Facebook
TwitterMy HealtheVet (www.myhealth.va.gov) is a Personal Health Record portal designed to improve the delivery of health care services to Veterans, to promote health and wellness, and to engage Veterans as more active participants in their health care. The My HealtheVet portal enables Veterans to create and maintain a web-based PHR that provides access to patient health education information and resources, a comprehensive personal health journal, and electronic services such as online VA prescription refill requests and Secure Messaging. Veterans can visit the My HealtheVet website and self-register to create an account, although registration is not required to view the professionally-sponsored health education resources, including topics of special interest to the Veteran population. Once registered, Veterans can create a customized PHR that is accessible from any computer with Internet access.
Facebook
TwitterThe purest type of electronic clinical data which is obtained at the point of care at a medical facility, hospital, clinic or practice. Often referred to as the electronic medical record (EMR), the EMR is generally not available to outside researchers. The data collected includes administrative and demographic information, diagnosis, treatment, prescription drugs, laboratory tests, physiologic monitoring data, hospitalization, patient insurance, etc.
Individual organizations such as hospitals or health systems may provide access to internal staff. Larger collaborations, such as the NIH Collaboratory Distributed Research Network provides mediated or collaborative access to clinical data repositories by eligible researchers. Additionally, the UW De-identified Clinical Data Repository (DCDR) and the Stanford Center for Clinical Informatics allow for initial cohort identification.
About Dataset:
333 scholarly articles cite this dataset.
Unique identifier: DOI
Dataset updated: 2023
Authors: Haoyang Mi
In this dataset, we have two dataset:
1- Clinical Data_Discovery_Cohort: Name of columns: Patient ID Specimen date Dead or Alive Date of Death Date of last Follow Sex Race Stage Event Time
2- Clinical_Data_Validation_Cohort Name of columns: Patient ID Survival time (days) Event Tumor size Grade Stage Age Sex Cigarette Pack per year Type Adjuvant Batch EGFR KRAS
Feel free to put your thought and analysis in a notebook for this datasets. And you can create some interesting and valuable ML projects for this case. Thanks for your attention.
Facebook
TwitterThe Agency for Healthcare Research and Quality (AHRQ) created SyH-DR from eligibility and claims files for Medicare, Medicaid, and commercial insurance plans in calendar year 2016. SyH-DR contains data from a nationally representative sample of insured individuals for the 2016 calendar year. SyH-DR uses synthetic data elements at the claim level to resemble the marginal distribution of the original data elements. SyH-DR person-level data elements are not synthetic, but identifying information is aggregated or masked.
Facebook
TwitterThis dataset was created by Aniket Pathak
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
These data are modelled using the OMOP Common Data Model v5.3.Correlated Data SourceNG tube vocabulariesGeneration RulesThe patient’s age should be between 18 and 100 at the moment of the visit.Ethnicity data is using 2021 census data in England and Wales (Census in England and Wales 2021) .Gender is equally distributed between Male and Female (50% each).Every person in the record has a link in procedure_occurrence with the concept “Checking the position of nasogastric tube using X-ray”2% of person records have a link in procedure_occurrence with the concept of “Plain chest X-ray”60% of visit_occurrence has visit concept “Inpatient Visit”, while 40% have “Emergency Room Visit”NotesVersion 0Generated by man-made rule/story generatorStructural correct, all tables linked with the relationshipWe used national ethnicity data to generate a realistic distribution (see below)2011 Race Census figure in England and WalesEthnic Group : Population(%)Asian or Asian British: Bangladeshi - 1.1Asian or Asian British: Chinese - 0.7Asian or Asian British: Indian - 3.1Asian or Asian British: Pakistani - 2.7Asian or Asian British: any other Asian background -1.6Black or African or Caribbean or Black British: African - 2.5Black or African or Caribbean or Black British: Caribbean - 1Black or African or Caribbean or Black British: other Black or African or Caribbean background - 0.5Mixed multiple ethnic groups: White and Asian - 0.8Mixed multiple ethnic groups: White and Black African - 0.4Mixed multiple ethnic groups: White and Black Caribbean - 0.9Mixed multiple ethnic groups: any other Mixed or multiple ethnic background - 0.8White: English or Welsh or Scottish or Northern Irish or British - 74.4White: Irish - 0.9White: Gypsy or Irish Traveller - 0.1White: any other White background - 6.4Other ethnic group: any other ethnic group - 1.6Other ethnic group: Arab - 0.6
Facebook
TwitterFinding diseases and treatments in medical text—because even AI needs a medical degree to understand doctor’s notes! 🩺🤖
In the contemporary healthcare ecosystem, substantial amounts of unstructured textual facts are generated day by day thru electronic health facts (EHRs), medical doctor’s notes, prescriptions, and medical literature. The potential to extract meaningful insights from this records is critical for improving patient care, advancing clinical studies, and optimizing healthcare offerings. The dataset in cognizance incorporates text-based totally scientific statistics, in which sicknesses and their corresponding remedies are embedded inside unstructured sentences.
The dataset consists of categorized textual content samples, that are classified into: -**Train Sentences**: These sentences comprise clinical records, including patient diagnoses and the treatments administered. -**Train Labels**: The corresponding annotations for the train sentences, marking diseases and remedies as named entities. -**Test Sentences**: Similar to educate sentences however used to evaluate model overall performance. -**Test Labels**: The ground reality labels for the test sentences.
A sneak from the dataset may look as follows:
_ "The patient was a 62 -year -old man with squamous epithelium, who was previously treated with success with a combination of radiation therapy and chemotherapy."
This dataset requires the use of** designated Unit Recognition (NER)** to remove and map and map diseases for related treatments 💊, causing the composition of unarmed medical data for analytical purposes.
Complex medical vocabulary: Medical texts often use vocals, which require special NLP models that are trained at the clinical company.
Implicit Relationships: Unlike based datasets, ailment-treatment relationships are inferred from context in preference to explicitly stated.
Synonyms and Abbreviations: Diseases and treatments can be cited the use of special names (e.G., ‘myocardial infarction’ vs. ‘coronary heart assault’). Handling such versions is vital.
Noise in Data: Unstructured records may additionally contain irrelevant records, typographical errors, and inconsistencies that affect extraction accuracy.
To extract sicknesses and their respective treatments from this dataset, we follow a based NLP pipeline:
Example Output:
| 🦠 Disease | 💉 Treatments | |----------|--------------------...
Facebook
TwitterThis dataset contains electronic health records used to study associations between PFAS occurrence and multimorbidity in a random sample of UNC Healthcare system patients. The dataset contains the medical record number to uniquely identify each individual as well as information on PFAS occurrence at the zip code level, the zip code of residence for each individual, chronic disease diagnoses, patient demographics, and neighborhood socioeconomic information from the 2010 US Census. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Because this data has PII from electronic health records the data can only be accessed with an approved IRB application. Project analytic code is available at L:/PRIV/EPHD_CRB/Cavin/CARES/Project Analytic Code/Cavin Ward/PFAS Chronic Disease and Multimorbidity. Format: This data is formatted as a R dataframe and associated comma-delimited flat text file. The data has the medical record number to uniquely identify each individual (which also serves as the primary key for the dataset), as well as information on the occurrence of PFAS contamination at the zip code level, socioeconomic data at the census tract level from the 2010 US Census, demographics, and the presence of chronic disease as well as multimorbidity (the presence of two or more chronic diseases). This dataset is associated with the following publication: Ward-Caviness, C., J. Moyer, A. Weaver, R. Devlin, and D. Diazsanchez. Associations between PFAS occurrence and multimorbidity as observed in an electronic health record cohort. Environmental Epidemiology. Wolters Kluwer, Alphen aan den Rijn, NETHERLANDS, 6(4): p e217, (2022).
Facebook
Twitterall-processed dataset is a concatenation of of medical-meadow-* and chatdoctor_healthcaremagic datasets The Chat Doctor term is replaced by the chatbot term in the chatdoctor_healthcaremagic dataset Similar to the literature the medical_meadow_cord19 dataset is subsampled to 50,000 samples truthful-qa-* is a benchmark dataset for evaluating the truthfulness of models in text generation, which is used in Llama 2 paper. Within this dataset, there are 55 and 16 questions related to Health and… See the full description on the dataset page: https://huggingface.co/datasets/lavita/medical-qa-datasets.
Facebook
TwitterDataset Card for "medical-keywords"
Dataset Summary
Medical transcription data scraped from mtsamples.com Medical data is extremely hard to find due to HIPAA privacy regulations. This dataset offers a solution by providing medical transcription samples. This dataset contains sample medical transcriptions for various medical specialties.
Languages
english
Citation Information
Acknowledgements Medical transcription data scraped from mtsamples.com… See the full description on the dataset page: https://huggingface.co/datasets/argilla/medical-keywords.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Huggingface Hub [source]
The MedQuad dataset provides a comprehensive source of medical questions and answers for natural language processing. With over 43,000 patient inquiries from real-life situations categorized into 31 distinct types of questions, the dataset offers an invaluable opportunity to research correlations between treatments, chronic diseases, medical protocols and more. Answers provided in this database come not only from doctors but also other healthcare professionals such as nurses and pharmacists, providing a more complete array of responses to help researchers unlock deeper insights within the realm of healthcare. This incredible trove of knowledge is just waiting to be mined - so grab your data mining equipment and get exploring!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
In order to make the most out of this dataset, start by having a look at the column names and understanding what information they offer: qtype (the type of medical question), Question (the question in itself), and Answer (the expert response). The qtype column will help you categorize the dataset according to your desired question topics. Once you have filtered down your criteria as much as possible using qtype, it is time to analyze the data. Start by asking yourself questions such as “What treatments do most patients search for?” or “Are there any correlations between chronic conditions and protocols?” Then use simple queries such as SELECT Answer FROM MedQuad WHERE qtype='Treatment' AND Question LIKE '%pain%' to get closer to answering those questions.
Once you have obtained new insights about healthcare based on the answers provided in this dynmaic data set - now it’s time for action! Use all that newfound understanding about patient needs in order develop educational materials and implement any suggested changes necessary. If more criteria are needed for querying this data set see if MedQuad offers additional columns; sometimes extra columns may be added periodically that could further enhance analysis capabilities; look out for notifications if these happen.
Finally once making an impact with the use case(s) - don't forget proper citation etiquette; give credit where credit is due!
- Developing medical diagnostic tools that use natural language processing (NLP) to better identify and diagnose health conditions in patients.
- Creating predictive models to anticipate treatment options for different medical conditions using machine learning techniques.
- Leveraging the dataset to build chatbots and virtual assistants that are able to answer a broad range of questions about healthcare with expert-level accuracy
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: train.csv | Column name | Description | |:--------------|:------------------------------------------------------| | qtype | The type of medical question. (String) | | Question | The medical question posed by the patient. (String) | | Answer | The expert response to the medical question. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Huggingface Hub.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Clinical Note Generation Dataset
Dataset Description
The Eka Structured Clinical Note Generation Dataset facilitates evaluation of medical scribe systems capable of transforming transcribed medical conversations into structured, entity-level medical records. This dataset addresses one of the most challenging aspects of healthcare AI: understanding and organising complex medical information into structured formats.
Dataset Composition and Clinical Relevance… See the full description on the dataset page: https://huggingface.co/datasets/ekacare/clinical_note_generation_dataset.
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
This French Call Center Speech Dataset for the Healthcare industry is purpose-built to accelerate the development of French speech recognition, spoken language understanding, and conversational AI systems. With 30 Hours of unscripted, real-world conversations, it delivers the linguistic and contextual depth needed to build high-performance ASR models for medical and wellness-related customer service.
Created by FutureBeeAI, this dataset empowers voice AI teams, NLP researchers, and data scientists to develop domain-specific models for hospitals, clinics, insurance providers, and telemedicine platforms.
The dataset features 30 Hours of dual-channel call center conversations between native French speakers. These recordings cover a variety of healthcare support topics, enabling the development of speech technologies that are contextually aware and linguistically rich.
The dataset spans inbound and outbound calls, capturing a broad range of healthcare-specific interactions and sentiment types (positive, neutral, negative).
These real-world interactions help build speech models that understand healthcare domain nuances and user intent.
Every audio file is accompanied by high-quality, manually created transcriptions in JSON format.
Each conversation and speaker includes detailed metadata to support fine-tuned training and analysis.
This dataset can be used across a range of healthcare and voice AI use cases:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This page shares the technical validation datasets used to evaluate a Large Dataset of Annotated Incident Reports on Medication Errors and its machine annotator. The files contain in this repository include the IFMIR gold standard dataset (CrossValid_IFMIR_522.xlsx), randomly sampled labeled incident reports from 2010 – 2020 (InternalValid_JQ2010-20_40.xlsx), randomly sampled labeled incident reports from 2021 (ExternalValid_JQ2021_20.xlsx) and Error-free reports (Error_analysis.xlsx).
To use any of these datasets, one should also cite this original data source: Medical Adverse Event Information Collection Project [Iryō jiko jōhō shūshū-tō jigyō] Japan Council for Quality Health Care; 2022 [Available from: https://www.med-safe.jp/index.html.]
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This Public Health Portfolio (Directly Funded Research - Programme and Training Awards) dataset contains NIHR directly funded research awards where the funding is allocated to an award holder or host organisation to carry out a specific piece of research or complete a training award. The NIHR also invests significantly in centres of excellence, collaborations, services and facilities to support research in England. Collectively these form NIHR infrastructure support. NIHR infrastructure supported projects are available in the Public Health Portfolio (Infrastructure Support) dataset which you can find here.NIHR directly funded research awards (Programmes and Training Awards) that were funded between January 2006 and the present extraction date are eligible for inclusion in this dataset. An agreed inclusion/exclusion criteria is used to categorise awards as public health awards (see below). Following inclusion in the dataset, public health awards are second level coded to one of the four Public Health Outcomes Framework domains. These domains are: (1) wider determinants (2) health improvement (3) health protection (4) healthcare and premature mortality.More information on the Public Health Outcomes Framework domains can be found here.This dataset is updated quarterly to include new NIHR awards categorised as public health awards. Please note that for those Public Health Research Programme projects showing an Award Budget of £0.00, the project is undertaken by an on-call team for example, PHIRST, Public Health Review Team, or Knowledge Mobilisation Team, as part of an ongoing programme of work.Inclusion CriteriaThe NIHR Public Health Overview project team worked with colleagues across NIHR public health research to define the inclusion criteria for NIHR public health research. NIHR directly funded research awards are categorised as public health if they are determined to be ‘investigations of interventions in, or studies of, populations that are anticipated to have an effect on health or on health inequity at a population level.’ This definition of public health is intentionally broad to capture the wide range of NIHR public health research across prevention, health improvement, health protection, and healthcare services (both within and outside of NHS settings). This dataset does not reflect the NIHR’s total investment in public health research. The intention is to showcase a subset of the wider NIHR public health portfolio. This dataset includes NIHR directly funded research awards categorised as public health awards. This dataset does not include public health awards or projects funded by any of the three NIHR Research Schools or NIHR Health Protection Research Units.DisclaimersUsers of this dataset should acknowledge the broad definition of public health that has been used to develop the inclusion criteria for this dataset. Please note that this dataset is currently subject to a limited data quality review. We are working to improve our data collection methodologies. Please also note that some awards may also appear in other NIHR curated datasets. Further InformationFurther information on the individual awards shown in the dataset can be found on the NIHR’s Funding & Awards website here. Further information on individual NIHR Research Programme’s decision making processes for funding health and social care research can be found here.Further information on NIHR’s investment in public health research can be found as follows:The NIHR is one of the main funders of public health research in the UK. Public health research falls within the remit of a range of NIHR Directly Funded Research (Programmes and Training Awards), and NIHR Infrastructure Support. NIHR School for Public Health here.NIHR Public Health Policy Research Unit here. NIHR Health Protection Research Units here.NIHR Public Health Research Programme Health Determinants Research Collaborations (HDRC) here.NIHR Public Health Research Programme Public Health Intervention Responsive Studies Teams (PHIRST) here.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kawasaki Disease (KD) is a rare febrile illness affecting infants and young children, potentially leading to coronary artery complications and, in severe cases, mortality if untreated. However, KD is frequently misdiagnosed as a common fever in clinical settings, and the inherent data imbalance further complicates accurate prediction when using traditional machine learning and statistical methods. This paper introduces two advanced approaches to address these challenges, enhancing prediction accuracy and generalizability. The first approach proposes a stacking model termed the Disease Classifier (DC), specifically designed to recognize minority class samples within imbalanced datasets, thereby mitigating the bias commonly observed in traditional models toward the majority class. Secondly, we introduce a combined model, the Disease Classifier with CTGAN (CTGAN-DC), which integrates DC with Conditional Tabular Generative Adversarial Network (CTGAN) technology to improve data balance and predictive performance further. Utilizing CTGAN-based oversampling techniques, this model retains the original data characteristics of KD while expanding data diversity. This effectively balances positive and negative KD samples, significantly reducing model bias toward the majority class and enhancing both predictive accuracy and generalizability. Experimental evaluations indicate substantial performance gains, with the DC and CTGAN-DC models achieving notably higher predictive accuracy than individual machine learning models. Specifically, the DC model achieves sensitivity and specificity rates of 95%, while the CTGAN-DC model achieves 95% sensitivity and 97% specificity, demonstrating superior recognition capability. Furthermore, both models exhibit strong generalizability across diverse KD datasets, particularly the CTGAN-DC model, which surpasses the JAMA model with a 3% increase in sensitivity and a 95% improvement in generalization sensitivity and specificity, effectively resolving the model collapse issue observed in the JAMA model. In sum, the proposed DC and CTGAN-DC architectures demonstrate robust generalizability across multiple KD datasets from various healthcare institutions and significantly outperform other models, including XGBoost. These findings lay a solid foundation for advancing disease prediction in the context of imbalanced medical data.
Facebook
Twitter
According to our latest research, the global synthetic health data market size reached USD 312.4 million in 2024. The market is demonstrating robust momentum, growing at a CAGR of 31.2% from 2025 to 2033. By 2033, the synthetic health data market is forecasted to achieve a value of USD 3.14 billion. This remarkable growth is primarily driven by the increasing demand for privacy-compliant, high-quality datasets to accelerate innovation across healthcare research, clinical trials, and digital health solutions.
One of the most significant growth drivers for the synthetic health data market is the intensifying focus on data privacy and regulatory compliance. Healthcare organizations are under mounting pressure to adhere to stringent regulations such as HIPAA in the United States and GDPR in Europe. These frameworks restrict the sharing and utilization of real patient data, creating a critical need for synthetic health data that mimics real-world datasets without compromising patient privacy. The ability of synthetic data to facilitate research, AI training, and analytics without the risk of identifying individuals is a key factor fueling its widespread adoption among healthcare providers, pharmaceutical companies, and research organizations globally.
Technological advancements in artificial intelligence and machine learning are further propelling the synthetic health data market forward. The sophistication of generative models, such as GANs and variational autoencoders, has enabled the creation of highly realistic and diverse synthetic datasets. These advancements not only enhance the quality and utility of synthetic health data but also expand its applicability across a wide range of use cases, from medical imaging to genomics. The integration of synthetic data into clinical workflows and drug development pipelines is accelerating time-to-market for new therapies and improving the reliability of predictive analytics, thereby contributing to better patient outcomes and operational efficiencies.
Another critical factor supporting market expansion is the growing emphasis on interoperability and data sharing across the healthcare ecosystem. Synthetic health data enables seamless collaboration between diverse stakeholders, including healthcare providers, insurers, and technology vendors, by eliminating privacy barriers. This collaborative environment fosters innovation in areas such as population health management, personalized medicine, and remote patient monitoring. Additionally, the adoption of synthetic data is helping to address the challenges of data scarcity and bias, particularly in underrepresented populations, ensuring that AI models and healthcare solutions are more equitable and effective.
From a regional perspective, North America leads the synthetic health data market, accounting for the largest revenue share in 2024. This dominance is attributed to the region’s advanced healthcare infrastructure, high adoption of digital health technologies, and strong presence of key market players. Europe is following closely, driven by rigorous data protection regulations and a rapidly growing research ecosystem. The Asia Pacific region is emerging as a high-growth market, fueled by increasing investments in healthcare technology, expanding clinical research activities, and rising awareness about the benefits of synthetic health data. Latin America and the Middle East & Africa are also witnessing steady growth, supported by government initiatives to modernize healthcare systems and improve data-driven decision-making.
The synthetic health data market is segmented by component into software and services, each playing a pivotal role in shaping the industry landscape. The software segment encompasses platforms and tools designed to generate, manage, and validate synthetic health datasets. These solutions leverage advanced machine learning algorithms and generative models to produce high-fidelity synthetic data that closely mirrors
Facebook
TwitterUnited Healthcare Transparency in Coverage Dataset
Unlock the power of healthcare pricing transparency with our comprehensive United Healthcare Transparency in Coverage dataset. This invaluable resource provides unparalleled insights into healthcare costs, enabling data-driven decision-making for insurers, employers, researchers, and policymakers.
Key Features:
Detailed Data Points:
For each of the 76,000 employers, the dataset includes: 1. In-network negotiated rates for covered items and services 2. Historical out-of-network allowed amounts and billed charges 3. Cost-sharing information for specific items and services 4. Pricing data for medical procedures and services across providers, plans, and employers
Use Cases
For Insurers: - Benchmark your rates against competitors - Optimize network design and provider contracting - Develop more competitive and cost-effective insurance products
For Employers: - Make informed decisions about health plan offerings - Negotiate better rates with insurers and providers - Implement cost-saving strategies for employee healthcare
For Researchers: - Conduct in-depth studies on healthcare pricing variations - Analyze the impact of policy changes on healthcare costs - Investigate regional differences in healthcare pricing
For Policymakers: - Develop evidence-based healthcare policies - Monitor the effectiveness of price transparency initiatives - Identify areas for potential cost-saving interventions
Data Delivery
Our flexible data delivery options ensure you receive the information you need in the most convenient format:
Why Choose Our Dataset?
Harness the power of healthcare pricing transparency to drive your business forward. Contact us today to discuss how our United Healthcare Transparency in Coverage dataset can meet your specific needs and unlock valuable insights for your organization.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A comprehensive dataset containing health statistics and trends from 2020-2023.
Facebook
TwitterThe All CMS Data Feeds dataset is an expansive resource offering access to 118 unique report feeds, providing in-depth insights into various aspects of the U.S. healthcare system. With over 25.8 billion rows of data meticulously collected since 2007, this dataset is invaluable for healthcare professionals, analysts, researchers, and businesses seeking to understand and analyze healthcare trends, performance metrics, and demographic shifts over time. The dataset is updated monthly, ensuring that users always have access to the most current and relevant data available.
Dataset Overview:
118 Report Feeds: - The dataset includes a wide array of report feeds, each providing unique insights into different dimensions of healthcare. These topics range from Medicare and Medicaid service metrics, patient demographics, provider information, financial data, and much more. The breadth of information ensures that users can find relevant data for nearly any healthcare-related analysis. - As CMS releases new report feeds, they are automatically added to this dataset, keeping it current and expanding its utility for users.
25.8 Billion Rows of Data:
Historical Data Since 2007: - The dataset spans from 2007 to the present, offering a rich historical perspective that is essential for tracking long-term trends and changes in healthcare delivery, policy impacts, and patient outcomes. This historical data is particularly valuable for conducting longitudinal studies and evaluating the effects of various healthcare interventions over time.
Monthly Updates:
Data Sourced from CMS:
Use Cases:
Market Analysis:
Healthcare Research:
Performance Tracking:
Compliance and Regulatory Reporting:
Data Quality and Reliability:
The All CMS Data Feeds dataset is designed with a strong emphasis on data quality and reliability. Each row of data is meticulously cleaned and aligned, ensuring that it is both accurate and consistent. This attention to detail makes the dataset a trusted resource for high-stakes applications, where data quality is critical.
Integration and Usability:
Ease of Integration:
Facebook
Twitter
According to our latest research, the global healthcare data anonymization services market size reached USD 1.42 billion in 2024, reflecting a robust expansion driven by increasing regulatory demands and heightened focus on patient privacy. The market is projected to grow at a CAGR of 15.8% from 2025 to 2033, with the total market value expected to reach USD 5.44 billion by 2033. This impressive growth trajectory is underpinned by the rising adoption of digital health solutions, stringent data protection laws, and the ongoing digitalization of healthcare records worldwide.
The primary growth factor fueling the healthcare data anonymization services market is the proliferation of electronic health records (EHRs) and the expanding use of big data analytics in healthcare. As healthcare providers and organizations increasingly leverage advanced analytics for improving patient outcomes, there is a corresponding surge in data generation. However, these vast datasets often contain sensitive patient information, making data anonymization essential to ensure compliance with regulations such as HIPAA, GDPR, and other regional privacy laws. The increasing frequency of data breaches and cyberattacks has further highlighted the importance of robust anonymization services, prompting healthcare organizations to prioritize investments in data privacy and security solutions. As a result, demand for both software and service-based anonymization solutions continues to rise, contributing significantly to market growth.
Another key driver for the healthcare data anonymization services market is the growing emphasis on research and clinical trials, which require the sharing and analysis of large volumes of patient data. Pharmaceutical and biotechnology companies, as well as research organizations, are increasingly collaborating across borders, necessitating the anonymization of datasets to protect patient identities and comply with international data protection standards. The adoption of cloud-based healthcare solutions has also facilitated the secure and efficient sharing of anonymized data, supporting advancements in personalized medicine and population health management. As organizations seek to balance innovation with compliance, the demand for advanced anonymization technologies that offer high accuracy and scalability is expected to accelerate further.
Technological advancements in artificial intelligence (AI) and machine learning (ML) are also shaping the future of the healthcare data anonymization services market. These technologies are enabling more sophisticated and automated anonymization processes, reducing the risk of re-identification while maintaining data utility for research and analytics. The integration of AI-driven tools into anonymization workflows is helping organizations streamline operations, minimize human error, and achieve greater compliance with evolving regulatory requirements. Additionally, the increasing availability of customizable and interoperable anonymization solutions is making it easier for healthcare organizations of all sizes to adopt and scale these services, thereby broadening the market’s reach and impact.
From a regional perspective, North America continues to dominate the healthcare data anonymization services market, accounting for the largest share in 2024. This leadership position is attributed to the presence of advanced healthcare infrastructure, widespread adoption of EHRs, and strict regulatory frameworks governing patient data privacy. Europe follows closely, driven by the enforcement of the General Data Protection Regulation (GDPR) and a strong culture of data protection. The Asia Pacific region is witnessing the fastest growth, propelled by increasing healthcare digitalization, government initiatives to modernize healthcare systems, and rising awareness of data privacy among patients and providers. Latin America and the Middle East & Africa are also experiencing steady growth, albeit from a smaller base, as healthcare organizations in these regions begin to prioritize data security and compliance.
Facebook
TwitterMy HealtheVet (www.myhealth.va.gov) is a Personal Health Record portal designed to improve the delivery of health care services to Veterans, to promote health and wellness, and to engage Veterans as more active participants in their health care. The My HealtheVet portal enables Veterans to create and maintain a web-based PHR that provides access to patient health education information and resources, a comprehensive personal health journal, and electronic services such as online VA prescription refill requests and Secure Messaging. Veterans can visit the My HealtheVet website and self-register to create an account, although registration is not required to view the professionally-sponsored health education resources, including topics of special interest to the Veteran population. Once registered, Veterans can create a customized PHR that is accessible from any computer with Internet access.