58 datasets found
  1. d

    Converting analog interpretive data to digital formats for use in database...

    • datadiscoverystudio.org
    Updated Jun 6, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2008). Converting analog interpretive data to digital formats for use in database and GIS applications [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/ed9bb80881c64dc38dfc614d7d454022/html
    Explore at:
    Dataset updated
    Jun 6, 2008
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  2. A

    Pattern-based GIS for understanding content of very large Earth Science...

    • data.amerigeoss.org
    • data.wu.ac.at
    html
    Updated Jan 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2020). Pattern-based GIS for understanding content of very large Earth Science datasets [Dataset]. https://data.amerigeoss.org/dataset/pattern-based-gis-for-understanding-content-of-very-large-earth-science-datasets1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 29, 2020
    Dataset provided by
    United States
    Area covered
    Earth
    Description

    The research focus in the field of remotely sensed imagery has shifted from collection and warehousing of data ' tasks for which a mature technology already exists, to auto-extraction of information and knowledge discovery from this valuable resource ' tasks for which technology is still under active development. In particular, intelligent algorithms for analysis of very large rasters, either high resolutions images or medium resolution global datasets, that are becoming more and more prevalent, are lacking. We propose to develop the Geospatial Pattern Analysis Toolbox (GeoPAT) a computationally efficient, scalable, and robust suite of algorithms that supports GIS processes such as segmentation, unsupervised/supervised classification of segments, query and retrieval, and change detection in giga-pixel and larger rasters. At the core of the technology that underpins GeoPAT is the novel concept of pattern-based image analysis. Unlike pixel-based or object-based (OBIA) image analysis, GeoPAT partitions an image into overlapping square scenes containing 1,000'100,000 pixels and performs further processing on those scenes using pattern signature and pattern similarity ' concepts first developed in the field of Content-Based Image Retrieval. This fusion of methods from two different areas of research results in orders of magnitude performance boost in application to very large images without sacrificing quality of the output.

    GeoPAT v.1.0 already exists as the GRASS GIS add-on that has been developed and tested on medium resolution continental-scale datasets including the National Land Cover Dataset and the National Elevation Dataset. Proposed project will develop GeoPAT v.2.0 ' much improved and extended version of the present software. We estimate an overall entry TRL for GeoPAT v.1.0 to be 3-4 and the planned exit TRL for GeoPAT v.2.0 to be 5-6. Moreover, several new important functionalities will be added. Proposed improvements includes conversion of GeoPAT from being the GRASS add-on to stand-alone software capable of being integrated with other systems, full implementation of web-based interface, writing new modules to extent it applicability to high resolution images/rasters and medium resolution climate data, extension to spatio-temporal domain, enabling hierarchical search and segmentation, development of improved pattern signature and their similarity measures, parallelization of the code, implementation of divide and conquer strategy to speed up selected modules.

    The proposed technology will contribute to a wide range of Earth Science investigations and missions through enabling extraction of information from diverse types of very large datasets. Analyzing the entire dataset without the need of sub-dividing it due to software limitations offers important advantage of uniformity and consistency. We propose to demonstrate the utilization of GeoPAT technology on two specific applications. The first application is a web-based, real time, visual search engine for local physiography utilizing query-by-example on the entire, global-extent SRTM 90 m resolution dataset. User selects region where process of interest is known to occur and the search engine identifies other areas around the world with similar physiographic character and thus potential for similar process. The second application is monitoring urban areas in their entirety at the high resolution including mapping of impervious surface and identifying settlements for improved disaggregation of census data.

  3. d

    Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories,...

    • datarade.ai
    .json
    Updated Sep 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum (2024). Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories, Geographic & Location Intelligence, Regular Updates [Dataset]. https://datarade.ai/data-products/global-point-of-interest-poi-data-230m-locations-5000-c-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Sep 7, 2024
    Dataset authored and provided by
    Xverum
    Area covered
    French Polynesia, Mauritania, Andorra, Northern Mariana Islands, Costa Rica, Antarctica, Kyrgyzstan, Vietnam, Guatemala, Bahamas
    Description

    Xverum’s Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.

    With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.

    🔥 Key Features:

    Extensive POI Coverage: ✅ 230M+ Points of Interest worldwide, covering 5000 business categories. ✅ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.

    Geographic & Location Intelligence Data: ✅ Latitude & longitude coordinates for mapping and navigation applications. ✅ Geographic classification, including country, state, city, and postal code. ✅ Business status tracking – Open, temporarily closed, or permanently closed.

    Continuous Discovery & Regular Updates: ✅ New POIs continuously added through discovery processes. ✅ Regular updates ensure data accuracy, reflecting new openings and closures.

    Rich Business Insights: ✅ Detailed business attributes, including company name, category, and subcategories. ✅ Contact details, including phone number and website (if available). ✅ Consumer review insights, including rating distribution and total number of reviews (additional feature). ✅ Operating hours where available.

    Ideal for Mapping & Location Analytics: ✅ Supports geospatial analysis & GIS applications. ✅ Enhances mapping & navigation solutions with structured POI data. ✅ Provides location intelligence for site selection & business expansion strategies.

    Bulk Data Delivery (NO API): ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured format (.json) for seamless integration.

    🏆Primary Use Cases:

    Mapping & Geographic Analysis: 🔹 Power GIS platforms & navigation systems with precise POI data. 🔹 Enhance digital maps with accurate business locations & categories.

    Retail Expansion & Market Research: 🔹 Identify key business locations & competitors for market analysis. 🔹 Assess brand presence across different industries & geographies.

    Business Intelligence & Competitive Analysis: 🔹 Benchmark competitor locations & regional business density. 🔹 Analyze market trends through POI growth & closure tracking.

    Smart City & Urban Planning: 🔹 Support public infrastructure projects with accurate POI data. 🔹 Improve accessibility & zoning decisions for government & businesses.

    💡 Why Choose Xverum’s POI Data?

    • 230M+ Verified POI Records – One of the largest & most detailed location datasets available.
    • Global Coverage – POI data from 249+ countries, covering all major business sectors.
    • Regular Updates – Ensuring accurate tracking of business openings & closures.
    • Comprehensive Geographic & Business Data – Coordinates, addresses, categories, and more.
    • Bulk Dataset Delivery – S3 Bucket & cloud storage delivery for full dataset access.
    • 100% Compliant – Ethically sourced, privacy-compliant data.

    Access Xverum’s 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!

  4. Sample of Mandan, North Dakota Aerial Image Dataset

    • agdatacommons.nal.usda.gov
    zip
    Updated Nov 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Agricultural Research Service (2023). Sample of Mandan, North Dakota Aerial Image Dataset [Dataset]. http://doi.org/10.15482/USDA.ADC/1209664
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Authors
    USDA Agricultural Research Service
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    North Dakota, Mandan
    Description

    Originally produced by the Farm Security Administration, these are georeferenced aerial images from Morton County, North Dakota. Historic print images housed at the Mandan, North Dakota ARS Long-Term Agricultural Research facility were digitized, georeferenced, and processed for use in both professional and consumer level GIS applications, or in photo-editing applications. The original images were produced by the Farm Security Administration to monitor government compliance for farm land agreements. Current applications include assessing land use change over time with regard to erosion, land cover, and natural and man-made structures. Not for use in high precision applications. Resources in this dataset:Resource Title: 1938_AZY_3_89. File Name: 1938_AZY_3_89_0.zipResource Description: Contains IIQ, JPG, OVR, XML, AUX, and TIF files processed in ArcMap / ArcGIS that can be used in ArcGIS applications, or in other photo or geospatial applications. Resource Title: 1938 Mosaic Index. File Name: 1938_mosaic_index_1.zipResource Description: This is the index key for the 1938 Mandan aerial images from Morton County, ND. To find the geographic location for each uploaded 1938 image, consult this map. File titles are arranged as follows: Year_Area_Roll_Frame. The mosaic map displays Roll_Frame coordinates to correspond to these images. Contains TIF, OVR, JPG, AUX, IIQ, and XML files. Resource Title: 1938_AZY_5_113. File Name: 1938_AZY_5_113_2.zipResource Description: Contains IIQ, JPG, OVR, XML, AUX, and TIF files processed in ArcMap / ArcGIS.

  5. d

    GIS data and scripts for Colorado Legacy Mine Lands Watershed Delineation...

    • datasets.ai
    • data.usgs.gov
    • +1more
    55
    Updated Aug 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). GIS data and scripts for Colorado Legacy Mine Lands Watershed Delineation and Scoring tool (WaDeS) [Dataset]. https://datasets.ai/datasets/gis-data-and-scripts-for-colorado-legacy-mine-lands-watershed-delineation-and-scoring-tool
    Explore at:
    55Available download formats
    Dataset updated
    Aug 8, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Colorado
    Description

    This data release includes GIS datasets supporting the Colorado Legacy Mine Lands Watershed Delineation and Scoring tool (WaDeS), a web mapping application available at https://geonarrative.usgs.gov/colmlwades/. Water chemistry data were compiled from the U.S. Geological Survey (USGS) National Water Information System (NWIS), U.S. Environmental Protection Agency (EPA) STORET database, and the USGS Central Colorado Assessment Project (CCAP) (Church and others, 2009). The CCAP study area was used for this application. Samples were summarized at each monitoring station and hardness-dependent chronic and acute toxicity thresholds for aquatic life protections under Colorado Regulation No. 31 (CDPHE, 5 CCR 1002-31) for cadmium, copper, lead, and/or zinc were calculated. Samples were scored according to how metal concentrations compared with acute and chronic toxicity thresholds. The results were used in combination with remote sensing derived hydrothermal alteration (Rockwell and Bonham, 2017) and mine-related features (Horton and San Juan, 2016) to identify potential mine remediation sites within the headwaters of the central Colorado mineral belt. Headwaters were defined by watersheds delineated from a 10-meter digital elevation dataset (DEM), ranging in 5-35 square kilometers in size. Python and R scripts used to derive these products are included with this data release as documentation of the processing steps and to enable users to adapt the methods for their own applications. References Church, S.E., San Juan, C.A., Fey, D.L., Schmidt, T.S., Klein, T.L. DeWitt, E.H., Wanty, R.B., Verplanck, P.L., Mitchell, K.A., Adams, M.G., Choate, L.M., Todorov, T.I., Rockwell, B.W., McEachron, Luke, and Anthony, M.W., 2012, Geospatial database for regional environmental assessment of central Colorado: U.S. Geological Survey Data Series 614, 76 p., https://doi.org/10.3133/ds614. Colorado Department of Public Health and Environment (CDPHE), Water Quality Control Commission 5 CCR 1002-31. Regulation No. 31 The Basic Standards and Methodologies for Surface Water. Effective 12/31/2021, accessed on July 28, 2023 at https://cdphe.colorado.gov/water-quality-control-commission-regulations. Horton, J.D., and San Juan, C.A., 2022, Prospect- and mine-related features from U.S. Geological Survey 7.5- and 15-minute topographic quadrangle maps of the United States (ver. 8.0, September 2022): U.S. Geological Survey data release, https://doi.org/10.5066/F78W3CHG. Rockwell, B.W. and Bonham, L.C., 2017, Digital maps of hydrothermal alteration type, key mineral groups, and green vegetation of the western United States derived from automated analysis of ASTER satellite data: U.S. Geological Survey data release, https://doi.org/10.5066/F7CR5RK7.

  6. n

    InterAgencyFirePerimeterHistory All Years View - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). InterAgencyFirePerimeterHistory All Years View - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/interagencyfireperimeterhistory-all-years-view
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    Historical FiresLast updated on 06/17/2022OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimeters in 2021.https://nifc.maps.arcgis.com/home/item.html?id=098ebc8e561143389ca3d42be3707caaFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send email

  7. M

    GDRS Manager

    • gisdata.mn.gov
    • data.wu.ac.at
    windows_app
    Updated Dec 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2024). GDRS Manager [Dataset]. https://gisdata.mn.gov/dataset/gdrsmanager
    Explore at:
    windows_appAvailable download formats
    Dataset updated
    Dec 5, 2024
    Dataset provided by
    Natural Resources Department
    Description

    A Geospatial Data Resource Site (GDRS) is a structured collection of GIS apps and data used as the data structure that supports the Minnesota Geospatial Commons (MGC) and MNDNR Quick Layers (for ArcGIS Pro and ArcMap). The GDRS Manager application allows anyone to create their own local GDRS, either to be shared on an organization's network drive or to use offline. There is no installation for the GDRSManager. Simply download the application and double-click the executable file to run it. Current version: 1.0.0.44

    Use https://resources.gisdata.mn.gov/pub/gdrs as the source GDRS to access the full public data from the MGC. Copy everything or select which datasets you want to copy to a local GDRS destination. If you have disk space or download speed limiations, sorting the resources by size and unselecting the largest resources is a quick way to reduce the size of a the GDRS but still have access to most of the resources.

    Once you have a GDRS set up, run the application again whenever you want to update existing datasets or add additional datasets. You can even keep your data current by scheduling automatic updates to run gdrsmanager.exe through a bat file. For your reference, a template bat file gdrsmanager_console.bat is included in the application download. Just make sure to update the bat file to include the path to your copy of GDRS Manager, and schedule the bat file to run as desired.

    The application download includes a comprehensive help document, which you can also access separately here:
    gdrsmanager_quicklayers_Pro_help.pdf
    gdrsmanager_quicklayers_help.pdf (ArcMap)

  8. Race and Ethnicity 2017-2021- COUNTIES

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2023). Race and Ethnicity 2017-2021- COUNTIES [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/39ac48c2b72a458e84986aa76c380266
    Explore at:
    Dataset updated
    Mar 24, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Race and Ethnicity. This is shown by state and county boundaries. This service contains the 2017-2021 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of population that are Hispanic or Latino . To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): B02001, B03001, DP05Data downloaded from: CensusBureau's API for American Community Survey Date of API call: February 16, 2023National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  9. M

    DNR QuickLayers for ArcGIS 10

    • gisdata.mn.gov
    • data.wu.ac.at
    esri_addin
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). DNR QuickLayers for ArcGIS 10 [Dataset]. https://gisdata.mn.gov/dataset/quick-layers
    Explore at:
    esri_addinAvailable download formats
    Dataset updated
    Jul 2, 2025
    Dataset provided by
    Natural Resources Department
    Description

    The way to access Layers Quickly.

    Quick Layers is an Add-In for ArcMap 10.6+ that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 1.164

    To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers) using GDRS Manager.

    Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.

    Installation:

    After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
    1. Open ArcMap
    2. Customize -> Add-In Manager… -> Options
    3. Click add folder, and enter the location of the Quick Layers app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers
    4. After you do this, the Quick Layers toolbar will be available. To add it, go to Customize -> Toolbars and select DNR Quick Layers 10

    The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.

  10. s

    Noise Pollution Index Maps | Global Map Data | On-Demand, GIS-Ready Visuals...

    • storefront.silencio.network
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Silencio Network (2025). Noise Pollution Index Maps | Global Map Data | On-Demand, GIS-Ready Visuals for Real Estate & Smart City Applications [Dataset]. https://storefront.silencio.network/products/noise-pollution-index-maps-global-map-data-on-demand-gis-silencio-network
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Quickkonnect UG
    Authors
    Silencio Network
    Area covered
    United States, France, United Kingdom
    Description

    Globally available, ON-DEMAND noise pollution maps generated from real-world measurements (our sample dataset) and AI interpolation. Unlike any other available noise-level data sets! GIS-ready, high-resolution visuals for real estate platforms, government dashboards, and smart city applications.

  11. Large Scale International Boundaries

    • geodata.state.gov
    • s.cnmilf.com
    • +1more
    www:download:gpkg +3
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (2025). Large Scale International Boundaries [Dataset]. https://geodata.state.gov/geonetwork/srv/api/records/3bdb81a0-c1b9-439a-a0b1-85dac30c59b2
    Explore at:
    www:link-1.0-http--link, www:link-1.0-http--related, www:download:gpkg, www:download:zipAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Authors
    U.S. Department of State
    Area covered
    Description

    Overview

    The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control.

    National Geospatial Data Asset

    This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee.

    Dataset Source Details

    Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.

    Cartographic Visualization

    The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below.

    Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html

    Contact

    Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip

    Attribute Structure

    The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension

    These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE

    The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB.

    Core Attributes

    The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields.

    County Code and Country Name Fields

    “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard.

    The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user.

    Descriptive Fields

    The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes

    Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line.

    ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line

    A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively.

    The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps.

    The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line.

    Use of Core Attributes in Cartographic Visualization

    Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between:

    • International Boundaries (Rank 1);
    • Other Lines of International Separation (Rank 2); and
    • Special Lines (Rank 3).

    Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction.

    The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling.

    Use of

  12. a

    Traffic Services Administration Areas - Print App

    • egishub-phoenix.hub.arcgis.com
    • sjworkspace-essorg.hub.arcgis.com
    Updated Apr 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Phoenix (2023). Traffic Services Administration Areas - Print App [Dataset]. https://egishub-phoenix.hub.arcgis.com/datasets/traffic-services-administration-areas-print-app
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    City of Phoenix
    Description

    The Printing application for of a set (Editing/Printing) of STR-GIS developed Web-map applications that will enable the Traffic Services Investigator Area Administration staff to maintain in real-time, staff's attribute information in the STR-GIS database. In conjunction with the print applications a custom-built print template, Traffic Services Investigator Administration staff will be able to produce a PDF exhibit with any edited or new information on demand. AD GroupsSTRGR_GIS_AdministratorsSTRGR_GIS_TSInvstgtr_AdminArea_EDIT

  13. M

    DNR QuickLayers for ArcGIS Pro 3

    • gisdata.mn.gov
    esri_addin
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). DNR QuickLayers for ArcGIS Pro 3 [Dataset]. https://gisdata.mn.gov/dataset/quick-layers-pro3
    Explore at:
    esri_addinAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    Natural Resources Department
    Description

    The way to access Layers Quickly.

    Quick Layers is an Add-In for ArcGIS Pro 3 that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 3.11

    To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers for ArcGIS Pro 3) using GDRS Manager.

    Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.

    Installation:

    After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
    1. Open ArcGIS Pro
    2. Project -> Add-In Manager -> Options
    3. Click add folder, and enter the location of the Quick Layers Pro app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers_pro3
    4. After you do this, the Quick Layers ribbon will be available. To also add Quick Layers to the Quick Access Toolbar at the top, right click Quick Layers, and select Add to Quick Access Toolbar

    The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.

  14. CAL FIRE Wildfire Damage Inspection Template - GDB

    • data.ca.gov
    • data.cnra.ca.gov
    • +4more
    html
    Updated May 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2025). CAL FIRE Wildfire Damage Inspection Template - GDB [Dataset]. https://data.ca.gov/dataset/cal-fire-wildfire-damage-inspection-template-gdb
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 5, 2025
    Dataset provided by
    California Department of Forestry and Fire Protectionhttp://calfire.ca.gov/
    Authors
    CAL FIRE
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    This is the schema developed and used by the CAL FIRE Office of State Fire Marshal to assess and record structure damage on wildland fire incidents. The schema is designed to be configured in the ESRI Collector/Field Maps app for data collection during or after an incident. The user must download the database and upload to their organization for data collection. The geodatabase is configured to only show attributes that need to be collected in the field, while other attributes are to be populated post processing.

    Additional fields such as Category and Structure Type are based off of fields needed in the Incident Status Summary (ICS 209).


    Damage PercentageDescription
    1-9%Affected Damage
    10-25%Minor Damage
    26-50%Major Damage
    51-100%Destroyed
    No DamageNo Damage
  15. d

    Global Location Data | 230M+ Business & POI Locations | Geographic & Mapping...

    • datarade.ai
    .json
    Updated Sep 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum (2024). Global Location Data | 230M+ Business & POI Locations | Geographic & Mapping Insights | Bulk Delivery [Dataset]. https://datarade.ai/data-products/global-location-data-230m-business-poi-locations-geogr-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Sep 7, 2024
    Dataset authored and provided by
    Xverum
    Area covered
    United States
    Description

    Xverum’s Location Data is a highly structured dataset of 230M+ verified locations, covering businesses, landmarks, and points of interest (POI) across 5000 industry categories. With accurate geographic coordinates, business metadata, and mapping attributes, our dataset is optimized for GIS applications, real estate analysis, market research, and urban planning.

    With continuous discovery of new locations and regular updates, Xverum ensures that your location intelligence solutions have the most current data on business openings, closures, and POI movements. Delivered in bulk via S3 Bucket or cloud storage, our dataset integrates seamlessly into mapping, navigation, and geographic analysis platforms.

    🔥 Key Features:

    Comprehensive Location Coverage: ✅ 230M+ locations worldwide, spanning 5000 business categories. ✅ Includes retail stores, corporate offices, landmarks, service providers & more.

    Geographic & Mapping Data: ✅ Latitude & longitude coordinates for precise location tracking. ✅ Country, state, city, and postal code classifications. ✅ Business status tracking – Open, temporarily closed, permanently closed.

    Continuous Discovery & Regular Updates: ✅ New locations added frequently to ensure fresh data. ✅ Updated business metadata, reflecting new openings, closures & status changes.

    Detailed Business & Address Metadata: ✅ Company name, category, & subcategories for industry segmentation. ✅ Business contact details, including phone number & website (if available). ✅ Operating hours for businesses with scheduling data.

    Optimized for Mapping & Location Intelligence: ✅ Supports GIS, real estate analysis & smart city planning. ✅ Enhances navigation & mapping solutions with structured geographic data. ✅ Helps businesses optimize site selection & expansion strategies.

    Bulk Data Delivery (NO API): ✅ Delivered via S3 Bucket or cloud storage for full dataset access. ✅ Available in a structured format (.json) for easy integration.

    🏆 Primary Use Cases:

    Location Intelligence & Mapping: 🔹 Power GIS platforms & digital maps with structured geographic data. 🔹 Integrate accurate location insights into real estate, logistics & market analysis.

    Retail Expansion & Business Planning: 🔹 Identify high-traffic locations & competitors for strategic site selection. 🔹 Analyze brand distribution & presence across different industries & regions.

    Market Research & Competitive Analysis: 🔹 Track openings, closures & business density to assess industry trends. 🔹 Benchmark competitors based on location data & geographic presence.

    Smart City & Infrastructure Planning: 🔹 Optimize city development projects with accurate POI & business location data. 🔹 Support public & commercial zoning strategies with real-world business insights.

    💡 Why Choose Xverum’s Location Data? - 230M+ Verified Locations – One of the largest & most structured location datasets available. - Global Coverage – Spanning 249+ countries, with diverse business & industry data. - Regular Updates – Continuous discovery & refresh cycles ensure data accuracy. - Comprehensive Geographic & Business Metadata – Coordinates, addresses, industry categories & more. - Bulk Dataset Delivery (NO API) – Seamless access via S3 Bucket or cloud storage. - 100% Compliant – Ethically sourced & legally compliant.

    Access Xverum’s 230M+ Location Data for mapping, geographic analysis & business intelligence. Request a free sample or contact us to customize your dataset today!

  16. Data from: STEWARDS - A data delivery application for the USDA/ARS...

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +1more
    bin
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Sadler; Jean Steiner; David James; Bruce Vandenberg; Greg Wilson; Josh Obrecht; Teri Oster; John D. Ross; Jin-Song Chen; Kevin Cole; Jerry Hatfield; Dave Anderson (2025). STEWARDS - A data delivery application for the USDA/ARS Conservation Effects Assessment Project [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/STEWARDS_-_A_data_delivery_application_for_the_USDA_ARS_Conservation_Effects_Assessment_Project/24851835
    Explore at:
    binAvailable download formats
    Dataset updated
    May 6, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Authors
    John Sadler; Jean Steiner; David James; Bruce Vandenberg; Greg Wilson; Josh Obrecht; Teri Oster; John D. Ross; Jin-Song Chen; Kevin Cole; Jerry Hatfield; Dave Anderson
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    A data delivery application that provides web-based access to of soil, water, climate, land management, and geospatial data produced by Conservation Effects Assessment Project (CEAP) watershed research sites across the United States. Data access via ArcGIS Server and MS SQL Server Enhanced data searches and summary options in Tools Access to high-resolution imagery in the Map>Table of Contents Enhanced graphing options on the Get Data page Transparency sliders for individual map components in the Map>Table of Contents Resources in this dataset:Resource Title: STEWARDS - A data delivery application for the USDA/ARS Conservation Effects Assessment Project. File Name: Web Page, url: https://www.nrrig.mwa.ars.usda.gov/stewards/stewards.html

  17. Geoscape Administrative Boundaries

    • data.gov.au
    • researchdata.edu.au
    zip
    Updated May 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Industry, Science and Resources (DISR) (2025). Geoscape Administrative Boundaries [Dataset]. https://data.gov.au/data/dataset/geoscape-administrative-boundaries
    Explore at:
    zip(1897457552), zip(1844909540), zip(1051292340), zip(1069165202)Available download formats
    Dataset updated
    May 19, 2025
    Dataset provided by
    Department of Industry and Sciencehttp://www.industry.gov.au/
    Authors
    Department of Industry, Science and Resources (DISR)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please note this dataset is the most recent version of the Administrative Boundaries (AB). For previous versions of the AB please go to this url: https://data.gov.au/dataset/ds-dga-b4ad5702-ea2b-4f04-833c-d0229bfd689e/details?q=previous

    Geoscape Administrative Boundaries is Australia’s most comprehensive national collection of boundaries, including government, statistical and electoral boundaries. It is built and maintained by Geoscape Australia using authoritative government data. Further information about contributors to Administrative Boundaries is available here.

    This dataset comprises seven Geoscape products:

    • Localities
    • Local Government Areas (LGAs)
    • Wards
    • Australian Bureau of Statistics (ABS) Boundaries
    • Electoral Boundaries
    • State Boundaries and
    • Town Points

    Updated versions of Administrative Boundaries are published on a quarterly basis.

    Users have the option to download datasets with feature coordinates referencing either GDA94 or GDA2020 datums.

    Notable changes in the May 2025 release

    • Victorian Wards have seen almost half of the dataset change now reflecting the boundaries from the 2024 subdivision review. https://www.vec.vic.gov.au/electoral-boundaries/council-reviews/ subdivision-reviews.

      • There have been spatial changes (area) greater than 1 km2 to 66 wards in Victoria.
    • One new locality ‘Kenwick Island’ has been added to the local Government area ‘Mackay Regional’ in Queensland.

      • There have been spatial changes(area) greater than 1 km2 to the local government areas 'Burke Shire' and 'Mount Isa City' in Queensland.
    • There have been spatial changes(area) greater than 1 km2 to the localities ‘Nicholson’, ‘Lawn Hill’ and ‘Coral Sea’ in Queensland and ‘Calguna’, ‘Israelite Bay’ and ‘Balladonia’ in Western Australia.

    • An update to the NT Commonwealth Electoral Boundaries has been applied to reflect the redistribution of the boundaries gazetted on 4 March 2025.

    • Geoscape has become aware that the DATE_CREATED and DATE_RETIRED attributes in the commonwealth_electoral_polygon MapInfo TAB tables were incorrectly ordered and did not match the product data model. These attributes have been re-ordered to match the data model for the May 2025 release.

    IMPORTANT NOTE: correction of issues with the 22 November 2022 release

    • On 28 November 2022, the Administrative Boundaries dataset originally released on 22 November 2022 was amended and re-uploaded after Geoscape identified some issues with the original data for 'Electoral Boundaries'.
    • As a result of the error, some shapefiles were published in 3D rather than 2D, which may affect some users when importing data into GIS applications.
    • The error affected the Electoral Boundaries dataset, specifically the Commonwealth boundary data for Victoria and Western Australia, including 'All States'.
    • Only the ESRI Shapefile formats were affected (both GDA94 and GDA2020). The MapInfo TAB format was not affected.
    • Because the datasets are zipped into a single file, once the error was fixed by Geoscape all of Administrative Boundaries shapefiles had to be re-uploaded, rather than only the affected files.
    • If you downloaded either of the two Administrative Boundary ESRI Shapefiles between 22 November and 28 November 2022 and plan to use the Electoral Boundary component, you are advised to download the revised version dated 28 November 2022. Apologies for any inconvenience.

    Further information on Administrative Boundaries, including FAQs on the data, is available here or through Geoscape Australia’s network of partners. They provide a range of commercial products based on Administrative Boundaries, including software solutions, consultancy and support.

    Note: On 1 October 2020, PSMA Australia Limited began trading as Geoscape Australia.

    The Australian Government has negotiated the release of Administrative Boundaries to the whole economy under an open CCBY 4.0 licence.

    Users must only use the data in ways that are consistent with the Australian Privacy Principles issued under the Privacy Act 1988 (Cth).

    Users must also note the following attribution requirements:

    Preferred attribution for the Licensed Material:

    Administrative Boundaries © Geoscape Australia licensed by the Commonwealth of Australia under Creative Commons Attribution 4.0 International license (CC BY 4.0).

    Preferred attribution for Adapted Material:

    Incorporates or developed using Administrative Boundaries © Geoscape Australia licensed by the Commonwealth of Australia under Creative Commons Attribution 4.0 International licence (CC BY 4.0).

    What to Expect When You Download Administrative Boundaries

    Administrative Boundaries is large dataset (around 1.5GB unpacked), made up of seven themes each containing multiple layers.

    Users are advised to read the technical documentation including the product change notices and the individual product descriptions before downloading and using the product.

    Please note this dataset is the most recent version of the Administrative Boundaries (AB). For previous versions of the AB please go to this url: https://data.gov.au/dataset/ds-dga-b4ad5702-ea2b-4f04-833c-d0229bfd689e/details?q=previous

    License Information

  18. A

    Mali Qlik Sense Template-COD

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    csv, docx, kml +3
    Updated Dec 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2020). Mali Qlik Sense Template-COD [Dataset]. https://data.amerigeoss.org/nl/dataset/qlik-sense-template-cod-mli
    Explore at:
    kml(1545878), txt(123), xlsx(8572877), docx(147428), csv(114579), docx(253299), qlikview data file(96619), qlikview data file(581445), qlikview data file(1549345), kml(217908), kml(342029), kml(579341), qlikview data file(344076), qlikview data file(219953), qlikview data file(34353)Available download formats
    Dataset updated
    Dec 8, 2020
    Dataset provided by
    UN Humanitarian Data Exchange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    (Beta) Qlik Sense COD template app and its source data including the administrative hierarchy table and geographical data (KML). The KML files in this data set are optimized for Qlik Sense and are not the substitute for the original COD data sets used in the GIS applications. To see the differences, refer CAVEATS/COMMENTS in the Metadata. The data set is currently under the user acceptance testing phase.

  19. H

    Public GIS files for mapping carbonate springs

    • hydroshare.org
    • beta.hydroshare.org
    zip
    Updated Aug 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public GIS files for mapping carbonate springs [Dataset]. https://www.hydroshare.org/resource/07ebf29817dc423aae09de01741c167e
    Explore at:
    zip(5.1 MB)Available download formats
    Dataset updated
    Aug 19, 2024
    Dataset provided by
    HydroShare
    Authors
    Laura Toran; Michael Jones
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This abstract contains links to public ArcGIS maps that include locations of carbonate springs and some of their characteristics. Information for accessing and navigating through the maps are included in a PowerPoint presentation IN THE FILE UPLOAD SECTION BELOW. Three separate data sets are included in the maps:

    1. Geochemistry data from the US Water Quality Portal (WQP), which compiles geochemistry data from the USGS and other federal agencies.
    2. Discharge data from WoKaS, a world wide spring discharge data set (Olarinoye et al., 2020).
    3. Regional karst data from selected US state agencies.

    Several base maps are included in the links. The US carbonate map describes and categorizes carbonates (e.g., depth from surface, overlying geology/ice, climate). The carbonate springs map categorizes springs as being urban, specifically within 1000 ft of a road, or rural. The basis for this categorization was that the heat island effect defines urban as within a 1000 ft of a road. There are other methods for defining urban versus rural to consider. Map links and details of the information they contain are listed below.

    Map set 1: The WQP map provides three mapping options separated by the parameters available at each spring site. These maps summarize discrete water quality samples, but not data logger availability. Information at each spring provides links for where users can explore further data.

    Option 1: WQP data with urban and rural springs labeled, with highlight of springs with or without NWIS data https://www.arcgis.com/home/item.html?id=2ce914ec01f14c20b58146f5d9702d8a

    Options 2: WQP data by major ions and a few other solutes https://www.arcgis.com/home/item.html?id=5a114d2ce24c473ca07ef9625cd834b8

    Option 3:WQP data by various carbon species https://www.arcgis.com/home/item.html?id=ae406f1bdcd14f78881905c5e0915b96

    Map 2: The worldwide carbonate map in the WoKaS data set (citation below) includes a description of carbonate purity and distribution of urban and rural springs, for which discharge data are available: https://www.arcgis.com/apps/mapviewer/index.html?webmap=5ab43fdb2b784acf8bef85b61d0ebcbe.

    Reference: Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., Allocca, V., Andreo, B., Apaéstegui, J., Apolit, C., Arfib, B. and Auler, A., 2020. Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater. Scientific Data, 7(1), pp.1-9.

    Map 3: Karst and spring data from selected states: This map includes sites that members of the RCN have suggested to our group.

    https://uageos.maps.arcgis.com/apps/mapviewer/index.html?webmap=28ed22a14bb749e2b22ece82bf8a8177

    This data set is incomplete (as of October 13, 2022 it includes Florida and Missouri). We are looking for more information. You can share data links to additional data by typing them into the hydroshare page created for our group. Then new sites will periodically be added to the map: https://www.hydroshare.org/resource/0cf10e9808fa4c5b9e6a7852323e6b11/

    Acknowledgements: These maps were created by Michael Jones, University of Arkansas and Shishir Sarker, University of Kentucky with help from Laura Toran and Francesco Navarro, Temple University.

    TIPS FOR NAVIGATING THE MAPS ARE IN THE POWERPOINT DOCUMENT IN THE FILE UPLOAD SECTION BELOW.

  20. n

    Wildfire History by Age

    • prep-response-portal.napsgfoundation.org
    • hub.arcgis.com
    Updated Jul 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2022). Wildfire History by Age [Dataset]. https://prep-response-portal.napsgfoundation.org/datasets/napsg::wildfire-history-by-age/about
    Explore at:
    Dataset updated
    Jul 8, 2022
    Dataset authored and provided by
    NAPSG Foundation
    Area covered
    Description

    This is a copy of another layer - see original source: https://www.arcgis.com/home/item.html?id=e02b85c0ea784ce7bd8add7ae3d293d0OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimetersFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send emailLayers

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2008). Converting analog interpretive data to digital formats for use in database and GIS applications [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/ed9bb80881c64dc38dfc614d7d454022/html

Converting analog interpretive data to digital formats for use in database and GIS applications

ScienceBase Item Summary Page

Explore at:
Dataset updated
Jun 6, 2008
Description

Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

Search
Clear search
Close search
Google apps
Main menu