Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: none of the data sets published here contain actual data, they are for testing purposes only.
This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:
dataset_30_nodes_interactions.csv
:contains 30 rows (nodes).dataset_30_edges_interactions.csv
: contains 47 rows (edges).dataset_30
refers to the same graph.Each dataset contains the following columns:
Name of the Column | Type | Description |
UniProt ID | string | protein identification |
label | string | protein label (type of node) |
properties | string | a dictionary containing properties related to the protein. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
Relationship ID | string | relationship identification |
Source ID | string | identification of the source protein in the relationship |
Target ID | string | identification of the target protein in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_30* |
30 | 47 |
Y |
dataset_60* |
60 |
181 |
Y |
dataset_120* |
120 |
689 |
Y |
dataset_240* |
240 |
2819 |
Y |
dataset_300* |
300 |
4658 |
Y |
dataset_600* |
600 |
18004 |
Y |
dataset_1200* |
1200 |
71785 |
Y |
dataset_2400* |
2400 |
288600 |
Y |
dataset_3000* |
3000 |
449727 |
Y |
dataset_6000* |
6000 |
1799413 |
Y |
dataset_12000* |
12000 |
7199863 |
Y |
dataset_24000* |
24000 |
28792361 |
Y |
dataset_30000* |
30000 |
44991744 |
Y |
This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | node identification |
label | string | node label (type of node) |
properties | string | a dictionary containing properties related to the node. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | relationship identification |
source | string | identification of the source node in the relationship |
target | string | identification of the target node in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_dummy* | 3 | 6 | N |
dataset_dummy2* | 3 | 6 | N |
CompanyKG is a heterogeneous graph consisting of 1,169,931 nodes and 50,815,503 undirected edges, with each node representing a real-world company and each edge signifying a relationship between the connected pair of companies.
Edges: We model 15 different inter-company relations as undirected edges, each of which corresponds to a unique edge type. These edge types capture various forms of similarity between connected company pairs. Associated with each edge of a certain type, we calculate a real-numbered weight as an approximation of the similarity level of that type. It is important to note that the constructed edges do not represent an exhaustive list of all possible edges due to incomplete information. Consequently, this leads to a sparse and occasionally skewed distribution of edges for individual relation/edge types. Such characteristics pose additional challenges for downstream learning tasks. Please refer to our paper for a detailed definition of edge types and weight calculations.
Nodes: The graph includes all companies connected by edges defined previously. Each node represents a company and is associated with a descriptive text, such as "Klarna is a fintech company that provides support for direct and post-purchase payments ...". To comply with privacy and confidentiality requirements, we encoded the text into numerical embeddings using four different pre-trained text embedding models: mSBERT (multilingual Sentence BERT), ADA2, SimCSE (fine-tuned on the raw company descriptions) and PAUSE.
Evaluation Tasks. The primary goal of CompanyKG is to develop algorithms and models for quantifying the similarity between pairs of companies. In order to evaluate the effectiveness of these methods, we have carefully curated three evaluation tasks:
Background and Motivation
In the investment industry, it is often essential to identify similar companies for a variety of purposes, such as market/competitor mapping and Mergers & Acquisitions (M&A). Identifying comparable companies is a critical task, as it can inform investment decisions, help identify potential synergies, and reveal areas for growth and improvement. The accurate quantification of inter-company similarity, also referred to as company similarity quantification, is the cornerstone to successfully executing such tasks. However, company similarity quantification is often a challenging and time-consuming process, given the vast amount of data available on each company, and the complex and diversified relationships among them.
While there is no universally agreed definition of company similarity, researchers and practitioners in PE industry have adopted various criteria to measure similarity, typically reflecting the companies' operations and relationships. These criteria can embody one or more dimensions such as industry sectors, employee profiles, keywords/tags, customers' review, financial performance, co-appearance in news, and so on. Investment professionals usually begin with a limited number of companies of interest (a.k.a. seed companies) and require an algorithmic approach to expand their search to a larger list of companies for potential investment.
In recent years, transformer-based Language Models (LMs) have become the preferred method for encoding textual company descriptions into vector-space embeddings. Then companies that are similar to the seed companies can be searched in the embedding space using distance metrics like cosine similarity. The rapid advancements in Large LMs (LLMs), such as GPT-3/4 and LLaMA, have significantly enhanced the performance of general-purpose conversational models. These models, such as ChatGPT, can be employed to answer questions related to similar company discovery and quantification in a Q&A format.
However, graph is still the most natural choice for representing and learning diverse company relations due to its ability to model complex relationships between a large number of entities. By representing companies as nodes and their relationships as edges, we can form a Knowledge Graph (KG). Utilizing this KG allows us to efficiently capture and analyze the network structure of the business landscape. Moreover, KG-based approaches allow us to leverage powerful tools from network science, graph theory, and graph-based machine learning, such as Graph Neural Networks (GNNs), to extract insights and patterns to facilitate similar company analysis. While there are various company datasets (mostly commercial/proprietary and non-relational) and graph datasets available (mostly for single link/node/graph-level predictions), there is a scarcity of datasets and benchmarks that combine both to create a large-scale KG dataset expressing rich pairwise company relations.
Source Code and Tutorial:
https://github.com/llcresearch/CompanyKG2
Paper: to be published
https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/YYULL2https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/YYULL2
Reimplementation of four KG factorization methods and six negative sampling methods. Abstract Knowledge graphs are large, useful, but incomplete knowledge repositories. They encode knowledge through entities and relations which define each other through the connective structure of the graph. This has inspired methods for the joint embedding of entities and relations in continuous low-dimensional vector spaces, that can be used to induce new edges in the graph, i.e., link prediction in knowledge graphs. Learning these representations relies on contrasting positive instances with negative ones. Knowledge graphs include only positive relation instances, leaving the door open for a variety of methods for selecting negative examples. In this paper we present an empirical study on the impact of negative sampling on the learned embeddings, assessed through the task of link prediction. We use state-of-the-art knowledge graph embeddings -- \rescal , TransE, DistMult and ComplEX -- and evaluate on benchmark datasets -- FB15k and WN18. We compare well known methods for negative sampling and additionally propose embedding based sampling methods. We note a marked difference in the impact of these sampling methods on the two datasets, with the "traditional" corrupting positives method leading to best results on WN18, while embedding based methods benefiting the task on FB15k.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Uniformly random planar graph instances from 100 to 1000 vertices incremented by 100 and generating 1000 graphs for each number of vertices, i.e., 10000 graphs in total.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Graph Analytics market size will be USD 2522 million in 2024 and will expand at a compound annual growth rate (CAGR) of 34.0% from 2024 to 2031. Market Dynamics of Graph Analytics Market
Key Drivers for Graph Analytics Market
Increasing Recognition of the Advantages of Graph Databases- One of the main reasons for the Graph Analytics market is the increasing recognition of the advantages of graph databases. Unlike traditional relational databases, graph databases excel at handling complex relationships and interconnected data, making them ideal for use cases such as fraud detection, recommendation engines, and social network analysis. Businesses are leveraging these capabilities to uncover insights and patterns that were previously difficult to detect. The rise of big data and the need for real-time analytics are further driving the adoption of graph databases, as they offer enhanced performance and scalability for large-scale data sets. Additionally, advancements in artificial intelligence and machine learning are amplifying the value of graph databases, enabling more sophisticated data modeling and predictive analytics.
Growing Uptake of Big Data Tools to Drive the Graph Analytics Market's Expansion in the Years Ahead.
Key Restraints for Graph Analytics Market
Limited Awareness and Understanding pose a serious threat to the Graph Analytics industry.
The market also faces significant difficulties related to data security and privacy.
Introduction of the Graph Analytics Market
The Graph Analytics Market is rapidly expanding, driven by the growing need for advanced data analysis techniques in various sectors. Graph analytics leverages graph structures to represent and analyze relationships and dependencies, providing deeper insights than traditional data analysis methods. Key factors propelling this market include the rise of big data, the increasing adoption of artificial intelligence and machine learning, and the demand for real-time data processing. Industries such as finance, healthcare, telecommunications, and retail are major contributors, utilizing graph analytics for fraud detection, personalized recommendations, network optimization, and more. Leading vendors are continually innovating to offer scalable, efficient solutions, incorporating advanced features like graph databases and visualization tools.
Abstract: Graph Neural Networks (GNNs) have recently gained traction in transportation, bioinformatics, language and image processing, but research on their application to supply chain management remains limited. Supply chains are inherently graph-like, making them ideal for GNN methodologies, which can optimize and solve complex problems. The barriers include a lack of proper conceptual foundations, familiarity with graph applications in SCM, and real-world benchmark datasets for GNN-based supply chain research. To address this, we discuss and connect supply chains with graph structures for effective GNN application, providing detailed formulations, examples, mathematical definitions, and task guidelines. Additionally, we present a multi-perspective real-world benchmark dataset from a leading FMCG company in Bangladesh, focusing on supply chain planning. We discuss various supply chain tasks using GNNs and benchmark several state-of-the-art models on homogeneous and heterogeneous graphs across six supply chain analytics tasks. Our analysis shows that GNN-based models consistently outperform statistical ML and other deep learning models by around 10-30% in regression, 10-30% in classification and detection tasks, and 15-40% in anomaly detection tasks on designated metrics. With this work, we lay the groundwork for solving supply chain problems using GNNs, supported by conceptual discussions, methodological insights, and a comprehensive dataset.
Synthetic graph classification datasets with the task of recognizing the connectivity of same-colored nodes in 4 graphs of varying topology.
The four Color-connectivity datasets were created by taking a graph and randomly coloring half of its nodes one color, e.g., red, and the other nodes blue, such that the red nodes either form a single connected island or two disjoint islands. The binary classification task is then distinguishing between these two cases. The node colorings were sampled by running two red-coloring random walks starting from two random nodes. For the underlying graph topology we used: 1) 16x16 2D grid, 2) 32x32 2D grid, 3) Euroroad road network (Šubelj et al. 2011), and 4) Minnesota road network. We sampled a balanced set of 15,000 coloring examples for each graph, except for Minnesota network for which we generated 6,000 examples due to memory constraints. The Color-connectivity task requires combination of local and long-range graph information processing to which most existing message-passing Graph Neural Networks (GNNs) do not scale. These datasets can serve as a common-sense validation for new and more powerful GNN methods. These testbed datasets can still be improved, as the node features are minimal (only a binary color) and recognition of particular topological patterns (e.g., rings or other subgraphs) is not needed to solve the task.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
This dataset contains the data described in the paper titled "A deep neural network approach to predicting clinical outcomes of neuroblastoma patients." by Tranchevent, Azuaje and Rajapakse. More precisely, this dataset contains the topological features extracted from graphs built from publicly available expression data (see details below). This dataset does not contain the original expression data, which are available elsewhere. We thank the scientists who did generate and share these data (please see below the relevant links and publications).
Content
File names start with the name of the publicly available dataset they are built on (among "Fischer", "Maris" and "Versteeg"). This name is followed by a tag representing whether they contain raw data ("raw", which means, in this case, the raw topological features) or TF formatted data ("TF", which stands for TensorFlow). This tag is then followed by a unique identifier representing a unique configuration. The configuration file "Global_configuration.tsv" contains details about these configurations such as which topological features are present and which clinical outcome is considered.
The code associated to the same manuscript that uses these data is at https://gitlab.com/biomodlih/SingalunDeep. The procedure by which the raw data are transformed into the TensorFlow ready data is described in the paper.
File format
All files are TSV files that correspond to matrices with samples as rows and features as columns (or clinical data as columns for clinical data files). The data files contain various sets of topological features that were extracted from the sample graphs (or Patient Similarity Networks - PSN). The clinical files contain relevant clinical outcomes.
The raw data files only contain the topological data. For instance, the file "Fischer_raw_2d0000_data_tsv" contains 24 values for each sample corresponding to the 12 centralities computed for both the microarray (Fischer-M) and RNA-seq (Fischer-R) datasets. The TensorFlow ready files do not contain the sample identifiers in the first column. However, they contain two extra columns at the end. The first extra column is the sample weights (for the classifiers and because we very often have a dominant class). The second extra column is the class labels (binary), based on the clinical outcome of interest.
Dataset details
The Fischer dataset is used to train, evaluate and validate the models, so the dataset is split into train / eval / valid files, which contains respectively 249, 125 and 124 rows (samples) of the original 498 samples. In contrast, the other two datasets (Maris and Versteeg) are smaller and are only used for validation (and therefore have no training or evaluation file).
The Fischer dataset also has more data files because various configurations were tested (see manuscript). In contrast, the validation, using the Maris and Versteeg datasets is only done for a single configuration and there are therefore less files.
For Fischer, a few configurations are listed in the global configuration file but there is no corresponding raw data. This is because these items are derived from concatenations of the original raw data (see global configuration file and manuscript for details).
References
This dataset is associated with Tranchevent L., Azuaje F.. Rajapakse J.C., A deep neural network approach to predicting clinical outcomes of neuroblastoma patients.
If you use these data in your research, please do not forget to also cite the researchers who have generated the original expression datasets.
Fischer dataset:
Versteeg dataset:
Maris dataset:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Freebase is amongst the largest public cross-domain knowledge graphs. It possesses three main data modeling idiosyncrasies. It has a strong type system; its properties are purposefully represented in reverse pairs; and it uses mediator objects to represent multiary relationships. These design choices are important in modeling the real-world. But they also pose nontrivial challenges in research of embedding models for knowledge graph completion, especially when models are developed and evaluated agnostically of these idiosyncrasies. We make available several variants of the Freebase dataset by inclusion and exclusion of these data modeling idiosyncrasies. This is the first-ever publicly available full-scale Freebase dataset that has gone through proper preparation.
Dataset Details
The dataset consists of the four variants of Freebase dataset as well as related mapping/support files. For each variant, we made three kinds of files available:
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
This data collection contains test Word Usage Graphs (WUGs) for English. Find a description of the data format, code to process the data and further datasets on the WUGsite.
The data is provided for testing purposes and thus contains specific data cases, which are sometimes artificially created, sometimes picked from existing data sets. The data contains the following cases:
afternoon_nn: sampled from DWUG EN 2.0.1. 200 uses partly annotated by multiple annotators with 427 judgments. Has clear cluster structure with only one cluster, no graded change, no binary change, and medium agreement of 0.62 Krippendorff's alpha.
arm: standard textbook example for semantic proximity (see reference below). Fully connected graph with six words uses, annotated by author.
plane_nn: sampled from DWUG EN 2.0.1. 200 uses partly annotated by multiple annotators with 1152 judgments. Has clear cluster structure, high graded change, binary change, and high agreement of 0.82 Krippendorff's alpha.
target: similar to arm, but with only three repeated sentences. Fully connected graph with 8 word uses, annotated by author. Same sentence (exactly same string) is annotated with 4, different string is annotated with 1.
Please find more information in the paper referenced below.
Version: 1.2.0, 30.06.2023. Remove instances files as these should be inferred from judgments when aggregating.
Reference
Dominik Schlechtweg. 2023. Human and Computational Measurement of Lexical Semantic Change. PhD thesis. University of Stuttgart.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Уникальный идентификатор https://doi.org/10.5281/zenodo.4718440 Набор данных обновлен Dec 19, 2022 Набор данных предоставлен Zenodo Авторы Can Özturan; Can Özturan; Alper Şen; Alper Şen; Baran Kılıç; Baran Kılıç Лицензия Attribution 4.0 (CC BY 4.0) Информация о лицензии была получена автоматически Описание This dataset contains ether as well as popular ERC20 token transfer transactions extracted from the Ethereum Mainnet blockchain. Only send ether, contract function call, contract deployment transactions are present in the dataset. Miner reward (static block reward) and "uncle block inclusion reward" are added as transactions to the dataset. Transaction fee reward and "uncles reward" are not currently included in the dataset. Details of the datasets are given below: FILENAME FORMAT: The filenames have the following format: eth-tx- where For example file eth-tx-1000000-1099999.txt.bz2 contains transactions from block 1000000 to block 1099999 inclusive. The files are compressed with bzip2. They can be uncompressed using command bunzip2. TRANSACTION FORMAT: Each line in a file corresponds to a transaction. The transaction has the following format: units. ERC20 tokens transfers (transfer and transferFrom function calls in ERC20 contract) are indicated by token symbol. For example GUSD is Gemini USD stable coin. The JSON file erc20tokens.json given below contains the details of ERC20 tokens. Failed transactions are prefixed with "F-". BLOCK TIME FORMAT: The block time file has the following format: erc20tokens.json FILE: This file contains the list of popular ERC20 token contracts whose transfer/transferFrom transactions appear in the data files. ERC20 token list: USDT TRYb XAUt BNB LEO LINK HT HEDG MKR CRO VEN INO PAX INB SNX REP MOF ZRX SXP OKB XIN OMG SAI HOT DAI EURS HPT BUSD USDC SUSD HDG QCAD PLUS BTCB WBTC cWBTC renBTC sBTC imBTC pBTC IMPORTANT NOTE: Public Ethereum Mainnet blockchain data is open and can be obtained by connecting as a node on the blockchain or by using the block explorer web sites such as http://etherscan.io . The downloaders and users of this dataset accept the full responsibility of using the data in GDPR compliant manner or any other regulations. We provide the data as is and we cannot be held responsible for anything. NOTE: If you use this dataset, please do not forget to add the DOI number to the citation. If you use our dataset in your research, please also cite our paper: https://link.springer.com/article/10.1007/s10586-021-03511-0 @article{kilic2022parallel, title={Parallel Analysis of Ethereum Blockchain Transaction Data using Cluster Computing}, journal={Cluster Computing}, author={K{\i}l{\i}{\c{c}}, Baran and {"O}zturan, Can and Sen, Alper}, year={2022}, month={Jan} }
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
File descriptions:
The Reddit dataset is a graph dataset from Reddit posts made in the month of September, 2014. The node label in this case is the community, or “subreddit”, that a post belongs to. 50 large communities have been sampled to build a post-to-post graph, connecting posts if the same user comments on both. In total this dataset contains 232,965 posts with an average degree of 492. The first 20 days are used for training and the remaining days for testing (with 30% used for validation). For features, off-the-shelf 300-dimensional GloVe CommonCrawl word vectors are used.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains bitcoin transfer transactions extracted from the Bitcoin Mainnet blockchain. Details of the datasets are given below: FILENAME FORMAT: The filenames have the following format: btc-tx- where For example file btc-tx-100000-149999-aa.bz2 and the rest of the parts if any contain transactions from block 100000 to block 149999 inclusive. The files are compressed with bzip2. They can be uncompressed using command bunzip2. TRANSACTION FORMAT: Each line in a file corresponds to a transaction. The transaction has the following format: BLOCK TIME FORMAT: The block time file has the following format: IMPORTANT NOTE: Public Bitcoin Mainnet blockchain data is open and can be obtained by connecting as a node on the blockchain or by using the block explorer web sites such as https://btcscan.org . The downloaders and users of this dataset accept the full responsibility of using the data in GDPR compliant manner or any other regulations. We provide the data as is and we cannot be held responsible for anything. NOTE: If you use this dataset, please do not forget to add the DOI number to the citation. If you use our dataset in your research, please also cite our paper: https://link.springer.com/chapter/10.1007/978-3-030-94590-9_14 @incollection{kilicc2022analyzing, title={Analyzing Large-Scale Blockchain Transaction Graphs for Fraudulent Activities}, author={K{\i}l{\i}{\c{c}}, Baran and {"O}zturan, Can and {\c{S}}en, Alper}, booktitle={Big Data and Artificial Intelligence in Digital Finance}, pages={253--267}, year={2022}, publisher={Springer, Cham} }
Random sampling of graph partitions under constraints has become a popular tool for evaluating legislative redistricting plans. Analysts detect partisan gerrymandering by comparing a proposed redistricting plan with an ensemble of sampled alternative plans. For successful application, sampling methods must scale to maps with a moderate or large number of districts, incorporate realistic legal constraints, and accurately and efficiently sample from a selected target distribution. Unfortunately, most existing methods struggle in at least one of these areas. We present a new Sequential Monte Carlo (SMC) algorithm that generates a sample of redistricting plans converging to a realistic target distribution. Because it draws many plans in parallel, the SMC algorithm can efficiently explore the relevant space of redistricting plans better than the existing Markov chain Monte Carlo (MCMC) algorithms that generate plans sequentially. Our algorithm can simultaneously incorporate several constraints commonly imposed in real-world redistricting problems, including equal population, compactness, and preservation of administrative boundaries. We validate the accuracy of the proposed algorithm by using a small map where all redistricting plans can be enumerated. We then apply the SMC algorithm to evaluate the partisan implications of several maps submitted by relevant parties in a recent high-profile redistricting case in the state of Pennsylvania. We find that the proposed algorithm converges faster and with fewer samples than a comparable MCMC algorithm. Open-source software is available for implementing the proposed methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Software Heritage is the largest existing public archive of software source
code and accompanying development history: it currently spans more than five
billion unique source code files and one billion unique commits, coming from
more than 80 million software projects.
This is the Software Heritage graph dataset: a fully-deduplicated
Merkle DAG representation of the Software Heritage archive. The dataset links
together file content identifiers, source code directories, Version Control
System (VCS) commits tracking evolution over time, up to the full states of VCS
repositories as observed by Software Heritage during periodic crawls. The
dataset’s contents come from major development forges (including GitHub and
GitLab), FOSS distributions (e.g., Debian), and language-specific package
managers (e.g., PyPI). Crawling information is also included, providing
timestamps about when and where all archived source code artifacts have been
observed in the wild.
The Software Heritage graph dataset is available in multiple formats, including
downloadable CSV dumps and Apache Parquet files for local use, as well as a
public instance on Amazon Athena interactive query service for ready-to-use
powerful analytical processing.
By accessing the dataset, you agree with the Software Heritage "https://www.softwareheritage.org/legal/users-ethical-charter/">Ethical Charter
for using the archive data, and the terms of use for bulk access.
If you use this dataset for research purposes, please cite the following paper:
You can also refer to the above paper for more information the dataset and sample queries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Python scripts were developed to analyze and visualize data encoded in the provided .txt files. MATLAB scripts generate the raw time series data. Two examples of simulated results are provided Graphics Interchange Format files. For more details, two READ ME files are included:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
*** Fake News on Twitter ***
These 5 datasets are the results of an empirical study on the spreading process of newly fake news on Twitter. Particularly, we have focused on those fake news which have given rise to a truth spreading simultaneously against them. The story of each fake news is as follow:
1- FN1: A Muslim waitress refused to seat a church group at a restaurant, claiming "religious freedom" allowed her to do so.
2- FN2: Actor Denzel Washington said electing President Trump saved the U.S. from becoming an "Orwellian police state."
3- FN3: Joy Behar of "The View" sent a crass tweet about a fatal fire in Trump Tower.
4- FN4: The animated children's program 'VeggieTales' introduced a cannabis character in August 2018.
5- FN5: In September 2018, the University of Alabama football program ended its uniform contract with Nike, in response to Nike's endorsement deal with Colin Kaepernick.
The data collection has been done in two stages that each provided a new dataset: 1- attaining Dataset of Diffusion (DD) that includes information of fake news/truth tweets and retweets 2- Query of neighbors for spreaders of tweets that provides us with Dataset of Graph (DG).
DD
DD for each fake news story is an excel file, named FNx_DD where x is the number of fake news, and has the following structure:
The structure of excel files for each dataset is as follow:
DG
DG for each fake news contains two files:
Because in the graph file, the label of each node is the number of its entrance in the graph. For example if node with user ID 12345637 be the first node which has been entered into the graph file then its label in the graph is 0 and its real ID (12345637) would be at the row number 1 (because the row number 0 belongs to column labels) in the jsonl file and so on other node IDs would be at the next rows of the file (each row corresponds to 1 user id). Therefore, if we want to know for example what the user id of node 200 (labeled 200 in the graph) is, then in jsonl file we should look at row number 202.
The user IDs of spreaders in DG (those who have had a post in DD) would be available in DD to get extra information about them and their tweet/retweet. The other user IDs in DG are the neighbors of these spreaders and might not exist in DD.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Graphs are sampled from the well-known Erdős-Rënyi random graphs distribution. The sample consist of graph instances for 100 vertices, generating in total 10000 graphs. For each number of vertices, the average degree is varied from 3 to 6.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the The Yelp Collaborative Knowledge Graph (YCKG) - a transformation of the Yelp Open Dataset into RDF format using Y2KG.
Paper Abstract
The Yelp Open Dataset (YOD) contains data about businesses, reviews, and users from the Yelp website and is available for research purposes. This dataset has been widely used to develop and test Recommender Systems (RS), especially those using Knowledge Graphs (KGs), e.g., integrating taxonomies, product categories, business locations, and social network information. Unfortunately, researchers applied naive or wrong mappings while converting YOD in KGs, consequently obtaining unrealistic results. Among the various issues, the conversion processes usually do not follow state-of-the-art methodologies, fail to properly link to other KGs and reuse existing vocabularies. In this work, we overcome these issues by introducing Y2KG, a utility to convert the Yelp dataset into a KG. Y2KG consists of two components. The first is a dataset including (1) a vocabulary that extends Schema.org with properties to describe the concepts in YOD and (2) mappings between the Yelp entities and Wikidata. The second component is a set of scripts to transform YOD in RDF and obtain the Yelp Collaborative Knowledge Graph (YCKG). The design of Y2KG was driven by 16 core competency questions. YCKG includes 150k businesses and 16.9M reviews from 1.9M distinct real users, resulting in over 244 million triples (with 144 distinct predicates) for about 72 million resources, with an average in-degree and out-degree of 3.3 and 12.2, respectively.
Links
Latest GitHub release: https://github.com/MadsCorfixen/The-Yelp-Collaborative-Knowledge-Graph/releases/latest
PURL domain: https://purl.archive.org/domain/yckg
Files
Graph Data Triple Files
One sample file for each of the Yelp domains (Businesses, Users, Reviews, Tips and Checkins), each containing 20 entities.
yelp_schema_mappings.nt.gz containing the mappings from Yelp categories to Schema things.
schema_hierarchy.nt.gz containing the full hierarchy of the mapped Schema things.
yelp_wiki_mappings.nt.gz containing the mappings from Yelp categories to Wikidata entities.
wikidata_location_mappings.nt.gz containing the mappings from Yelp locations to Wikidata entities.
Graph Metadata Triple Files
yelp_categories.ttl contains metadata for all Yelp categories.
yelp_entities.ttl contains metadata regarding the dataset
yelp_vocabulary.ttl contains metadata on the created Yelp vocabulary and properties.
Utility Files
yelp_category_schema_mappings.csv. This file contains the 310 mappings from Yelp categories to Schema types. These mappings have been manually verified to be correct.
yelp_predicate_schema_mappings.csv. This file contains the 14 mappings from Yelp attributes to Schema properties. These mappings are manually found.
ground_truth_yelp_category_schema_mappings.csv. This file contains the ground truth, based on 200 manually verified mappings from Yelp categories to Schema things. The ground truth mappings were used to calculate precision and recall for the semantic mappings.
manually_split_categories.csv. This file contains all Yelp categories containing either a & or /, and their manually split versions. The split versions have been used in the semantic mappings to Schema things.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: none of the data sets published here contain actual data, they are for testing purposes only.
This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:
dataset_30_nodes_interactions.csv
:contains 30 rows (nodes).dataset_30_edges_interactions.csv
: contains 47 rows (edges).dataset_30
refers to the same graph.Each dataset contains the following columns:
Name of the Column | Type | Description |
UniProt ID | string | protein identification |
label | string | protein label (type of node) |
properties | string | a dictionary containing properties related to the protein. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
Relationship ID | string | relationship identification |
Source ID | string | identification of the source protein in the relationship |
Target ID | string | identification of the target protein in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_30* |
30 | 47 |
Y |
dataset_60* |
60 |
181 |
Y |
dataset_120* |
120 |
689 |
Y |
dataset_240* |
240 |
2819 |
Y |
dataset_300* |
300 |
4658 |
Y |
dataset_600* |
600 |
18004 |
Y |
dataset_1200* |
1200 |
71785 |
Y |
dataset_2400* |
2400 |
288600 |
Y |
dataset_3000* |
3000 |
449727 |
Y |
dataset_6000* |
6000 |
1799413 |
Y |
dataset_12000* |
12000 |
7199863 |
Y |
dataset_24000* |
24000 |
28792361 |
Y |
dataset_30000* |
30000 |
44991744 |
Y |
This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | node identification |
label | string | node label (type of node) |
properties | string | a dictionary containing properties related to the node. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | relationship identification |
source | string | identification of the source node in the relationship |
target | string | identification of the target node in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_dummy* | 3 | 6 | N |
dataset_dummy2* | 3 | 6 | N |