light on the IT labour market in both the public and private sectors. IT employers and employees were surveyed separately, but simultaneously. The employer survey consisted of questions on occupation profile, hiring and recruitment, employee retention, and training and development. The employee survey had questions on the occupational history of IT employees, salary, education, training, and skills. The target population consisted of private sector locations with at least six employees, and with at least one employee working in IT, as well as public-sector divisions with at least one IT employee. The NSITO is a three-stage survey. First, a sample of employers in both private and public sectors is selected; this is stage 1. The questions asked in stage 1 are essentially about the IT workforce. Stage 2 involves selecting a maximum of two occupations (out of 25) per employer. The questions asked in this stage deal with hiring, training and retaining employees in the selected occupations. In stage 3, a maximum of 10 employees are sampled for each occupation selected in stage 2. Among the subjects that employees are asked about are training, previous employment and demographic characteristics. For National Survey of Information Technology Occupations data, refer to Statistics Canada.

  10. m

    An Extensive Dataset for the Heart Disease Classification System

    • data.mendeley.com
    Updated Feb 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sozan S. Maghdid (2022). An Extensive Dataset for the Heart Disease Classification System [Dataset]. http://doi.org/10.17632/65gxgy2nmg.1
    Explore at:
    Dataset updated
    Feb 15, 2022
    Authors
    Sozan S. Maghdid
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Finding a good data source is the first step toward creating a database. Cardiovascular illnesses (CVDs) are the major cause of death worldwide. CVDs include coronary heart disease, cerebrovascular disease, rheumatic heart disease, and other heart and blood vessel problems. According to the World Health Organization, 17.9 million people die each year. Heart attacks and strokes account for more than four out of every five CVD deaths, with one-third of these deaths occurring before the age of 70 A comprehensive database for factors that contribute to a heart attack has been constructed , The main purpose here is to collect characteristics of Heart Attack or factors that contribute to it. As a result, a form is created to accomplish this. Microsoft Excel was used to create this form. Figure 1 depicts the form which It has nine fields, where eight fields for input fields and one field for output field. Age, gender, heart rate, systolic BP, diastolic BP, blood sugar, CK-MB, and Test-Troponin are representing the input fields, while the output field pertains to the presence of heart attack, which is divided into two categories (negative and positive).negative refers to the absence of a heart attack, while positive refers to the presence of a heart attack.Table 1 show the detailed information and max and min of values attributes for 1319 cases in the whole database.To confirm the validity of this data, we looked at the patient files in the hospital archive and compared them with the data stored in the laboratories system. On the other hand, we interviewed the patients and specialized doctors. Table 2 is a sample for 1320 cases, which shows 44 cases and the factors that lead to a heart attack in the whole database,After collecting this data, we checked the data if it has null values (invalid values) or if there was an error during data collection. The value is null if it is unknown. Null values necessitate special treatment. This value is used to indicate that the target isn’t a valid data element. When trying to retrieve data that isn't present, you can come across the keyword null in Processing. If you try to do arithmetic operations on a numeric column with one or more null values, the outcome will be null. An example of a null values processing is shown in Figure 2.The data used in this investigation were scaled between 0 and 1 to guarantee that all inputs and outputs received equal attention and to eliminate their dimensionality. Prior to the use of AI models, data normalization has two major advantages. The first is to avoid overshadowing qualities in smaller numeric ranges by employing attributes in larger numeric ranges. The second goal is to avoid any numerical problems throughout the process.After completion of the normalization process, we split the data set into two parts - training and test sets. In the test, we have utilized1060 for train 259 for testing Using the input and output variables, modeling was implemented.

  11. Sample Excel dataset

    • figshare.com
    xlsx
    Updated Mar 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Bourke (2022). Sample Excel dataset [Dataset]. http://doi.org/10.6084/m9.figshare.19368707.v3
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 16, 2022
    Dataset provided by
    figshare
    Authors
    Peter Bourke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Test dataset for introductory online course in R

  12. m

    Dataset to run examples in SmartPLS 3 (teaching and learning)

    • data.mendeley.com
    • narcis.nl
    Updated Mar 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diógenes de Bido (2019). Dataset to run examples in SmartPLS 3 (teaching and learning) [Dataset]. http://doi.org/10.17632/4tkph3mxp9.2
    Explore at:
    Dataset updated
    Mar 7, 2019
    Authors
    Diógenes de Bido
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This zip file contains: - 3 .zip files = projects to be imported into SmartPLS 3

    DLOQ-A model with 7 dimensions DLOQ-A model with second-order latent variable ECSI model (Tenenhaus et al., 2005) to exemplify direct, indirect and total effects, as well as importance-performance map and moderation with continuous variables. ECSI Model (Sanches, 2013) to exemplify MGA (multi-group analysis)

    • 5 files (csv, txt) with data to run 7 examples in SmartPLS 3

    Note: - DLOQ-A = new dataset (ours) - ECSI-Tenenhaus et al. [model for mediation and moderation] = available at: http://www.smartpls.com > Resources > SmartPLS Project Examples - ECSI-Sanches [dataset for MGA] = available in the software R > library(plspm) > data(satisfaction)

  13. U

    Example Investigator Collected Data for Students Learning Statistics...

    • dataverse-staging.rdmc.unc.edu
    tsv
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cyra Christina Mehta; Cyra Christina Mehta; Renee' H. Moore; Renee' H. Moore (2022). Example Investigator Collected Data for Students Learning Statistics Collaboration Skills [Dataset]. http://doi.org/10.15139/S3/JKLBZF
    Explore at:
    tsv(2825)Available download formats
    Dataset updated
    May 5, 2022
    Dataset provided by
    UNC Dataverse
    Authors
    Cyra Christina Mehta; Cyra Christina Mehta; Renee' H. Moore; Renee' H. Moore
    License

    https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.15139/S3/JKLBZFhttps://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.15139/S3/JKLBZF

    Description

    This Excel file contains example data as would be provided by an investigator to a collaborative statistician to analyze. Data are a permuted and edited version of real data provided to the authors during a statistical collaboration. The data are presented as commonly collected by investigators prior to working with a statistician, including several tabs of data in different domains (Set1, Set2, Demographics), colored cells, merged cells, cells with more than one data type, etc. as well as incomplete data and two systems of ID numbers. The file also includes a tab to link the different ID systems as well as tabs that have a "cleaned" version of the data (REVISEDSet1, REVISEDSet2) that would typically be provided after quality control identified some issues with the data that were then resolved by the investigator.

  14. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  15. Physiological signals during activities for daily life: Dataset

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Mar 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eduardo Gutierrez Maestro; Eduardo Gutierrez Maestro (2022). Physiological signals during activities for daily life: Dataset [Dataset]. http://doi.org/10.5281/zenodo.6391454
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 29, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Eduardo Gutierrez Maestro; Eduardo Gutierrez Maestro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset used in this work is composed by four participants, two men and two women. Each of them carried the wearable device Empatica E4 for a total number of 15 days. They carried the wearable during the day, and during the nights we asked participants to charge and load the data into an external memory unit. During these days, participants were asked to answer EMA questionnaires which are used to label our data. However, some participants could not complete the full experiment or some days were discarded due to data corruption. Specific demographic information, total sampling days and total number of EMA answers can be found in table I.

    Participant 1Participant 2Participant 3Participant 4
    Age67556063
    GenderMaleFemaleMaleFemale

    Final Valid Days

    9151213
    Total EMAs42576446

    Table I. Summary of participants' collected data.

    This dataset provides three different type of labels. Activeness and happiness are two of these labels. These are the answers to EMA questionnaires that participants reported during their daily activities. These labels are numbers between 0 and 4.
    These labels are used to interpolate the mental well-being state according to [1] We report in our dataset a total number of eight emotional states: (1) pleasure, (2) excitement, (3) arousal, (4) distress, (5) misery, (6) depression, (7) sleepiness, and (8) contentment.

    The data we provide in this repository consist of two type of files:

    • CSV files: These files contain physiological signals recorded during the data collection process. The first line of each CSV file defines the timestamp by which data started being sampled. The second line defines the sampling frequency used for gathering the signal. From the third line until the end of the file, one can find sampled datapoints.
    • Excel files: These files contain the labels obtained from EMA answers. It is indicated the timestamp at which the answer was registered. Labels for pleasure, activeness and mood can be found in this file.

    NOTE: Files are numbered according to each specific sampling day. For example, ACC1.csv corresponds to the signal ACC for sampling day 1. The same applied to excel files.

    Code and a tutorial of how to labelled and extract features can be found in this repository: https://github.com/edugm94/temporal-feat-emotion-prediction

    References:

    [1] . A. Russell, “A circumplex model of affect,” Journal of personality and social psychology, vol. 39, no. 6, p. 1161, 1980

  16. m

    ZCP Dataset - Distorted Sinusoidal Signal

    • data.mendeley.com
    Updated Feb 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Venkataramana Veeramsetty (2022). ZCP Dataset - Distorted Sinusoidal Signal [Dataset]. http://doi.org/10.17632/d2hs6zt8gw.1
    Explore at:
    Dataset updated
    Feb 15, 2022
    Authors
    Venkataramana Veeramsetty
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Zero-crossing point detection is necessary to establish a consistent performance in various power system applications. Machine learning models can be used to detect zero-crossing points. A dataset is required to train and test machine learning models in order to detect the zero crossing point. These datasets can be helpful to the researchers who are working on zero-crossing point detection problem using machine learning models. All these datasets are created based on MATLAB simulations. Total 28 datasets developed based on various window size like 5,10,15,20 and noise levels like 10%,20%,30%,40%,50% and 60%. Similarly, total 28 datasets developed based on various window size like 5,10,15,20 and THD levels like 10%,20%,30%,40%,50% and 60%. Also, total 36 datasets prepared based on window size like 5,10,15,20 and combination of noise (10%,30%,60%) and THD (20%,40%,60%). Each dataset consists 4 input features called slope, intercept, correlation and RMSE, and one output label with the values either 0 or 1. 0 represents non zero-crossing point class, whereas 1 represents zero-crossing point class. Datasets Information like number of samples and combinations (Window size, Noise and THD) is available in Data Details excel sheet. These datasets will be useful for faculty, students and researchers who are working on ZCP problem.

  17. m

    A Litopenaeus vannamei shrimp dataset with images and corresponding...

    • data.mendeley.com
    Updated May 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fernando Joaquín Ramírez-Coronel (2024). A Litopenaeus vannamei shrimp dataset with images and corresponding weight-size measurements for the development of artificial intelligence-based biomass estimation and organism detection algorithms [Dataset]. http://doi.org/10.17632/h8tcn6ykky.1
    Explore at:
    Dataset updated
    May 10, 2024
    Authors
    Fernando Joaquín Ramírez-Coronel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was compiled with the ultimate goal of developing non-invasive computer vision algorithms for assessing shrimp biometrics and biomass estimation. The main folder, labeled "DATASET," contains five sub-folders—DB1, DB2, DB3, DB4, and DB5—each filled with images of shrimps. Additionally, each sub-folder is accompanied by an Excel file that includes manually measured data for the shrimps pictured. The files are named respectively: DB1_INDUSTRIAL_FARM_1, DB2_INDUSTRIAL_FARM_2_C1, DB3_INDUSTRIAL_FARM_2_C2, DB4_ACADEMIC_POND_S1, and DB5_ACADEMIC_POND_S2.

    Here’s a detailed description of the contents of each sub-folder and its corresponding Excel file:

    1) DB1 includes 490 PNG images of 22 shrimps taken from one pond at an industrial farm. The associated Excel file, DB1_INDUSTRIAL_FARM_1, contains columns for: SAMPLE: Reflecting the number of individual shrimps (22 entries or rows). LENGTH (cm): Measuring from the rostrum (near the eyes) to the start of the tail. WEIGHT (g): Recorded using a scale. COMPLETE SHRIMP IMAGES: Indicates if at least one full-body image is available (1) or not (0).

    2) DB2 consists of 2002 PNG images of 58 shrimps. The Excel file, DB2_INDUSTRIAL_FARM_2_C1, includes: SAMPLE: Number of shrimps (58 entries or rows). CEPHALOTHORAX (cm): Width measured at the middle. LENGTH (cm) and WEIGHT (g): Similar measurements as DB1. COMPLETE SHRIMP IMAGES: Presence (1) or absence (0) of full-body images.

    3) DB3 contains 1719 PNG images of 50 shrimps, with its Excel file, DB3_INDUSTRIAL_FARM_2_C2, documenting: SAMPLE: Number of shrimps (50 entries or rows). Measurements and categories identical to DB2.

    4) DB4 encompasses 635 PNG images of 20 shrimps, detailed in the Excel file DB4_ACADEMIC_POND_S1. This includes: SAMPLE: Number of shrimps (20 entries or rows). CEPHALOTHORAX (cm), LENGTH (cm), WEIGHT (g), and COMPLETE SHRIMP IMAGES: Documented as in other datasets.

    5) DB5 includes 661 PNG images of 20 shrimps, with DB5_ACADEMIC_POND_S2 as the corresponding Excel file. The file mirrors the structure and measurements of DB4.

    The images for each foler are named "sm_n", where m is the number of shrimp sample and n is the number of picture of that shrimp. This carefully structured dataset provides comprehensive biometric data on shrimps, facilitating the development of algorithms aimed at non-invasive measurement techniques. This will likely be pivotal in enhancing the precision of biomass estimation in aquaculture farming, utilizing advanced statistical morphology analysis and machine learning techniques.

  18. AdventureWorks2022- Excel Format (.xlsx)

    • kaggle.com
    zip
    Updated Sep 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Titus P R (2024). AdventureWorks2022- Excel Format (.xlsx) [Dataset]. https://www.kaggle.com/datasets/tituspr/adventureworks2022-excel-format/code
    Explore at:
    zip(41930707 bytes)Available download formats
    Dataset updated
    Sep 1, 2024
    Authors
    Titus P R
    Description

    The Adventure Works dataset is a comprehensive and widely used sample database provided by Microsoft for educational and testing purposes. It's designed to represent a fictional company, Adventure Works Cycles, which is a global manufacturer of bicycles and related products. The dataset is often used for learning and practicing various data management, analysis, and reporting skills.

    Key Features of the Adventure Works Dataset:

    1. Company Overview: - Industry: Bicycle manufacturing - Operations: Global presence with various departments such as sales, production, and human resources.

    2. Data Structure: - Tables: The dataset includes a variety of tables, typically organized into categories such as: - Sales: Information about sales orders, products, and customer details. - Production: Data on manufacturing processes, inventory, and product specifications. - Human Resources: Employee details, departments, and job roles. - Purchasing: Vendor information and purchase orders.

    3. Sample Tables: - Sales.SalesOrderHeader: Contains information about sales orders, including order dates, customer IDs, and total amounts. - Sales.SalesOrderDetail: Details of individual items within each sales order, such as product ID, quantity, and unit price. - Production.Product: Information about the products being manufactured, including product names, categories, and prices. - Production.ProductCategory: Data on product categories, such as bicycles and accessories. - Person.Person: Contains personal information about employees and contacts, including names and addresses. - Purchasing.Vendor: Information on vendors that supply the company with materials.

    4. Usage: - Training and Education: It's widely used for teaching SQL, data analysis, and database management. - Testing and Demonstrations: Useful for testing software features and demonstrating data-related functionalities.

    5. Tools: - The dataset is often used with Microsoft SQL Server, but it's also compatible with other relational database systems.

    The Adventure Works dataset provides a rich and realistic environment for practicing a range of data-related tasks, from querying and reporting to data modeling and analysis.

  19. Orange dataset table

    • figshare.com
    xlsx
    Updated Mar 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rui Simões (2022). Orange dataset table [Dataset]. http://doi.org/10.6084/m9.figshare.19146410.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 4, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Rui Simões
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.

    Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.

  20. r

    Data Set on Content Excerpts from Relevant Literature for a Scoping Review...

    • researchdata.se
    Updated Jan 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leo Willem Menzemer (2023). Data Set on Content Excerpts from Relevant Literature for a Scoping Review of Evacuation Training Methods in Buildings [Dataset]. http://doi.org/10.5281/zenodo.7404656
    Explore at:
    Dataset updated
    Jan 10, 2023
    Dataset provided by
    Lund University
    Authors
    Leo Willem Menzemer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This Excel-file contains a set of data from a scoping review on methods for fire evacuation training in buildings. The review follows the PRISMA approach (Transparent Reporting of Systematic Reviews and Meta-Analyses) and systematically identifies 73 sources among scientific literature published between 1997 and 2022. The dataset contains information excerpted through a custom template on the employed training methods and technology, study information, participants, and contents of the discussion of the 73 sources of evidence that were identified in the systematic review process.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1

Raw data outputs 1-18

Related Article
Explore at:
xlsxAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
Monash University
Authors
Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

Search
Clear search
Close search
Google apps
Main menu