29 datasets found
  1. SQLite Sakila Sample Database

    • kaggle.com
    zip
    Updated Mar 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atanas Kanev (2021). SQLite Sakila Sample Database [Dataset]. https://www.kaggle.com/datasets/atanaskanev/sqlite-sakila-sample-database/code
    Explore at:
    zip(4495190 bytes)Available download formats
    Dataset updated
    Mar 14, 2021
    Authors
    Atanas Kanev
    Description

    SQLite Sakila Sample Database

    Database Description

    The Sakila sample database is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, customer, rental, payment and inventory among others. The Sakila sample database is intended to provide a standard schema that can be used for examples in books, tutorials, articles, samples, and so forth. Detailed information about the database can be found on the MySQL website: https://dev.mysql.com/doc/sakila/en/

    Sakila for SQLite is a part of the sakila-sample-database-ports project intended to provide ported versions of the original MySQL database for other database systems, including:

    • Oracle
    • SQL Server
    • SQLIte
    • Interbase/Firebird
    • Microsoft Access

    Sakila for SQLite is a port of the Sakila example database available for MySQL, which was originally developed by Mike Hillyer of the MySQL AB documentation team. This project is designed to help database administrators to decide which database to use for development of new products The user can run the same SQL against different kind of databases and compare the performance

    License: BSD Copyright DB Software Laboratory http://www.etl-tools.com

    Note: Part of the insert scripts were generated by Advanced ETL Processor http://www.etl-tools.com/etl-tools/advanced-etl-processor-enterprise/overview.html

    Information about the project and the downloadable files can be found at: https://code.google.com/archive/p/sakila-sample-database-ports/

    Other versions and developments of the project can be found at: https://github.com/ivanceras/sakila/tree/master/sqlite-sakila-db

    https://github.com/jOOQ/jOOQ/tree/main/jOOQ-examples/Sakila

    Direct access to the MySQL Sakila database, which does not require installation of MySQL (queries can be typed directly in the browser), is provided on the phpMyAdmin demo version website: https://demo.phpmyadmin.net/master-config/

    Files Description

    The files in the sqlite-sakila-db folder are the script files which can be used to generate the SQLite version of the database. For convenience, the script files have already been run in cmd to generate the sqlite-sakila.db file, as follows:

    sqlite> .open sqlite-sakila.db # creates the .db file sqlite> .read sqlite-sakila-schema.sql # creates the database schema sqlite> .read sqlite-sakila-insert-data.sql # inserts the data

    Therefore, the sqlite-sakila.db file can be directly loaded into SQLite3 and queries can be directly executed. You can refer to my notebook for an overview of the database and a demonstration of SQL queries. Note: Data about the film_text table is not provided in the script files, thus the film_text table is empty. Instead the film_id, title and description fields are included in the film table. Moreover, the Sakila Sample Database has many versions, so an Entity Relationship Diagram (ERD) is provided to describe this specific version. You are advised to refer to the ERD to familiarise yourself with the structure of the database.

  2. Bike Store Relational Database | SQL

    • kaggle.com
    zip
    Updated Aug 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dillon Myrick (2023). Bike Store Relational Database | SQL [Dataset]. https://www.kaggle.com/datasets/dillonmyrick/bike-store-sample-database
    Explore at:
    zip(94412 bytes)Available download formats
    Dataset updated
    Aug 21, 2023
    Authors
    Dillon Myrick
    Description

    This is the sample database from sqlservertutorial.net. This is a great dataset for learning SQL and practicing querying relational databases.

    Database Diagram:

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4146319%2Fc5838eb006bab3938ad94de02f58c6c1%2FSQL-Server-Sample-Database.png?generation=1692609884383007&alt=media" alt="">

    Terms of Use

    The sample database is copyrighted and cannot be used for commercial purposes. For example, it cannot be used for the following but is not limited to the purposes: - Selling - Including in paid courses

  3. classicmodels

    • kaggle.com
    zip
    Updated Dec 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marta Tavares (2022). classicmodels [Dataset]. https://www.kaggle.com/datasets/martatavares/classicmodels
    Explore at:
    zip(72431 bytes)Available download formats
    Dataset updated
    Dec 10, 2022
    Authors
    Marta Tavares
    Description

    MySQL Classicmodels sample database

    The MySQL sample database schema consists of the following tables:

    • Customers: stores customer’s data.
    • Products: stores a list of scale model cars.
    • ProductLines: stores a list of product line categories.
    • Orders: stores sales orders placed by customers.
    • OrderDetails: stores sales order line items for each sales order.
    • Payments: stores payments made by customers based on their accounts.
    • Employees: stores all employee information as well as the organization structure such as who reports to whom.
    • Offices: stores sales office data.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F8652778%2Fefc56365be54c0e2591a1aefa5041f36%2FMySQL-Sample-Database-Schema.png?generation=1670498341027618&alt=media" alt="">

  4. Employees

    • kaggle.com
    zip
    Updated Nov 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sudhir Singh (2021). Employees [Dataset]. https://www.kaggle.com/datasets/crepantherx/employees
    Explore at:
    zip(31992550 bytes)Available download formats
    Dataset updated
    Nov 12, 2021
    Authors
    Sudhir Singh
    Description

    Dataset

    This dataset was created by Sudhir Singh

    Released under Data files © Original Authors

    Contents

  5. Z

    FooDrugs database: A database with molecular and text information about food...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Garranzo, Marco; Piette Gómez, Óscar; Lacruz Pleguezuelos, Blanca; Pérez, David; Laguna Lobo, Teresa; Carrillo de Santa Pau, Enrique (2023). FooDrugs database: A database with molecular and text information about food - drug interactions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6638469
    Explore at:
    Dataset updated
    Jul 28, 2023
    Dataset provided by
    IMDEA Food Institute
    Authors
    Garranzo, Marco; Piette Gómez, Óscar; Lacruz Pleguezuelos, Blanca; Pérez, David; Laguna Lobo, Teresa; Carrillo de Santa Pau, Enrique
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    FooDrugs database is a development done by the Computational Biology Group at IMDEA Food Institute (Madrid, Spain), in the context of the Food Nutrition Security Cloud (FNS-Cloud) project. Food Nutrition Security Cloud (FNS-Cloud) has received funding from the European Union's Horizon 2020 Research and Innovation programme (H2020-EU.3.2.2.3. – A sustainable and competitive agri-food industry) under Grant Agreement No. 863059 – www.fns-cloud.eu (See more details about FNS-Cloud below)

    FooDrugs stores information extracted from transcriptomics and text documents for foo-drug interactiosn and it is part of a demonstrator to be done in the FNS-Cloud project. The database was built using MySQL, an open source relational database management system. FooDrugs host information for a total of 161 transcriptomics GEO series with 585 conditions for food or bioactive compounds. Each condition is defined as a food/biocomponent per time point, per concentration, per cell line, primary culture or biopsy per study. FooDrugs includes information about a bipartite network with 510 nodes and their similarity scores (tau score; https://clue.io/connectopedia/connectivity_scores) related with possible drug interactions with drugs assayed in conectivity map (https://www.broadinstitute.org/connectivity-map-cmap). The information is stored in eight tables:

    Table “study” : This table contains basic information about study identifiers from GEO, pubmed or platform, study type, title and abstract

    Table “sample”: This table contains basic information about the different experiments in a study, like the identifier of the sample, treatment, origin type, time point or concentration.

    Table “misc_study”: This table contains additional information about different attributes of the study.

    Table “misc_sample”: This table contains additional information about different attributes of the sample.

    Table “cmap”: This table contains information about 70895 nodes, compromising drugs, foods or bioactives, overexpressed and knockdown genes (see section 3.4). The information includes cell line, compound and perturbation type.

    Table “cmap_foodrugs”: This table contains information about the tau score (see section 3.4) that relates food with drugs or genes and the node identifier in the FooDrugs network.

    Table “topTable”: This table contains information about 150 over and underexpressed genes from each GEO study condition, used to calculate the tau score (see section 3.4). The information stored is the logarithmic fold change, average expression, t-statistic, p-value, adjusted p-value and if the gene is up or downregulated.

    Table “nodes”: This table stores the information about the identification of the sample and the node in the bipartite network connecting the tables “sample”, “cmap_foodrugs” and “topTable”.

    In addition, FooDrugs database stores a total of 6422 food/drug interactions from 2849 text documents, obtained from three different sources: 2312 documents from PubMed, 285 from DrugBank, and 252 from drugs.com. These documents describe potential interactions between 1464 food/bioactive compounds and 3009 drugs. The information is stored in two tables:

    Table “texts”: This table contains all the documents with its identifiers where interactions have been identified with strategy described in section 4.

    Table “TM_interactions”: This table contains information about interaction identifiers, the food and drug entities, and the start and the end positions of the context for the interaction in the document.

    FNS-Cloud will overcome fragmentation problems by integrating existing FNS data, which is essential for high-end, pan-European FNS research, addressing FNS, diet, health, and consumer behaviours as well as on sustainable agriculture and the bio-economy. Current fragmented FNS resources not only result in knowledge gaps that inhibit public health and agricultural policy, and the food industry from developing effective solutions, making production sustainable and consumption healthier, but also do not enable exploitation of FNS knowledge for the benefit of European citizens. FNS-Cloud will, through three Demonstrators; Agri-Food, Nutrition & Lifestyle and NCDs & the Microbiome to facilitate: (1) Analyses of regional and country-specific differences in diet including nutrition, (epi)genetics, microbiota, consumer behaviours, culture and lifestyle and their effects on health (obesity, NCDs, ethnic and traditional foods), which are essential for public health and agri-food and health policies; (2) Improved understanding agricultural differences within Europe and what these means in terms of creating a sustainable, resilient food systems for healthy diets; and (3) Clear definitions of boundaries and how these affect the compositions of foods and consumer choices and, ultimately, personal and public health in the future. Long-term sustainability of the FNS-Cloud will be based on Services that have the capacity to link with new resources and enable cross-talk amongst them; access to FNS-Cloud data will be open access, underpinned by FAIR principles (findable, accessible, interoperable and re-useable). FNS-Cloud will work closely with the proposed Food, Nutrition and Health Research Infrastructure (FNHRI) as well as METROFOOD-RI and other existing ESFRI RIs (e.g. ELIXIR, ECRIN) in which several FNS-Cloud Beneficiaries are involved directly. (https://cordis.europa.eu/project/id/863059)

    ***** changes between version FooDrugs_v2 and FooDrugs_V3 (31st January 2023) are:

    Increased the amount of text documents by 85.675 from PubMed and ClinicalTrials.gov, and the amount of Text Mining interactions by 168.826.

    Increased the amount of transcriptomic studies by 32 GEO series.

    Removed all rows in table cmap_foodrugs representing interactions with values of tau=0

    Removed 43 GEO series that after manually checking didn't correspond to food compounds.

    Added a new column to the table texts: citation to hold the citation of the text.

    Added these columns to the table study: contributor to contain the authors of the study, publication_date to store the date of publication of the study in GEO and pubmed_id to reference the publication associated with the study if any.

    Added a new column to topTable to hold the top 150 up-regulated and 150 down-regulated genes.

  6. Most popular database management systems worldwide 2024

    • statista.com
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most popular database management systems worldwide 2024 [Dataset]. https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2024
    Area covered
    Worldwide
    Description

    As of June 2024, the most popular database management system (DBMS) worldwide was Oracle, with a ranking score of *******; MySQL and Microsoft SQL server rounded out the top three. Although the database management industry contains some of the largest companies in the tech industry, such as Microsoft, Oracle and IBM, a number of free and open-source DBMSs such as PostgreSQL and MariaDB remain competitive. Database Management Systems As the name implies, DBMSs provide a platform through which developers can organize, update, and control large databases. Given the business world’s growing focus on big data and data analytics, knowledge of SQL programming languages has become an important asset for software developers around the world, and database management skills are seen as highly desirable. In addition to providing developers with the tools needed to operate databases, DBMS are also integral to the way that consumers access information through applications, which further illustrates the importance of the software.

  7. Z

    Rediscovery Datasets: Connecting Duplicate Reports of Apache, Eclipse, and...

    • data.niaid.nih.gov
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sadat, Mefta; Bener, Ayse Basar; Miranskyy, Andriy V. (2024). Rediscovery Datasets: Connecting Duplicate Reports of Apache, Eclipse, and KDE [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_400614
    Explore at:
    Dataset updated
    Aug 3, 2024
    Dataset provided by
    Ryerson University
    Authors
    Sadat, Mefta; Bener, Ayse Basar; Miranskyy, Andriy V.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present three defect rediscovery datasets mined from Bugzilla. The datasets capture data for three groups of open source software projects: Apache, Eclipse, and KDE. The datasets contain information about approximately 914 thousands of defect reports over a period of 18 years (1999-2017) to capture the inter-relationships among duplicate defects.

    File Descriptions

    apache.csv - Apache Defect Rediscovery dataset

    eclipse.csv - Eclipse Defect Rediscovery dataset

    kde.csv - KDE Defect Rediscovery dataset

    apache.relations.csv - Inter-relations of rediscovered defects of Apache

    eclipse.relations.csv - Inter-relations of rediscovered defects of Eclipse

    kde.relations.csv - Inter-relations of rediscovered defects of KDE

    create_and_populate_neo4j_objects.cypher - Populates Neo4j graphDB by importing all the data from the CSV files. Note that you have to set dbms.import.csv.legacy_quote_escaping configuration setting to false to load the CSV files as per https://neo4j.com/docs/operations-manual/current/reference/configuration-settings/#config_dbms.import.csv.legacy_quote_escaping

    create_and_populate_mysql_objects.sql - Populates MySQL RDBMS by importing all the data from the CSV files

    rediscovery_db_mysql.zip - For your convenience, we also provide full backup of the MySQL database

    neo4j_examples.txt - Sample Neo4j queries

    mysql_examples.txt - Sample MySQL queries

    rediscovery_eclipse_6325.png - Output of Neo4j example #1

    distinct_attrs.csv - Distinct values of bug_status, resolution, priority, severity for each project

  8. Most popular relational database management systems worldwide 2024

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most popular relational database management systems worldwide 2024 [Dataset]. https://www.statista.com/statistics/1131568/worldwide-popularity-ranking-relational-database-management-systems/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2024
    Area covered
    Worldwide
    Description

    As of June 2024, the most popular relational database management system (RDBMS) worldwide was Oracle, with a ranking score of *******. Oracle was also the most popular DBMS overall. MySQL and Microsoft SQL server rounded out the top three.

  9. n

    Malaria disease and grading system dataset from public hospitals reflecting...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Nov 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Temitope Olufunmi Atoyebi; Rashidah Funke Olanrewaju; N. V. Blamah; Emmanuel Chinanu Uwazie (2023). Malaria disease and grading system dataset from public hospitals reflecting complicated and uncomplicated conditions [Dataset]. http://doi.org/10.5061/dryad.4xgxd25gn
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 10, 2023
    Dataset provided by
    Nasarawa State University
    Authors
    Temitope Olufunmi Atoyebi; Rashidah Funke Olanrewaju; N. V. Blamah; Emmanuel Chinanu Uwazie
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Malaria is the leading cause of death in the African region. Data mining can help extract valuable knowledge from available data in the healthcare sector. This makes it possible to train models to predict patient health faster than in clinical trials. Implementations of various machine learning algorithms such as K-Nearest Neighbors, Bayes Theorem, Logistic Regression, Support Vector Machines, and Multinomial Naïve Bayes (MNB), etc., has been applied to malaria datasets in public hospitals, but there are still limitations in modeling using the Naive Bayes multinomial algorithm. This study applies the MNB model to explore the relationship between 15 relevant attributes of public hospitals data. The goal is to examine how the dependency between attributes affects the performance of the classifier. MNB creates transparent and reliable graphical representation between attributes with the ability to predict new situations. The model (MNB) has 97% accuracy. It is concluded that this model outperforms the GNB classifier which has 100% accuracy and the RF which also has 100% accuracy. Methods Prior to collection of data, the researcher was be guided by all ethical training certification on data collection, right to confidentiality and privacy reserved called Institutional Review Board (IRB). Data was be collected from the manual archive of the Hospitals purposively selected using stratified sampling technique, transform the data to electronic form and store in MYSQL database called malaria. Each patient file was extracted and review for signs and symptoms of malaria then check for laboratory confirmation result from diagnosis. The data was be divided into two tables: the first table was called data1 which contain data for use in phase 1 of the classification, while the second table data2 which contains data for use in phase 2 of the classification. Data Source Collection Malaria incidence data set is obtained from Public hospitals from 2017 to 2021. These are the data used for modeling and analysis. Also, putting in mind the geographical location and socio-economic factors inclusive which are available for patients inhabiting those areas. Naive Bayes (Multinomial) is the model used to analyze the collected data for malaria disease prediction and grading accordingly. Data Preprocessing: Data preprocessing shall be done to remove noise and outlier. Transformation: The data shall be transformed from analog to electronic record. Data Partitioning The data which shall be collected will be divided into two portions; one portion of the data shall be extracted as a training set, while the other portion will be used for testing. The training portion shall be taken from a table stored in a database and will be called data which is training set1, while the training portion taking from another table store in a database is shall be called data which is training set2. The dataset was split into two parts: a sample containing 70% of the training data and 30% for the purpose of this research. Then, using MNB classification algorithms implemented in Python, the models were trained on the training sample. On the 30% remaining data, the resulting models were tested, and the results were compared with the other Machine Learning models using the standard metrics. Classification and prediction: Base on the nature of variable in the dataset, this study will use Naïve Bayes (Multinomial) classification techniques; Classification phase 1 and Classification phase 2. The operation of the framework is illustrated as follows: i. Data collection and preprocessing shall be done. ii. Preprocess data shall be stored in a training set 1 and training set 2. These datasets shall be used during classification. iii. Test data set is shall be stored in database test data set. iv. Part of the test data set must be compared for classification using classifier 1 and the remaining part must be classified with classifier 2 as follows: Classifier phase 1: It classify into positive or negative classes. If the patient is having malaria, then the patient is classified as positive (P), while a patient is classified as negative (N) if the patient does not have malaria.
    Classifier phase 2: It classify only data set that has been classified as positive by classifier 1, and then further classify them into complicated and uncomplicated class label. The classifier will also capture data on environmental factors, genetics, gender and age, cultural and socio-economic variables. The system will be designed such that the core parameters as a determining factor should supply their value.

  10. Germline and malignant melanoma sampled sequences containing point mutations...

    • zenodo.org
    application/gzip, bin
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gavin Huttley; Yicheng Zhu; Teresa Neeman; Von Bing Yap; Gavin Huttley; Yicheng Zhu; Teresa Neeman; Von Bing Yap (2020). Germline and malignant melanoma sampled sequences containing point mutations [Dataset]. http://doi.org/10.5281/zenodo.53158
    Explore at:
    bin, application/gzipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gavin Huttley; Yicheng Zhu; Teresa Neeman; Von Bing Yap; Gavin Huttley; Yicheng Zhu; Teresa Neeman; Von Bing Yap
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Data files generated as part of a study into the influence of neighbouring bases on point mutation. The data are sampled from the Ensembl (http://www.ensembl.org) MySQL databases or COSMIC (http://cancer.sanger.ac.uk/cosmic) and processed using custom scripts that will be uploaded separately and associated with this submission via gthe related identifier.

  11. s

    Orphan Drugs - Dataset 1: Twitter issue-networks as excluded publics

    • orda.shef.ac.uk
    txt
    Updated Oct 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Hanchard (2021). Orphan Drugs - Dataset 1: Twitter issue-networks as excluded publics [Dataset]. http://doi.org/10.15131/shef.data.16447326.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Oct 22, 2021
    Dataset provided by
    The University of Sheffield
    Authors
    Matthew Hanchard
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset comprises of two .csv format files used within workstream 2 of the Wellcome Trust funded ‘Orphan drugs: High prices, access to medicines and the transformation of biopharmaceutical innovation’ project (219875/Z/19/Z). They appear in various outputs, e.g. publications and presentations.

    The deposited data were gathered using the University of Amsterdam Digital Methods Institute’s ‘Twitter Capture and Analysis Toolset’ (DMI-TCAT) before being processed and extracted from Gephi. DMI-TCAT queries Twitter’s STREAM Application Programming Interface (API) using SQL and retrieves data on a pre-set text query. It then sends the returned data for storage on a MySQL database. The tool allows for output of that data in various formats. This process aligns fully with Twitter’s service user terms and conditions. The query for the deposited dataset gathered a 1% random sample of all public tweets posted between 10-Feb-2021 and 10-Mar-2021 containing the text ‘Rare Diseases’ and/or ‘Rare Disease Day’, storing it on a local MySQL database managed by the University of Sheffield School of Sociological Studies (http://dmi-tcat.shef.ac.uk/analysis/index.php), accessible only via a valid VPN such as FortiClient and through a permitted active directory user profile. The dataset was output from the MySQL database raw as a .gexf format file, suitable for social network analysis (SNA). It was then opened using Gephi (0.9.2) data visualisation software and anonymised/pseudonymised in Gephi as per the ethical approval granted by the University of Sheffield School of Sociological Studies Research Ethics Committee on 02-Jun-201 (reference: 039187). The deposited dataset comprises of two anonymised/pseudonymised social network analysis .csv files extracted from Gephi, one containing node data (Issue-networks as excluded publics – Nodes.csv) and another containing edge data (Issue-networks as excluded publics – Edges.csv). Where participants explicitly provided consent, their original username has been provided. Where they have provided consent on the basis that they not be identifiable, their username has been replaced with an appropriate pseudonym. All other usernames have been anonymised with a randomly generated 16-digit key. The level of anonymity for each Twitter user is provided in column C of deposited file ‘Issue-networks as excluded publics – Nodes.csv’.

    This dataset was created and deposited onto the University of Sheffield Online Research Data repository (ORDA) on 26-Aug-2021 by Dr. Matthew S. Hanchard, Research Associate at the University of Sheffield iHuman institute/School of Sociological Studies. ORDA has full permission to store this dataset and to make it open access for public re-use without restriction under a CC BY license, in line with the Wellcome Trust commitment to making all research data Open Access.

    The University of Sheffield are the designated data controller for this dataset.

  12. MySQL Java Computer Programs

    • figshare.com
    zip
    Updated Jul 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suhailan Safei (2017). MySQL Java Computer Programs [Dataset]. http://doi.org/10.6084/m9.figshare.2813497.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 3, 2017
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Suhailan Safei
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This mysql database contains list of submitted Java programs based on series of online lab exercises from year 2013 to 2015. The programs were submitted by first year computer science students from Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Malaysia who undertaking Introductory Computer Programming subject. There were 67, 18 and 47 of participated students in 2013, 2014 and 2015 respectively. The submitted programs were all of their solution attempts in answering a computational programming question. The question was as the following:

    Write a program that will read string. Then your program should show all the string character using * except for character 2, output its real character. sample input. Apology sample output. p****

  13. CHINOOK Music

    • kaggle.com
    zip
    Updated Sep 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2024). CHINOOK Music [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/chinook-music
    Explore at:
    zip(9603 bytes)Available download formats
    Dataset updated
    Sep 19, 2024
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The Chinook Database is a sample database designed for use with multiple database platforms, such as SQL Server, Oracle, MySQL, and others. It can be easily set up by running a single SQL script, making it a convenient alternative to the popular Northwind database. Chinook is widely used in demos and testing environments, particularly for Object-Relational Mapping (ORM) tools that target both single and multiple database servers.

    Supported Database Servers Chinook supports several database servers, including:

    DB2 MySQL Oracle PostgreSQL SQL Server SQL Server Compact SQLite Download Instructions You can download the SQL scripts for each supported database server from the latest release assets. The appropriate SQL script file(s) for your database vendor are provided, which can be executed using your preferred database management tool.

    Data Model The Chinook Database represents a digital media store, containing tables that include:

    Artists Albums Media tracks Invoices Customers Sample Data The media data in Chinook is derived from a real iTunes Library, providing a realistic dataset for users. Additionally, users can generate their own SQL scripts using their personal iTunes Library by following specific instructions. Customer and employee details in the database were manually crafted with fictitious names, addresses (mappable via Google Maps), and well-structured contact information such as phone numbers, faxes, and emails. Sales data is auto-generated and spans a four-year period, using random values.

    Why is it Called Chinook? The Chinook Database's name is a nod to its predecessor, the Northwind database. Chinooks are warm, dry winds found in the interior regions of North America, particularly over southern Alberta in Canada, where the Canadian Prairies meet mountain ranges. This natural phenomenon inspired the choice of name, reflecting the idea that Chinook serves as a refreshing alternative to the Northwind database.

  14. E

    Data from: ChEssBase

    • erddap.eurobis.org
    • obis.org
    • +2more
    Updated Aug 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Perry, Hall, Baker, Ramirez-Llodra (2025). ChEssBase [Dataset]. https://erddap.eurobis.org/erddap/info/chessbase/index.html
    Explore at:
    Dataset updated
    Aug 12, 2025
    Dataset authored and provided by
    Perry, Hall, Baker, Ramirez-Llodra
    Area covered
    Variables measured
    aphia_id, latitude, longitude, MaximumDepth, MinimumDepth, BasisOfRecord, ScientificName, InstitutionCode
    Description

    ChEssBase is a dynamic relational database for all deep-water species from chemosynthetic ecosystems (hydrothermal vents, cold seeps and other reducing environments such as whale carcasses, sunken wood or OMZs) being constructed from the ChEss project (Biogeography of Deep-Water Chemosynthetic Ecosystems) within the Census of Marine Life initiative. AccConID=21 AccConstrDescription=This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials. AccConstrDisplay=This dataset is licensed under a Creative Commons Attribution 4.0 International License. AccConstrEN=Attribution (CC BY) AccessConstraint=Attribution (CC BY) AccessConstraints=None Acronym=None added_date=2013-06-12 15:21:34.517000 BrackishFlag=0 CDate=2004-06-24 cdm_data_type=Other CheckedFlag=0 Citation=Ramirez-Llodra, E., Blanco, 2005. ChEssBase: an online information system on biodiversity and biogeography of deep-sea fauna from chemosynthetic ecosystems. Version 2. World Wide Web electronic publications, http://www.noc.soton.ac.uk/chess/database/db_home.php Comments=None ContactEmail=None Conventions=COARDS, CF-1.6, ACDD-1.3 CurrencyDate=None DasID=212 DasOrigin=Literature research DasType=Data DasTypeID=1 DateLastModified={'date': '2025-08-12 01:34:46.196267', 'timezone_type': 1, 'timezone': '+02:00'} DescrCompFlag=0 DescrTransFlag=0 Easternmost_Easting=179.8 EmbargoDate=None EngAbstract=ChEssBase is a dynamic relational database for all deep-water species from chemosynthetic ecosystems (hydrothermal vents, cold seeps and other reducing environments such as whale carcasses, sunken wood or OMZs) being constructed from the ChEss project (Biogeography of Deep-Water Chemosynthetic Ecosystems) within the Census of Marine Life initiative. EngDescr=The aim of ChEssBase is to provide taxonomical, biological, ecological and distributional data for all species described from deep-water chemosynthetic ecosystems, as well as information on available samples, images, bibliography and information on the habitats.These habitats include hydrothermal vents, cold seeps, whale falls, sunken wood and areas of minimum oxygen that intersect with the continental margin or seamounts. Since the discovery of hydrothermal vents in 1977 and of cold seep communities in 1984, over 590 species from vents and over 230 species from seeps have been described. Chemosynthetically fueled communities have now also been found on large organic falls to the deep-sea floor such as whale falls and sunken wood, as well as on benthic zones of oxygen minimum.The data gathered in the last 30 years has shown that some species are shared amongst these ecosystems and our knowledge of their phylogeography improves with every new discovery. New species are continuously being discovered and described from research programmes around the globe and therefore ChEssBase is in active development and new data are being entered regularly. At present, ChEssBase includes data on 1740 species from 193 chemosynthetic sites around the globe. These data contain information (when available) on the taxonomy, morphology, trophic level, reproduction, endemicity, habitat type and distribution. There are now 1880 papers in our reference database.The first version of ChEssBase was available online in December 2004. In summer 2005, ChEssBase and the InterRidge biological database (www.interridge.org) were fused into a single source of information for biological data from chemosynthetic ecosystems. This second version of ChEssBase is available online since August 2005, with new records as well as new search and download options. Since December 2005, ChEssBase is integrated in the Ocean Biogeographic Information System (OBIS, www.iobis.org).ChEssBase is supported by a species-based relational database in MySQL. The database includes 3 major components:Taxonomy (from kingdom to subspecies)Distribution (from site to major geographic area)Samples (including sample, cruise and institution information)ChEssBase is regularly updated with new information available in the literature. In order to quickly obtain accurate new data and help maintain the database up to date, we would be very grateful if you could send us any new publications with data relevant to ChEssBase, which we would add to the database, together with the relevant references. FreshFlag=0 geospatial_lat_max=72.0 geospatial_lat_min=-55.1 geospatial_lat_units=degrees_north geospatial_lon_max=179.8 geospatial_lon_min=-158.1 geospatial_lon_units=degrees_east infoUrl=None InputNotes=None institution=COML, SOTON-NOC, SOTON-SOES License=https://creativecommons.org/licenses/by/4.0/ Lineage=Prior to publication data undergo quality control checked which are described in https://github.com/EMODnet/EMODnetBiocheck?tab=readme-ov-file#understanding-the-output MarineFlag=1 modified_sync=2021-02-05 00:00:00 Northernmost_Northing=72.0 OrigAbstract=None OrigDescr=None OrigDescrLang=None OrigDescrLangNL=None OrigLangCode=None OrigLangCodeExtended=None OrigLangID=None OrigTitle=None OrigTitleLang=None OrigTitleLangCode=None OrigTitleLangID=None OrigTitleLangNL=None Progress=In Progress PublicFlag=1 ReleaseDate=Jun 12 2013 12:00AM ReleaseDate0=2013-06-12 RevisionDate=None SizeReference=1740 species from 193 sites sourceUrl=(local files) Southernmost_Northing=-55.1 standard_name_vocabulary=CF Standard Name Table v70 StandardTitle=ChEssBase StatusID=1 subsetVariables=ScientificName,BasisOfRecord,aphia_id TerrestrialFlag=0 UDate=2025-03-26 VersionDate=Jun 3 2004 12:00AM VersionDay=23 VersionMonth=10 VersionName=2 VersionYear=2007 VlizCoreFlag=1 Westernmost_Easting=-158.1

  15. p

    Royal Institute for Cultural Heritage Radiocarbon and stable isotope...

    • pandora.earth
    Updated Jul 12, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). Royal Institute for Cultural Heritage Radiocarbon and stable isotope measurements - Dataset - Pandora [Dataset]. https://pandora.earth/gl_ES/dataset/royal-institute-for-cultural-heritage-radiocarbon-and-stable-isotope-measurements
    Explore at:
    Dataset updated
    Jul 12, 2011
    Description

    The Radiocarbon dating laboratory of IRPA/KIK was founded in the 1960s. Initially dates were reported at more or less regular intervals in the journal Radiocarbon (Schreurs 1968). Since the advent of radiocarbon dating in the 1950s it had been a common practice amongst radiocarbon laboratories to publish their dates in so-called ‘date-lists’ that were arranged per laboratory. This was first done in the Radiocarbon Supplement of the American Journal of Science and later in the specialised journal Radiocarbon. In the course of time the latter, with the added subtitle An International Journal of Cosmogenic Isotope Research, became a regular scientific journal shifting focus from date-lists to articles. Furthermore the world-wide exponential increase of radiocarbon dates made it almost impossible to publish them all in the same journal, even more so because of the broad range of applications that use radiocarbon analysis, ranging from archaeology and art history to geology and oceanography and recently also biomedical studies.The IRPA/KIK database From 1995 onwards IRPA/KIK’s Radiocarbon laboratory started to publish its dates in small publications, continuing the numbering of the preceding lists in Radiocarbon. The first booklet in this series was “Royal Institute for Cultural Heritage Radiocarbon dates XV” (Van Strydonck et al. 1995), followed by three more volumes (XVI, XVII, XVIII). The next list (XIX, 2005) was no longer printed but instead handed out as a PDF file on CD-rom. The ever increasing number of dates and the difficulties in handling all the data, however, made us look for a more permanent and easier solution. In order to improve data management and consulting, it was thus decided to gather all our dates in a web-based database. List XIX was in fact already a Microsoft Access database that was converted into a reader friendly style and could also be printed as a PDF file. However a Microsoft Access database is not the most practical solution to make information publicly available. Hence the structure of the database was recreated in Mysql and the existing content was transferred into the corresponding fields. To display the records, a web-based front-end was programmed in PHP/Apache. It features a full-text search function that allows for partial word-matching. In addition the records can be consulted in PDF format. Old records from the printed date-lists as well as new records are now added using the same Microsoft Acces back-end, which is now connected directly to the Mysql database. The main problem with introducing the old data was that not all the current criteria were available in the past (e.g. stable isotope measurements). Furthermore since all the sample information is given by the submitter, its quality largely depends on the persons willingness to contribute as well as on the accuracy and correctness of the information he provides. Sometimes problems arrive from the fact that a certain investigation (like an excavation) is carried out over a relatively long period (sometimes even more than ten years) and is directed by different people or even institutions. This can lead to differences in the labeling procedure of the samples, but also in the interpretation of structures and artifacts and in the orthography of the site’s name. Finally the submitter might change address, while the names of institutions or even regions and countries might change as well (e.g.Zaire - Congo)

  16. Popularity distribution of database management systems worldwide 2024, by...

    • statista.com
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Popularity distribution of database management systems worldwide 2024, by model [Dataset]. https://www.statista.com/statistics/1131595/worldwide-popularity-database-management-systems-category/
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2024
    Area covered
    Worldwide
    Description

    As of December 2022, relational database management systems (RDBMS) were the most popular type of DBMS, accounting for a ** percent popularity share. The most popular RDBMS in the world has been reported as Oracle, while MySQL and Microsoft SQL server rounded out the top three.

  17. Most popular database management systems in software companies in Russia...

    • statista.com
    Updated Aug 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Most popular database management systems in software companies in Russia 2022 [Dataset]. https://www.statista.com/statistics/1330732/most-popular-dbms-in-software-companies-russia/
    Explore at:
    Dataset updated
    Aug 18, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2022 - May 2022
    Area covered
    Russia
    Description

    Approximately ** percent of the surveyed software companies in Russia mentioned PostgreSQL, making it the most popular database management system (DBMS) in the period between February and May 2022. MS SQL and MySQL followed, having been mentioned by ** percent and ** percent of respondents, respectively.

  18. n

    Heparome

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Oct 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Heparome [Dataset]. http://identifiers.org/RRID:SCR_008615
    Explore at:
    Dataset updated
    Oct 11, 2025
    Description

    THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. A database which contains the information of heparin-binding proteins of E. coli K-12 MG1655 cells. Heparin affinity columns were applied to enrich and fractionate proteins. Identification of proteins was done via the collaboration with David Russell''s lab. Because heparin is negatively charged sulfated glucosaminoglycan, polyamion binding proteins, which contain nucleic acid-binding proteins, are expected to bind to heparin columns. Study of the expression pattern of heparin-binding proteins will help to study the nucleic acid-binding proteins, most of which are related to regulation. Moreover, heparin affinity columns will also erich low abundance proteins. Heparome database is constructed using MySQL. Website interface is built using HTML and PHP. Queries between MySQL database and website interface are executed using PHP. Besides including information of identified proteins, such as swiss accession number, gene name, molecular weight, isoelectric point, condon adaptation index (CAI), functional classification, et. al. , it also includes information of experiments, such as sample preparation, heparin-HPLC chromatography, SDS-PAGE gel separation and MALDI-MS.

  19. Z

    Site occupancy matrices, The River Ouse Project

    • data.niaid.nih.gov
    Updated May 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pilkington, John; Pilkington, Margaret (2020). Site occupancy matrices, The River Ouse Project [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3691906
    Explore at:
    Dataset updated
    May 13, 2020
    Dataset provided by
    University of Sussex
    Authors
    Pilkington, John; Pilkington, Margaret
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    River Ouse
    Description

    The River Ouse Project was started by Dr Margaret Pilkington and colleagues in the Centre for Continuing Education, University of Sussex. Margaret is now retired with emeritus status and continues to run the project with a team of volunteers, in association with the University of Sussex. The team does botanical surveys of streamside grassland and steep wooded valleys (gills) in the upper reaches of the Sussex Ouse, a short flashy river arising on the southern slopes of the High Weald AONB (Area of Outstanding Natural Beauty). Survey sites are chosen on the basis of species richness, potential for restoration and contribution to flood control, and surveyed using the sampling methods outlined in Rodwell, J S (1992. British Plant Communities, Volume 3, Grasslands and Montane Communities). Survey data are transferred from the paper record taken in the field to Excel spreadsheets, and from there after validation and cleaning into two MySQL (MariaDB) databases, meadows and gills.

    The file is an extract from the meadows database. It contains binary data of the site occupancy for most of the plants encountered in meadow sites (stands, assemblies) sampled using five 2m x 2m quadrats. Details of the database are available here: River Ouse Project databases.

    For further details and access to the full database contact the author.

  20. SQL Analytics Case Study (Employees Database)

    • kaggle.com
    zip
    Updated Nov 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Priyank Barbhaya (2025). SQL Analytics Case Study (Employees Database) [Dataset]. https://www.kaggle.com/datasets/priyankbarbhaya/sql-analytics-case-study-employees-database
    Explore at:
    zip(7449546 bytes)Available download formats
    Dataset updated
    Nov 4, 2025
    Authors
    Priyank Barbhaya
    Description

    This dataset contains the complete MySQL Employees Database, a widely used sample dataset for learning SQL, data analysis, business intelligence, and database design. It includes employee information, salaries, job titles, departments, managers, and department history, making it ideal for real-world analytical practice.

    The dataset is structured into multiple tables that represent a real corporate environment with employee records spanning several decades. Users can practice SQL joins, window functions, aggregation, CTEs, subqueries, business KPIs, HR analytics, trend analysis, and more.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Atanas Kanev (2021). SQLite Sakila Sample Database [Dataset]. https://www.kaggle.com/datasets/atanaskanev/sqlite-sakila-sample-database/code
Organization logo

SQLite Sakila Sample Database

SQLite Port of the Original MySQL Sakila Sample Database

Explore at:
zip(4495190 bytes)Available download formats
Dataset updated
Mar 14, 2021
Authors
Atanas Kanev
Description

SQLite Sakila Sample Database

Database Description

The Sakila sample database is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, customer, rental, payment and inventory among others. The Sakila sample database is intended to provide a standard schema that can be used for examples in books, tutorials, articles, samples, and so forth. Detailed information about the database can be found on the MySQL website: https://dev.mysql.com/doc/sakila/en/

Sakila for SQLite is a part of the sakila-sample-database-ports project intended to provide ported versions of the original MySQL database for other database systems, including:

  • Oracle
  • SQL Server
  • SQLIte
  • Interbase/Firebird
  • Microsoft Access

Sakila for SQLite is a port of the Sakila example database available for MySQL, which was originally developed by Mike Hillyer of the MySQL AB documentation team. This project is designed to help database administrators to decide which database to use for development of new products The user can run the same SQL against different kind of databases and compare the performance

License: BSD Copyright DB Software Laboratory http://www.etl-tools.com

Note: Part of the insert scripts were generated by Advanced ETL Processor http://www.etl-tools.com/etl-tools/advanced-etl-processor-enterprise/overview.html

Information about the project and the downloadable files can be found at: https://code.google.com/archive/p/sakila-sample-database-ports/

Other versions and developments of the project can be found at: https://github.com/ivanceras/sakila/tree/master/sqlite-sakila-db

https://github.com/jOOQ/jOOQ/tree/main/jOOQ-examples/Sakila

Direct access to the MySQL Sakila database, which does not require installation of MySQL (queries can be typed directly in the browser), is provided on the phpMyAdmin demo version website: https://demo.phpmyadmin.net/master-config/

Files Description

The files in the sqlite-sakila-db folder are the script files which can be used to generate the SQLite version of the database. For convenience, the script files have already been run in cmd to generate the sqlite-sakila.db file, as follows:

sqlite> .open sqlite-sakila.db # creates the .db file sqlite> .read sqlite-sakila-schema.sql # creates the database schema sqlite> .read sqlite-sakila-insert-data.sql # inserts the data

Therefore, the sqlite-sakila.db file can be directly loaded into SQLite3 and queries can be directly executed. You can refer to my notebook for an overview of the database and a demonstration of SQL queries. Note: Data about the film_text table is not provided in the script files, thus the film_text table is empty. Instead the film_id, title and description fields are included in the film table. Moreover, the Sakila Sample Database has many versions, so an Entity Relationship Diagram (ERD) is provided to describe this specific version. You are advised to refer to the ERD to familiarise yourself with the structure of the database.

Search
Clear search
Close search
Google apps
Main menu