5 datasets found
  1. o

    LLM Question-Answer Dataset

    • opendatabay.com
    .undefined
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). LLM Question-Answer Dataset [Dataset]. https://www.opendatabay.com/data/ai-ml/0ccec8f4-3216-4689-9f6e-b4d01e271bdf
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    Datasimple
    Area covered
    Education & Learning Analytics
    Description

    LLM Dataset - Prompts and Generated Texts The dataset contains prompts and texts generated by the Large Language Models (LLMs) in 32 different languages. The prompts are short sentences or phrases for the model to generate text. The texts generated by the LLM are responses to these prompts and can vary in length and complexity.

    Researchers and developers can use this dataset to train and fine-tune their own language models for multilingual applications. The dataset provides a rich and diverse collection of outputs from the model, demonstrating its ability to generate coherent and contextually relevant text in multiple languages.

    💴 For Commercial Usage: Full version of the dataset includes 4,000,000 logs generated in 32 languages with diferent types of LLM, including Uncensored GPT, leave a request on TrainingData to buy the dataset Models used for text generation: GPT-3.5, GPT-4 Languages in the dataset: Arabic, Azerbaijani, Catalan, Chinese, Czech, Danish, German, Greek, English, Esperanto, Spanish, Persian, Finnish, French, Irish, Hindi, Hungarian, Indonesian, Italian, Japanese, Korean, Malayalam, Maratham, Netherlands, Polish, Portuguese, Portuguese (Brazil), Slovak, Swedish, Thai, Turkish, Ukrainian

    Content CSV File includes the following data:

    from_language: language the prompt is made in, model: type of the model (GPT-3.5, GPT-4 and Uncensored GPT Version), time: time when the answer was generated, text: user prompt, response: response generated by the model 💴 Buy the Dataset: This is just an example of the data. Leave a request on https://trainingdata.pro/datasets to discuss your requirements, learn about the price and buy the dataset TrainingData provides high-quality data annotation tailored to your needs keywords: dataset, machine learning, natural language processing, artificial intelligence, deep learning, neural networks, text generation, language models, openai, gpt-3, data science, predictive modeling, sentiment analysis, keyword extraction, text classification, sequence-to-sequence models, attention mechanisms, transformer architecture, word embeddings, glove embeddings, chatbots, question answering, language understanding, text mining, information retrieval, data preprocessing, feature engineering, explainable ai, model deployment

    License

    CC-BY-NC

    Original Data Source: LLM Question-Answer Dataset

  2. f

    Data Sheet 1_Large language models generating synthetic clinical datasets: a...

    • frontiersin.figshare.com
    xlsx
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin (2025). Data Sheet 1_Large language models generating synthetic clinical datasets: a feasibility and comparative analysis with real-world perioperative data.xlsx [Dataset]. http://doi.org/10.3389/frai.2025.1533508.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Frontiers
    Authors
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.

  3. f

    Data Sheet 2_Large language models generating synthetic clinical datasets: a...

    • figshare.com
    xlsx
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin (2025). Data Sheet 2_Large language models generating synthetic clinical datasets: a feasibility and comparative analysis with real-world perioperative data.xlsx [Dataset]. http://doi.org/10.3389/frai.2025.1533508.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Frontiers
    Authors
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.

  4. P

    MATH Dataset

    • paperswithcode.com
    • opendatalab.com
    • +1more
    Updated Jan 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dan Hendrycks; Collin Burns; Saurav Kadavath; Akul Arora; Steven Basart; Eric Tang; Dawn Song; Jacob Steinhardt (2025). MATH Dataset [Dataset]. https://paperswithcode.com/dataset/math
    Explore at:
    Dataset updated
    Jan 10, 2025
    Authors
    Dan Hendrycks; Collin Burns; Saurav Kadavath; Akul Arora; Steven Basart; Eric Tang; Dawn Song; Jacob Steinhardt
    Description

    MATH is a new dataset of 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations.

  5. h

    UCSP-Universal_CORE_System_Prompt_v1.0

    • huggingface.co
    Updated Sep 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    skratos115 (2024). UCSP-Universal_CORE_System_Prompt_v1.0 [Dataset]. https://huggingface.co/datasets/skratos115/UCSP-Universal_CORE_System_Prompt_v1.0
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 6, 2024
    Authors
    skratos115
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Universal Core System Prompt (UCSP) Training Dataset

    This dataset contains examples of prompts, responses, metadata, and artifacts generated based on the Universal Core System Prompt (UCSP) guidelines. It's designed to train large language models in adhering to the UCSP standards.

      Dataset Details
    

    This is a small dataset that can be used to teach an LLM how to properly use the tags outlined in the UCSP. After training make sure you apply the Universal CORE System Promt.… See the full description on the dataset page: https://huggingface.co/datasets/skratos115/UCSP-Universal_CORE_System_Prompt_v1.0.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Datasimple (2025). LLM Question-Answer Dataset [Dataset]. https://www.opendatabay.com/data/ai-ml/0ccec8f4-3216-4689-9f6e-b4d01e271bdf

LLM Question-Answer Dataset

Explore at:
331 scholarly articles cite this dataset (View in Google Scholar)
.undefinedAvailable download formats
Dataset updated
Jun 18, 2025
Dataset authored and provided by
Datasimple
Area covered
Education & Learning Analytics
Description

LLM Dataset - Prompts and Generated Texts The dataset contains prompts and texts generated by the Large Language Models (LLMs) in 32 different languages. The prompts are short sentences or phrases for the model to generate text. The texts generated by the LLM are responses to these prompts and can vary in length and complexity.

Researchers and developers can use this dataset to train and fine-tune their own language models for multilingual applications. The dataset provides a rich and diverse collection of outputs from the model, demonstrating its ability to generate coherent and contextually relevant text in multiple languages.

💴 For Commercial Usage: Full version of the dataset includes 4,000,000 logs generated in 32 languages with diferent types of LLM, including Uncensored GPT, leave a request on TrainingData to buy the dataset Models used for text generation: GPT-3.5, GPT-4 Languages in the dataset: Arabic, Azerbaijani, Catalan, Chinese, Czech, Danish, German, Greek, English, Esperanto, Spanish, Persian, Finnish, French, Irish, Hindi, Hungarian, Indonesian, Italian, Japanese, Korean, Malayalam, Maratham, Netherlands, Polish, Portuguese, Portuguese (Brazil), Slovak, Swedish, Thai, Turkish, Ukrainian

Content CSV File includes the following data:

from_language: language the prompt is made in, model: type of the model (GPT-3.5, GPT-4 and Uncensored GPT Version), time: time when the answer was generated, text: user prompt, response: response generated by the model 💴 Buy the Dataset: This is just an example of the data. Leave a request on https://trainingdata.pro/datasets to discuss your requirements, learn about the price and buy the dataset TrainingData provides high-quality data annotation tailored to your needs keywords: dataset, machine learning, natural language processing, artificial intelligence, deep learning, neural networks, text generation, language models, openai, gpt-3, data science, predictive modeling, sentiment analysis, keyword extraction, text classification, sequence-to-sequence models, attention mechanisms, transformer architecture, word embeddings, glove embeddings, chatbots, question answering, language understanding, text mining, information retrieval, data preprocessing, feature engineering, explainable ai, model deployment

License

CC-BY-NC

Original Data Source: LLM Question-Answer Dataset

Search
Clear search
Close search
Google apps
Main menu