Facebook
TwitterTypically e-commerce datasets are proprietary and consequently hard to find among publicly available data. However, The UCI Machine Learning Repository has made this dataset containing actual transactions from 2010 and 2011. The dataset is maintained on their site, where it can be found by the title "Online Retail".
"This is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers."
Per the UCI Machine Learning Repository, this data was made available by Dr Daqing Chen, Director: Public Analytics group. chend '@' lsbu.ac.uk, School of Engineering, London South Bank University, London SE1 0AA, UK.
Image from stocksnap.io.
Analyses for this dataset could include time series, clustering, classification and more.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
I imported the two Olist Kaggle datasets into an SQLite database. I modified the original table names to make them shorter and easier to understand. Here's the Entity-Relationship Diagram of the resulting SQLite database:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2473556%2F23a7d4d8cd99e36e32e57303eb804fff%2Fdb-schema.png?generation=1714391550829633&alt=media" alt="Database Schema">
Data sources:
https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce
https://www.kaggle.com/datasets/olistbr/marketing-funnel-olist
I used this database as a data source for my notebook:
Facebook
TwitterSuccess.ai’s Ecommerce Market Data for South-east Asia E-commerce Contacts provides a robust and accurate dataset tailored for businesses and organizations looking to connect with professionals in the fast-growing e-commerce industry across South-east Asia. Covering roles such as e-commerce managers, digital strategists, logistics experts, and online marketplace leaders, this dataset offers verified contact details, professional insights, and actionable market data.
With access to over 170 million verified profiles globally, Success.ai ensures your outreach, marketing, and research strategies are powered by accurate, continuously updated, and AI-validated data. Backed by our Best Price Guarantee, this solution empowers you to excel in one of the world’s most dynamic e-commerce regions.
Why Choose Success.ai’s Ecommerce Market Data?
Verified Contact Data for Precision Outreach
Comprehensive Coverage of South-east Asia’s E-commerce Market
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Comprehensive Professional Profiles in E-commerce
Advanced Filters for Precision Campaigns
Regional and Market-specific Insights
AI-Driven Enrichment
Strategic Use Cases:
Marketing Campaigns and Digital Outreach
Market Research and Competitive Analysis
Partnership Development and Vendor Collaboration
Recruitment and Talent Acquisition
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
Facebook
TwitterAPISCRAPY specializes in Ecommerce data, offering a comprehensive solution for gathering Ecommerce market data, Ecommerce product data, and Ecommerce datasets. APISCRAPY is your go-to resource for making informed decisions in the Ecommerce landscape.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains a synthetic but realistic sample of e-commerce sales for an online store, covering the period from 2024 to 2025. It includes details about orders, customers, products, regions, pricing, discounts, sales, profit, and payment modes.
It is designed for data analysis, visualization, and machine learning projects. Beginners and advanced users can use this dataset to practice:
Exploratory Data Analysis (EDA)
Sales trend analysis
Profit margin and discount analysis
Customer segmentation
Predictive modeling (e.g., sales or profit prediction)
Facebook
TwitterSuccess.ai’s Ecommerce Merchant Data and B2B Contact Data for Global E-commerce Professionals provides a comprehensive and highly accurate database from over 170 million verified profiles. Specifically tailored for the e-commerce sector, this dataset features work emails, direct phone numbers, and enriched professional profiles to connect businesses with the leaders and decision-makers shaping the global e-commerce landscape. Continuously updated with advanced AI validation, this resource is ideal for enhancing marketing campaigns, sales initiatives, recruitment efforts, and market research.
Key Features of Success.ai's Global E-commerce Professional Contact Data
Global Data Coverage Gain access to an extensive database spanning key e-commerce markets worldwide. With verified profiles from 170M+ professionals, Success.ai ensures you can connect with global influencers, decision-makers, and strategists across diverse regions and industries.
AI-Driven Accuracy Harness the power of AI validation for 99% accuracy rates across emails and phone numbers. Our continuously updated dataset ensures that you reach the right professionals with reliable and actionable contact data.
Tailored for E-commerce Professionals Our data includes profiles of experts in online retail, supply chain logistics, payment systems, digital marketing, and e-commerce technology, making it a perfect fit for targeting niche segments within the e-commerce industry.
Customizable Data Delivery Choose from API integrations, custom flat files, or direct database access to seamlessly integrate this dataset into your existing systems, empowering your team with flexibility and efficiency.
Compliance-Ready Data Success.ai ensures all data is collected and processed in alignment with GDPR, CCPA, and other international compliance standards, so you can leverage this resource with confidence and ethical assurance.
Why Choose Success.ai for Global E-commerce Contact Data?
Best Price Guarantee We offer a highly competitive pricing model that ensures the best value for high-quality, actionable data.
Strategic Applications Success.ai’s B2B Contact Data supports a variety of business functions:
E-commerce Marketing Campaigns: Use verified contact information to launch targeted campaigns that reach decision-makers in the e-commerce sector. Sales and Outreach: Enhance your sales strategy with direct access to key players in global e-commerce. Talent Acquisition: Identify and engage with e-commerce professionals for roles in marketing, logistics, technology, and operations. Market Insights: Leverage enriched demographic and firmographic data to conduct in-depth market research and refine your strategies. Business Networking: Build connections with professionals and companies driving innovation in the global e-commerce ecosystem.
Enrichment API: Real-time updates to maintain the accuracy and relevance of your contact database. Lead Generation API: Maximize outreach efforts with access to key contact information, enabling up to 860,000 API calls per day.
Data Highlights 170M+ Verified Global Profiles 50M Direct Phone Numbers 700M Total Professional Profiles Worldwide 70M Verified Company Profiles
Use Cases
Success.ai is the ultimate choice for global e-commerce data solutions, delivering unmatched volume, accuracy, and flexibility:
Transform your e-commerce strategies today with Success.ai. Gain access to reliable, verified contact data for global e-commerce professionals and unlock unparalleled opportunities for growth and innovation.
No one beats us on price. Period.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
• I leveraged advanced data visualization techniques to extract valuable insights from a comprehensive dataset. By visualizing sales patterns, customer behavior, and product trends, I identified key growth opportunities and provided actionable recommendations to optimize business strategies and enhance overall performance. you can find the GitHub repo here Link to GitHub Repository.
there are exactly 6 table and 1 is a fact table and the rest of them are dimension tables: Fact Table:
payment_key:
Description: An identifier representing the payment transaction associated with the fact.
Use Case: This key links to a payment dimension table, providing details about the payment method and related information.
customer_key:
Description: An identifier representing the customer associated with the fact.
Use Case: This key links to a customer dimension table, providing details about the customer, such as name, address, and other customer-specific information.
time_key:
Description: An identifier representing the time dimension associated with the fact.
Use Case: This key links to a time dimension table, providing details about the time of the transaction, such as date, day of the week, and month.
item_key:
Description: An identifier representing the item or product associated with the fact.
Use Case: This key links to an item dimension table, providing details about the product, such as category, sub-category, and product name.
store_key:
Description: An identifier representing the store or location associated with the fact.
Use Case: This key links to a store dimension table, providing details about the store, such as location, store name, and other store-specific information.
quantity:
Description: The quantity of items sold or involved in the transaction.
Use Case: Represents the amount or number of items associated with the transaction.
unit:
Description: The unit or measurement associated with the quantity (e.g., pieces, kilograms).
Use Case: Specifies the unit of measurement for the quantity.
unit_price:
Description: The price per unit of the item.
Use Case: Represents the cost or price associated with each unit of the item.
total_price:
Description: The total price of the transaction, calculated as the product of quantity and unit price.
Use Case: Represents the overall cost or revenue generated by the transaction.
Customer Table: customer_key:
Description: An identifier representing a unique customer.
Use Case: Serves as the primary key to link with the fact table, allowing for easy and efficient retrieval of customer-specific information.
name:
Description: The name of the customer.
Use Case: Captures the personal or business name of the customer for identification and reference purposes.
contact_no:
Description: The contact number associated with the customer.
Use Case: Stores the phone number or contact details for communication or outreach purposes.
nid:
Description: The National ID (NID) or a unique identification number for the customer.
Item Table: item_key:
Description: An identifier representing a unique item or product.
Use Case: Serves as the primary key to link with the fact table, enabling retrieval of detailed information about specific items in transactions.
item_name:
Description: The name or title of the item.
Use Case: Captures the descriptive name of the item, providing a recognizable label for the product.
desc:
Description: A description of the item.
Use Case: Contains additional details about the item, such as features, specifications, or any relevant information.
unit_price:
Description: The price per unit of the item.
Use Case: Represents the cost or price associated with each unit of the item.
man_country:
Description: The country where the item is manufactured.
Use Case: Captures the origin or manufacturing location of the item.
supplier:
Description: The supplier or vendor providing the item.
Use Case: Stores the name or identifier of the supplier, facilitating tracking of item sources.
unit:
Description: The unit of measurement associated with the item (e.g., pieces, kilograms).
Store Table: store_key:
Description: An identifier representing a unique store or location.
Use Case: Serves as the primary key to link with the fact table, allowing for easy retrieval of information about transactions associated with specific stores.
division:
Description: The administrative division or region where the store is located.
Use Case: Captures the broader geographical area in which...
Facebook
TwitterUnlock the potential of Ecommerce data scraping and extraction with APISCRAPY. Dive into Amazon data and tap into the vast Ecommerce market's secrets. Stay ahead of the competition by leveraging our powerful tool for comprehensive Ecommerce data insights.
Facebook
TwitterSuccess.ai delivers unparalleled access to Retail Store Data for Asia’s retail and e-commerce sectors, encompassing subcategories such as ecommerce data, ecommerce merchant data, ecommerce market data, and company data. Whether you’re targeting emerging markets or established players, our solutions provide the tools to connect with decision-makers, analyze market trends, and drive strategic growth. With continuously updated datasets and AI-validated accuracy, Success.ai ensures your data is always relevant and reliable.
Key Features of Success.ai's Retail Store Data for Retail & E-commerce in Asia:
Extensive Business Profiles: Access detailed profiles for 70M+ companies across Asia’s retail and e-commerce sectors. Profiles include firmographic data, revenue insights, employee counts, and operational scope.
Ecommerce Data: Gain insights into online marketplaces, customer demographics, and digital transaction patterns to refine your strategies.
Ecommerce Merchant Data: Understand vendor performance, supply chain metrics, and operational details to optimize partnerships.
Ecommerce Market Data: Analyze purchasing trends, regional preferences, and market demands to identify growth opportunities.
Contact Data for Decision-Makers: Reach key stakeholders, such as CEOs, marketing executives, and procurement managers. Verified contact details include work emails, phone numbers, and business addresses.
Real-Time Accuracy: AI-powered validation ensures a 99% accuracy rate, keeping your outreach efforts efficient and impactful.
Compliance and Ethics: All data is ethically sourced and fully compliant with GDPR and other regional data protection regulations.
Why Choose Success.ai for Retail Store Data?
Best Price Guarantee: We deliver industry-leading value with the most competitive pricing for comprehensive retail store data.
Customizable Solutions: Tailor your data to meet specific needs, such as targeting particular regions, industries, or company sizes.
Scalable Access: Our data solutions are built to grow with your business, supporting small startups to large-scale enterprises.
Seamless Integration: Effortlessly incorporate our data into your existing CRM, marketing, or analytics platforms.
Comprehensive Use Cases for Retail Store Data:
Identify potential partners, distributors, and clients to expand your footprint in Asia’s dynamic retail and e-commerce markets. Use detailed profiles to assess market opportunities and risks.
Leverage ecommerce data and consumer insights to craft highly targeted campaigns. Connect directly with decision-makers for precise and effective communication.
Analyze competitors’ operations, market positioning, and consumer strategies to refine your business plans and gain a competitive edge.
Evaluate potential suppliers or vendors using ecommerce merchant data, including financial health, operational details, and contact data.
Enhance customer loyalty programs and retention strategies by leveraging ecommerce market data and purchasing trends.
APIs to Amplify Your Results:
Enrichment API: Keep your CRM and analytics platforms up-to-date with real-time data enrichment, ensuring accurate and actionable company profiles.
Lead Generation API: Maximize your outreach with verified contact data for retail and e-commerce decision-makers. Ideal for driving targeted marketing and sales efforts.
Tailored Solutions for Industry Professionals:
Retailers: Expand your supply chain, identify new markets, and connect with key partners in the e-commerce ecosystem.
E-commerce Platforms: Optimize your vendor and partner selection with verified profiles and operational insights.
Marketing Agencies: Deliver highly personalized campaigns by leveraging detailed consumer data and decision-maker contacts.
Consultants: Provide data-driven recommendations to clients with access to comprehensive company data and market trends.
What Sets Success.ai Apart?
70M+ Business Profiles: Access an extensive and detailed database of companies across Asia’s retail and e-commerce sectors.
Global Compliance: All data is sourced ethically and adheres to international data privacy standards, including GDPR.
Real-Time Updates: Ensure your data remains accurate and relevant with our continuously updated datasets.
Dedicated Support: Our team of experts is available to help you maximize the value of our data solutions.
Empower Your Business with Success.ai:
Success.ai’s Retail Store Data for the retail and e-commerce sectors in Asia provides the insights and connections needed to thrive in this competitive market. Whether you’re entering a new region, launching a targeted campaign, or analyzing market trends, our data solutions ensure measurable success.
...
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Asos
Using web scraping, we collected information on over 30,845 clothing items from the Asos website. The dataset can be applied in E-commerce analytics in the fashion industry.
💴 For Commercial Usage: To discuss your requirements, learn about the price and buy the dataset, leave a request on our website to buy the dataset
Dataset Info
For each item, we extracted:
url - link to the item on the website name - item's name size - sizes available on the… See the full description on the dataset page: https://huggingface.co/datasets/UniqueData/asos-e-commerce-dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
E-commerce and retail datasets provide valuable insights into consumer behavior, market trends, and business performance. These datasets help companies optimize pricing, enhance marketing strategies, improve inventory management, and increase sales conversions. By leveraging data-driven decision-making, businesses can stay competitive and meet evolving customer demands. Benefits and Impact: Enhanced predictive accuracy for demand forecasting and price […]
Facebook
TwitterThe Amazon Ecommerce dataset is available to be purchased alongside competing ecommerce players in each country. We license our data in granular or aggregate form (cheaper) on a weekly or monthly delivery frequency. We can go back in time several years and the panel is synced/ normalised as of today.
We can offer geolocation data as well as panel level demographics. Contact us for data sample or to speak.
All data comes from our proprietary consumer panel which we have access to our users email accounts (with consent). Unlike credit card data, email receipt data is granular so we can track what items are bought, at what frequency and amounts spent, geolocation data, and work out user overlap amongst different platforms.
Amazon e-receipt data comes in itemized format. Contact us for data dictionary and to find out our volume in each country.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The E-commerce Order Dataset provides comprehensive information related to orders, items within orders, customers, payments, and products for an e-commerce platform. This dataset is structured with multiple tables, each containing specific information about various aspects of the e-commerce operations.
Facebook
TwitterOpenWeb Ninja's Product Data API provides Product Data, Product Reviews Data, Product Offers, sourced in real-time from Google Shopping - the largest product listings aggregate on the web, listing products from all publicly available e-commerce sites (Amazon, eBay, Walmart + many others).
The API covers more than 35 billion Product Data Listings, including Product Reviews and Product Offers across the web. The API provides over 40 product data points including prices, rating and reviews insights, product details and specs, typical price ranges, and more.
OpenWeb Ninja's Product Data common use cases: - Price Optimization & Price Comparison - Market Research & Competitive Analysis - Product Research & Trend Analysis - Customer Reviews Analysis
OpenWeb Ninja's Product Data Stats & Capabilities: - 35B+ Product Listings - 40+ data points per job listing - Global aggregate - Search by keyword or GTIN/EAN
Facebook
TwitterUnlock the door to business expansion by investing in our real-time eCommerce leads list. Gain direct access to store owners and make informed decisions with data fields including Store Name, Website, Contact First Name, Contact Last Name, Email Address, Physical Address, City, State, Country, Zip Code, Phone Number, Revenue Size, Employee Size, and more on demand.
Ensure a lifetime of access for continuous growth and tailor your campaigns with accurate and reliable information, initiating targeted efforts that align with your marketing goals. Whether you're targeting specific industries or global locations, our database provides up-to-date and valuable insights to support your business journey.
• 4M+ eCommerce Companies • 40M+ Worldwide eCommerce Leads • Direct Contact Info for Shop Owners • 47+ eCommerce Platforms • 40+ Data Points • Lifetime Access • 10+ Data Segmentations • Sample Data
Facebook
TwitterSuccess.ai’s Ecommerce Store Data for the APAC E-commerce Sector provides a reliable and accurate dataset tailored for businesses aiming to connect with e-commerce professionals and organizations across the Asia-Pacific region. Covering roles and businesses involved in online retail, marketplace management, logistics, and digital commerce, this dataset includes verified business profiles, decision-maker contact details, and actionable insights.
With access to continuously updated, AI-validated data and over 700 million global profiles, Success.ai ensures your outreach, market analysis, and partnership strategies are effective and data-driven. Backed by our Best Price Guarantee, this solution helps you excel in one of the world’s fastest-growing e-commerce markets.
Why Choose Success.ai’s Ecommerce Store Data?
Verified Profiles for Precision Engagement
Comprehensive Coverage of the APAC E-commerce Sector
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Comprehensive E-commerce Business Profiles
Advanced Filters for Precision Campaigns
Regional and Sector-specific Insights
AI-Driven Enrichment
Strategic Use Cases:
Marketing Campaigns and Outreach
Partnership Development and Vendor Collaboration
Market Research and Competitive Analysis
Recruitment and Talent Acquisition
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
The Product Catalog Data provides a comprehensive overview of products across various categories. This dataset includes detailed product titles, descriptions, barcodes, category-specific attributes, weight, measurements, and imagery. It's tailored for marketplaces, eCommerce sites, and data analysts who require in-depth product information to enhance user experience, SEO, and product categorization.
Popular Attributes:
✔ Detailed product information
✔ High-quality imagery
✔ Extensive attribute coverage
✔ Ideal for UX and SEO optimization
✔ Comprehensive product categorization
Key Information:
Rich dataset with 30+ attributes per product
Pricing: Flexible subscription models
Update Frequency: Daily updates
Coverage: Global and specific markets
Historical Data: 12 Months +
Facebook
TwitterDiscover the unparalleled potential of our comprehensive eCommerce leads database, featuring essential data fields such as Store Name, Website, Contact First Name, Contact Last Name, Email Address, Physical Address, City, State, Country, Zip Code, Phone Number, Revenue Size, Employee Size, and more on demand.
With a focus on Shopify, Amazon, eBay, and other global retail stores, this database equips you with accurate information for successful marketing campaigns. Supercharge your marketing efforts with our enriched contact and company database, providing real-time, verified data insights for strategic market assessments and effective buyer engagement across digital and traditional channels.
• 4M+ eCommerce Companies • 40M+ Worldwide eCommerce Leads • Direct Contact Info for Shop Owners • 47+ eCommerce Platforms • 40+ Data Points • Lifetime Access • 10+ Data Segmentations • Sample Data"
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
The e-commerce technology market share is expected to increase by USD 10.57 billion from 2020 to 2025, and the market’s growth momentum will accelerate at a CAGR of 19.07%.
This e-commerce technology market research report provides valuable insights on the post-COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers e-commerce technology market segmentation by application (B2C and B2B) and geography (North America, APAC, Europe, South America, and MEA). The e-commerce technology market report also offers information on several market vendors, including Adobe Inc., BigCommerce Holdings Inc., commercetools GmbH, HCL Technologies Ltd., Open Text Corp., Oracle Corp., Pitney Bowes Inc., Salesforce.com Inc., SAP SE, and Shopify Inc. among others.
What will the E-Commerce Technology Market Size be During the Forecast Period?
Download Report Sample to Unlock the e-Commerce Technology Market Size for the Forecast Period and Other Important Statistics
E-Commerce Technology Market: Key Drivers, Trends, and Challenges
The increasing e-commerce sales are notably driving the e-commerce technology market growth, although factors such as growing concerns over data privacy and security may impede the market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic's impact on the e-commerce technology industry. The holistic analysis of the drivers will help in deducing end goals and refining marketing strategies to gain a competitive edge.
Key E-Commerce Technology Market Driver
One of the key factors driving the e-commerce technology market is increasing e-commerce sales. The e-commerce industry is progressing quickly, owing to various factors, such as the growing tech-savvy population, increasing Internet penetration, and the rising use of smartphones. The demand for globally manufactured products is also fueling growth by generating cross-border e-commerce sales. Furthermore, the presence of various multiple payment options, such as credit and debit cards, Internet banking, electronic wallets, and cash-on-delivery (COD), has led to a paradigm shift in the purchasing patterns of people from brick-and-mortar stores to online shopping. Also, e-commerce platforms not only enable consumers to buy goods easily as they do not have the physical barriers involved in offline stores but also help them in making better and more informed decisions, as consumers can view multiple user reviews on the website before purchasing a product. The growth of the e-commerce sector directly impacts the e-commerce technology market. All these factors have increased the demand for e-commerce software and services from end-users. Hence, the growth of the e-commerce industry will boost the growth of the global e-commerce technology market during the forecast period.
Key E-Commerce Technology Market Trend
The rising focus on developing headless CMS is another factor supporting the e-commerce technology market growth in the forecast period. The increasing number of touchpoints for customers, such as IoT devices, smartphones, and progressive web apps, is making it difficult for legacy e-commerce websites to manage demand from customers. Even though most retailers have not embraced the IoT, more customers are exploring new product information through devices, such as IoT-enabled speakers, smart voice assistance, and in-store interfaces. To resolve this issue and provide a more effective user experience, vendors are offering a headless e-commerce architecture. Headless e-commerce architecture is a back-end-only content management system (CMS). Furthermore, vendors are offering headless CMS solutions to simplify e-commerce applications and provide flexible software packaging for their clients. For instance, Magento, a subsidiary of Adobe Inc., offers GraphQL, a flexible and performant application programming interface (API), which allows users to build custom front ends, including headless storefronts, advanced web applications (PWA), and mobile apps. Such developments are expected to provide high growth opportunities for market vendors during the forecast period.
Key E-Commerce Technology Market Challenge
Growing concerns over data privacy and security will be a major challenge for the e-commerce technology market during the forecast period. Data privacy and security risks are the major barriers to the adoption of e-commerce technology. Hackers are constantly trying to search for vulnerabilities and loopholes in e-commerce infrastructure. Although e-commerce players, vendors, and end-user organizations try to adopt proactive prevention plans to counter security breaches within their systems, the rise in the number of e-commerce website hacking and ransomware attacks has resulted in financial and data loss for companies. In addition, public cloud in
Facebook
TwitterIntroducing E-Commerce Product Datasets!
Unlock the full potential of your product strategy with E-Commerce Product Datasets. Gain invaluable insights to optimize your product offerings and pricing, analyze top-selling strategies, and assess customer sentiment.
Our E-Commerce Datasets Source:
Amazon: Access accurate product data from Amazon, including categories, pricing, reviews, and more.
Walmart: Receive comprehensive product information from Walmart, covering pricing, sellers, ratings, availability, and more.
E-Commerce Product Datasets provide structured and actionable data, empowering you to understand customer needs and enhance product strategies. We deliver fresh and precise public e-commerce data, including product names, brands, prices, number of sellers, review counts, ratings, and availability.
You have the flexibility to tailor data delivery to your specific needs:
Why Choose Oxylabs E-Commerce Datasets:
Fresh and accurate data: Access clean and structured public e-commerce data collected by our leading web scraping professionals.
Time and resource savings: Let our experts handle data extraction at an affordable cost, allowing you to focus on your core business objectives.
Customizable solutions: Share your unique business needs, and our team will craft customized dataset solutions tailored to your requirements.
Legal compliance: Partner with a trusted leader in ethical data collection, endorsed by Fortune 500 companies and fully compliant with GDPR and CCPA regulations.
Pricing Options:
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the potential of your e-commerce strategy with E-Commerce Product Datasets!
Facebook
TwitterTypically e-commerce datasets are proprietary and consequently hard to find among publicly available data. However, The UCI Machine Learning Repository has made this dataset containing actual transactions from 2010 and 2011. The dataset is maintained on their site, where it can be found by the title "Online Retail".
"This is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers."
Per the UCI Machine Learning Repository, this data was made available by Dr Daqing Chen, Director: Public Analytics group. chend '@' lsbu.ac.uk, School of Engineering, London South Bank University, London SE1 0AA, UK.
Image from stocksnap.io.
Analyses for this dataset could include time series, clustering, classification and more.