19 datasets found
  1. d

    Warehouse and Retail Sales

    • catalog.data.gov
    • data.montgomerycountymd.gov
    • +4more
    Updated Jul 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.montgomerycountymd.gov (2025). Warehouse and Retail Sales [Dataset]. https://catalog.data.gov/dataset/warehouse-and-retail-sales
    Explore at:
    Dataset updated
    Jul 5, 2025
    Dataset provided by
    data.montgomerycountymd.gov
    Description

    This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly

  2. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  3. US Real Estate

    • zenrows.com
    csv
    Updated Jun 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ZenRows (2021). US Real Estate [Dataset]. https://www.zenrows.com/datasets/us-real-estate
    Explore at:
    csv(5,8MB)Available download formats
    Dataset updated
    Jun 27, 2021
    Dataset provided by
    ZenRows S.L.
    Authors
    ZenRows
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    High-quality, free real estate dataset from all around the United States, in CSV format. Over 10.000 records relevant to Real Estate investors, agents, and data scientists. We are working on complete datasets from a wide variety of countries. Don't hesitate to contact us for more information.

  4. Datasets for Sentiment Analysis

    • zenodo.org
    csv
    Updated Dec 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julie R. Repository creator - Campos Arias; Julie R. Repository creator - Campos Arias (2023). Datasets for Sentiment Analysis [Dataset]. http://doi.org/10.5281/zenodo.10157504
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 10, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Julie R. Repository creator - Campos Arias; Julie R. Repository creator - Campos Arias
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository was created for my Master's thesis in Computational Intelligence and Internet of Things at the University of Córdoba, Spain. The purpose of this repository is to store the datasets found that were used in some of the studies that served as research material for this Master's thesis. Also, the datasets used in the experimental part of this work are included.

    Below are the datasets specified, along with the details of their references, authors, and download sources.

    ----------- STS-Gold Dataset ----------------

    The dataset consists of 2026 tweets. The file consists of 3 columns: id, polarity, and tweet. The three columns denote the unique id, polarity index of the text and the tweet text respectively.

    Reference: Saif, H., Fernandez, M., He, Y., & Alani, H. (2013). Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold.

    File name: sts_gold_tweet.csv

    ----------- Amazon Sales Dataset ----------------

    This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon. The data was scraped in the month of January 2023 from the Official Website of Amazon.

    Owner: Karkavelraja J., Postgraduate student at Puducherry Technological University (Puducherry, Puducherry, India)

    Features:

    • product_id - Product ID
    • product_name - Name of the Product
    • category - Category of the Product
    • discounted_price - Discounted Price of the Product
    • actual_price - Actual Price of the Product
    • discount_percentage - Percentage of Discount for the Product
    • rating - Rating of the Product
    • rating_count - Number of people who voted for the Amazon rating
    • about_product - Description about the Product
    • user_id - ID of the user who wrote review for the Product
    • user_name - Name of the user who wrote review for the Product
    • review_id - ID of the user review
    • review_title - Short review
    • review_content - Long review
    • img_link - Image Link of the Product
    • product_link - Official Website Link of the Product

    License: CC BY-NC-SA 4.0

    File name: amazon.csv

    ----------- Rotten Tomatoes Reviews Dataset ----------------

    This rating inference dataset is a sentiment classification dataset, containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. On average, these reviews consist of 21 words. The first 5331 rows contains only negative samples and the last 5331 rows contain only positive samples, thus the data should be shuffled before usage.

    This data is collected from https://www.cs.cornell.edu/people/pabo/movie-review-data/ as a txt file and converted into a csv file. The file consists of 2 columns: reviews and labels (1 for fresh (good) and 0 for rotten (bad)).

    Reference: Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pages 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics

    File name: data_rt.csv

    ----------- Preprocessed Dataset Sentiment Analysis ----------------

    Preprocessed amazon product review data of Gen3EcoDot (Alexa) scrapped entirely from amazon.in
    Stemmed and lemmatized using nltk.
    Sentiment labels are generated using TextBlob polarity scores.

    The file consists of 4 columns: index, review (stemmed and lemmatized review using nltk), polarity (score) and division (categorical label generated using polarity score).

    DOI: 10.34740/kaggle/dsv/3877817

    Citation: @misc{pradeesh arumadi_2022, title={Preprocessed Dataset Sentiment Analysis}, url={https://www.kaggle.com/dsv/3877817}, DOI={10.34740/KAGGLE/DSV/3877817}, publisher={Kaggle}, author={Pradeesh Arumadi}, year={2022} }

    This dataset was used in the experimental phase of my research.

    File name: EcoPreprocessed.csv

    ----------- Amazon Earphones Reviews ----------------

    This dataset consists of a 9930 Amazon reviews, star ratings, for 10 latest (as of mid-2019) bluetooth earphone devices for learning how to train Machine for sentiment analysis.

    This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.

    The file consists of 5 columns: ReviewTitle, ReviewBody, ReviewStar, Product and division (manually added - categorical label generated using ReviewStar score)

    License: U.S. Government Works

    Source: www.amazon.in

    File name (original): AllProductReviews.csv (contains 14337 reviews)

    File name (edited - used for my research) : AllProductReviews2.csv (contains 9930 reviews)

    ----------- Amazon Musical Instruments Reviews ----------------

    This dataset contains 7137 comments/reviews of different musical instruments coming from Amazon.

    This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.

    The file consists of 10 columns: reviewerID, asin (ID of the product), reviewerName, helpful (helpfulness rating of the review), reviewText, overall (rating of the product), summary (summary of the review), unixReviewTime (time of the review - unix time), reviewTime (time of the review (raw) and division (manually added - categorical label generated using overall score).

    Source: http://jmcauley.ucsd.edu/data/amazon/

    File name (original): Musical_instruments_reviews.csv (contains 10261 reviews)

    File name (edited - used for my research) : Musical_instruments_reviews2.csv (contains 7137 reviews)

  5. Car Sales Report

    • kaggle.com
    Updated Jan 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vasu_Avasthi (2024). Car Sales Report [Dataset]. https://www.kaggle.com/datasets/missionjee/car-sales-report
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 20, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Vasu_Avasthi
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Application and use cases

    1 )Market Analysis: Evaluate overall trends and regional variations in car sales to assess manufacturer performance, model preferences, and demographic insights. 2) Seasonal Patterns and Competitor Analysis: Investigate seasonal and cyclical patterns in sales. 3) Forecasting and Predictive Analysis Use historical data for forecasting and predict future market trends. Support marketing, advertising, and investment decisions based on insights. 4) Supply Chain and Inventory Optimization: Provide valuable data for stakeholders in the automotive industry.

  6. Retail Transactions Dataset

    • kaggle.com
    Updated May 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prasad Patil (2024). Retail Transactions Dataset [Dataset]. https://www.kaggle.com/datasets/prasad22/retail-transactions-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 18, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Prasad Patil
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset was created to simulate a market basket dataset, providing insights into customer purchasing behavior and store operations. The dataset facilitates market basket analysis, customer segmentation, and other retail analytics tasks. Here's more information about the context and inspiration behind this dataset:

    Context:

    Retail businesses, from supermarkets to convenience stores, are constantly seeking ways to better understand their customers and improve their operations. Market basket analysis, a technique used in retail analytics, explores customer purchase patterns to uncover associations between products, identify trends, and optimize pricing and promotions. Customer segmentation allows businesses to tailor their offerings to specific groups, enhancing the customer experience.

    Inspiration:

    The inspiration for this dataset comes from the need for accessible and customizable market basket datasets. While real-world retail data is sensitive and often restricted, synthetic datasets offer a safe and versatile alternative. Researchers, data scientists, and analysts can use this dataset to develop and test algorithms, models, and analytical tools.

    Dataset Information:

    The columns provide information about the transactions, customers, products, and purchasing behavior, making the dataset suitable for various analyses, including market basket analysis and customer segmentation. Here's a brief explanation of each column in the Dataset:

    • Transaction_ID: A unique identifier for each transaction, represented as a 10-digit number. This column is used to uniquely identify each purchase.
    • Date: The date and time when the transaction occurred. It records the timestamp of each purchase.
    • Customer_Name: The name of the customer who made the purchase. It provides information about the customer's identity.
    • Product: A list of products purchased in the transaction. It includes the names of the products bought.
    • Total_Items: The total number of items purchased in the transaction. It represents the quantity of products bought.
    • Total_Cost: The total cost of the purchase, in currency. It represents the financial value of the transaction.
    • Payment_Method: The method used for payment in the transaction, such as credit card, debit card, cash, or mobile payment.
    • City: The city where the purchase took place. It indicates the location of the transaction.
    • Store_Type: The type of store where the purchase was made, such as a supermarket, convenience store, department store, etc.
    • Discount_Applied: A binary indicator (True/False) representing whether a discount was applied to the transaction.
    • Customer_Category: A category representing the customer's background or age group.
    • Season: The season in which the purchase occurred, such as spring, summer, fall, or winter.
    • Promotion: The type of promotion applied to the transaction, such as "None," "BOGO (Buy One Get One)," or "Discount on Selected Items."

    Use Cases:

    • Market Basket Analysis: Discover associations between products and uncover buying patterns.
    • Customer Segmentation: Group customers based on purchasing behavior.
    • Pricing Optimization: Optimize pricing strategies and identify opportunities for discounts and promotions.
    • Retail Analytics: Analyze store performance and customer trends.

    Note: This dataset is entirely synthetic and was generated using the Python Faker library, which means it doesn't contain real customer data. It's designed for educational and research purposes.

  7. Price Paid Data

    • gov.uk
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2025). Price Paid Data [Dataset]. https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Description

    Our Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.

    Get up to date with the permitted use of our Price Paid Data:
    check what to consider when using or publishing our Price Paid Data

    Using or publishing our Price Paid Data

    If you use or publish our Price Paid Data, you must add the following attribution statement:

    Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.

    Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/" class="govuk-link">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.

    Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.

    Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:

    • for personal and/or non-commercial use
    • to display for the purpose of providing residential property price information services

    If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.

    Address data

    The following fields comprise the address data included in Price Paid Data:

    • Postcode
    • PAON Primary Addressable Object Name (typically the house number or name)
    • SAON Secondary Addressable Object Name – if there is a sub-building, for example, the building is divided into flats, there will be a SAON
    • Street
    • Locality
    • Town/City
    • District
    • County

    May 2025 data (current month)

    The May 2025 release includes:

    • the first release of data for May 2025 (transactions received from the first to the last day of the month)
    • updates to earlier data releases
    • Standard Price Paid Data (SPPD) and Additional Price Paid Data (APPD) transactions

    As we will be adding to the April data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.

    Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

    Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.

    We update the data on the 20th working day of each month. You can download the:

    Single file

    These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.

    Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

    The data is updated monthly and the average size of this file is 3.7 GB, you can download:

    • <a re

  8. Market Basket Analysis

    • kaggle.com
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aslan Ahmedov (2021). Market Basket Analysis [Dataset]. https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 9, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aslan Ahmedov
    Description

    Market Basket Analysis

    Market basket analysis with Apriori algorithm

    The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.

    Introduction

    Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

    An Example of Association Rules

    Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

    Strategy

    • Data Import
    • Data Understanding and Exploration
    • Transformation of the data – so that is ready to be consumed by the association rules algorithm
    • Running association rules
    • Exploring the rules generated
    • Filtering the generated rules
    • Visualization of Rule

    Dataset Description

    • File name: Assignment-1_Data
    • List name: retaildata
    • File format: . xlsx
    • Number of Row: 522065
    • Number of Attributes: 7

      • BillNo: 6-digit number assigned to each transaction. Nominal.
      • Itemname: Product name. Nominal.
      • Quantity: The quantities of each product per transaction. Numeric.
      • Date: The day and time when each transaction was generated. Numeric.
      • Price: Product price. Numeric.
      • CustomerID: 5-digit number assigned to each customer. Nominal.
      • Country: Name of the country where each customer resides. Nominal.

    imagehttps://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">

    Libraries in R

    First, we need to load required libraries. Shortly I describe all libraries.

    • arules - Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).
    • arulesViz - Extends package 'arules' with various visualization. techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
    • tidyverse - The tidyverse is an opinionated collection of R packages designed for data science.
    • readxl - Read Excel Files in R.
    • plyr - Tools for Splitting, Applying and Combining Data.
    • ggplot2 - A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
    • knitr - Dynamic Report generation in R.
    • magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
    • dplyr - A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
    • tidyverse - This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

    imagehttps://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">

    Data Pre-processing

    Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.

    imagehttps://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png"> imagehttps://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">

    After we will clear our data frame, will remove missing values.

    imagehttps://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">

    To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...

  9. UK House Price Index: data downloads December 2023

    • gov.uk
    Updated Feb 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2024). UK House Price Index: data downloads December 2023 [Dataset]. https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-december-2023
    Explore at:
    Dataset updated
    Feb 14, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Area covered
    United Kingdom
    Description

    The UK House Price Index is a National Statistic.

    Create your report

    Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_14_02_24" class="govuk-link">create your own bespoke reports.

    Download the data

    Datasets are available as CSV files. Find out about republishing and making use of the data.

    Full file

    This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.

    Download the full UK HPI background file:

    Individual attributes files

    If you are interested in a specific attribute, we have separated them into these CSV files:

  10. C

    Hospital Annual Financial Data - Selected Data & Pivot Tables

    • data.chhs.ca.gov
    csv, data, doc, html +4
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2023). Hospital Annual Financial Data - Selected Data & Pivot Tables [Dataset]. https://data.chhs.ca.gov/dataset/hospital-annual-financial-data-selected-data-pivot-tables
    Explore at:
    xlsx(763636), xls(18445312), pdf(303198), xlsx, doc, data, xlsx(754073), xls(920576), pdf(383996), xlsx(769128), xlsx(768036), xls(16002048), xlsx(750199), xls(44933632), xlsx(752914), xls(51424256), pdf(310420), html, xls(14657536), xlsx(765216), xlsx(770931), xls(44967936), pdf(258239), pdf(121968), xlsx(14714368), xls(19650048), xlsx(756356), xls, pdf(333268), xlsx(758089), xls(51554816), xlsx(758376), xls(18301440), csv(205488092), zip, xls(19625472), xlsx(782546), xlsx(790979), xlsx(771275), xlsx(777616), xlsx(779866), xls(19577856), xls(19599360)Available download formats
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description

    On an annual basis (individual hospital fiscal year), individual hospitals and hospital systems report detailed facility-level data on services capacity, inpatient/outpatient utilization, patients, revenues and expenses by type and payer, balance sheet and income statement.

    Due to the large size of the complete dataset, a selected set of data representing a wide range of commonly used data items, has been created that can be easily managed and downloaded. The selected data file includes general hospital information, utilization data by payer, revenue data by payer, expense data by natural expense category, financial ratios, and labor information.

    There are two groups of data contained in this dataset: 1) Selected Data - Calendar Year: To make it easier to compare hospitals by year, hospital reports with report periods ending within a given calendar year are grouped together. The Pivot Tables for a specific calendar year are also found here. 2) Selected Data - Fiscal Year: Hospital reports with report periods ending within a given fiscal year (July-June) are grouped together.

  11. d

    Electric Vehicle Population Data

    • catalog.data.gov
    • data.wa.gov
    • +3more
    Updated Jun 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.wa.gov (2025). Electric Vehicle Population Data [Dataset]. https://catalog.data.gov/dataset/electric-vehicle-population-data
    Explore at:
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    data.wa.gov
    Description

    This dataset shows the Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) that are currently registered through Washington State Department of Licensing (DOL).

  12. Vehicle licensing statistics data files

    • gov.uk
    • s3.amazonaws.com
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Transport (2025). Vehicle licensing statistics data files [Dataset]. https://www.gov.uk/government/statistical-data-sets/vehicle-licensing-statistics-data-files
    Explore at:
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Transport
    Description

    Recent changes

    A number of changes were introduced to these data files in the 2022 release to help meet the needs of our users and to provide more detail.

    Fuel type has been added to:

    • df_VEH0120_GB
    • df_VEH0120_UK
    • df_VEH0160_GB
    • df_VEH0160_UK

    Historic UK data has been added to:

    • df_VEH0124 (now split into 2 files)
    • df_VEH0220
    • df_VEH0270

    A new datafile has been added df_VEH0520.

    We welcome any feedback on the structure of our data files, their usability, or any suggestions for improvements; please contact vehicles statistics.

    How to use CSV files

    CSV files can be used either as a spreadsheet (using Microsoft Excel or similar spreadsheet packages) or digitally using software packages and languages (for example, R or Python).

    When using as a spreadsheet, there will be no formatting, but the file can still be explored like our publication tables. Due to their size, older software might not be able to open the entire file.

    Download data files

    Make and model by quarter

    df_VEH0120_GB: https://assets.publishing.service.gov.uk/media/68494aca74fe8fe0cbb4676c/df_VEH0120_GB.csv">Vehicles at the end of the quarter by licence status, body type, make, generic model and model: Great Britain (CSV, 58.1 MB)

    Scope: All registered vehicles in Great Britain; from 1994 Quarter 4 (end December)

    Schema: BodyType, Make, GenModel, Model, Fuel, LicenceStatus, [number of vehicles; 1 column per quarter]

    df_VEH0120_UK: https://assets.publishing.service.gov.uk/media/68494acb782e42a839d3a3ac/df_VEH0120_UK.csv">Vehicles at the end of the quarter by licence status, body type, make, generic model and model: United Kingdom (CSV, 34.1 MB)

    Scope: All registered vehicles in the United Kingdom; from 2014 Quarter 3 (end September)

    Schema: BodyType, Make, GenModel, Model, Fuel, LicenceStatus, [number of vehicles; 1 column per quarter]

    df_VEH0160_GB: https://assets.publishing.service.gov.uk/media/68494ad774fe8fe0cbb4676d/df_VEH0160_GB.csv">Vehicles registered for the first time by body type, make, generic model and model: Great Britain (CSV, 24.8 MB)

    Scope: All vehicles registered for the first time in Great Britain; from 2001 Quarter 1 (January to March)

    Schema: BodyType, Make, GenModel, Model, Fuel, [number of vehicles; 1 column per quarter]

    df_VEH0160_UK: https://assets.publishing.service.gov.uk/media/68494ad7aae47e0d6c06e078/df_VEH0160_UK.csv">Vehicles registered for the first time by body type, make, generic model and model: United Kingdom (CSV, 8.26 MB)

    Scope: All vehicles registered for the first time in the United Kingdom; from 2014 Quarter 3 (July to September)

    Schema: BodyType, Make, GenModel, Model, Fuel, [number of vehicles; 1 column per quarter]

    Make and model by age

    In order to keep the datafile df_VEH0124 to a reasonable size, it has been split into 2 halves; 1 covering makes starting with A to M, and the other covering makes starting with N to Z.

    df_VEH0124_AM: <a class="govuk-link" href="https://assets.

  13. g

    World Administrative Boundaries

    • geopostcodes.com
    csv
    Updated Apr 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). World Administrative Boundaries [Dataset]. https://www.geopostcodes.com/world-administrative-boundaries/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 28, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    World, World
    Description

    Our World Administrative Boundaries Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  14. g

    India zip code - Download Dataset

    • geopostcodes.com
    csv
    Updated Feb 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). India zip code - Download Dataset [Dataset]. https://www.geopostcodes.com/country/india-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 2, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    India
    Description

    Our India zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  15. Nestle India -Historical Stock Price Data

    • kaggle.com
    Updated Apr 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mansi Gaikwad (2022). Nestle India -Historical Stock Price Data [Dataset]. https://www.kaggle.com/datasets/mansigaikwad/nestle-india-historical-stock-price-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 25, 2022
    Dataset provided by
    Kaggle
    Authors
    Mansi Gaikwad
    Description

    This data is downloaded from the official Bombay Stock Exchange Website (BSE). This file contains the last 10 years of Historical Stock Price (By Security & Period) Security Name - Nestle India Ltd. Period - Daily Start Date - 2nd January 2012 End Date - 21st April 2022. This is one of the Best datasets for Regression Supervised Machine Learning. You can Perform SImple as well as Multiple Linear Regression on this Dataset.

  16. g

    South Africa zip code - Download Dataset

    • geopostcodes.com
    csv
    Updated Feb 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). South Africa zip code - Download Dataset [Dataset]. https://www.geopostcodes.com/country/south-africa-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 2, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    South Africa
    Description

    Our South Africa zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  17. g

    UAE Zip Code Database Sample - Download

    • geopostcodes.com
    csv
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). UAE Zip Code Database Sample - Download [Dataset]. https://www.geopostcodes.com/country/uae-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 10, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United Arab Emirates
    Description

    Our Uae zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  18. g

    South Korea Zip Code - Download Dataset

    • geopostcodes.com
    csv
    Updated Oct 30, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2009). South Korea Zip Code - Download Dataset [Dataset]. https://www.geopostcodes.com/country/south-korea-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 30, 2009
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    South Korea
    Description

    Our South Korea zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  19. g

    Uganda zip code - Download Dataset

    • geopostcodes.com
    csv
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Uganda zip code - Download Dataset [Dataset]. https://www.geopostcodes.com/country/uganda-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Uganda
    Description

    Our Uganda zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.montgomerycountymd.gov (2025). Warehouse and Retail Sales [Dataset]. https://catalog.data.gov/dataset/warehouse-and-retail-sales

Warehouse and Retail Sales

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 5, 2025
Dataset provided by
data.montgomerycountymd.gov
Description

This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly

Search
Clear search
Close search
Google apps
Main menu