3 datasets found
  1. AIT Log Data Set V2.0

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jun 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber; Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber (2024). AIT Log Data Set V2.0 [Dataset]. http://doi.org/10.5281/zenodo.5789064
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 28, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber; Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    AIT Log Data Sets

    This repository contains synthetic log data suitable for evaluation of intrusion detection systems, federated learning, and alert aggregation. A detailed description of the dataset is available in [1]. The logs were collected from eight testbeds that were built at the Austrian Institute of Technology (AIT) following the approach by [2]. Please cite these papers if the data is used for academic publications.

    In brief, each of the datasets corresponds to a testbed representing a small enterprise network including mail server, file share, WordPress server, VPN, firewall, etc. Normal user behavior is simulated to generate background noise over a time span of 4-6 days. At some point, a sequence of attack steps is launched against the network. Log data is collected from all hosts and includes Apache access and error logs, authentication logs, DNS logs, VPN logs, audit logs, Suricata logs, network traffic packet captures, horde logs, exim logs, syslog, and system monitoring logs. Separate ground truth files are used to label events that are related to the attacks. Compared to the AIT-LDSv1.1, a more complex network and diverse user behavior is simulated, and logs are collected from all hosts in the network. If you are only interested in network traffic analysis, we also provide the AIT-NDS containing the labeled netflows of the testbed networks. We also provide the AIT-ADS, an alert data set derived by forensically applying open-source intrusion detection systems on the log data.

    The datasets in this repository have the following structure:

    • The gather directory contains all logs collected from the testbed. Logs collected from each host are located in gather/.
    • The labels directory contains the ground truth of the dataset that indicates which events are related to attacks. The directory mirrors the structure of the gather directory so that each label files is located at the same path and has the same name as the corresponding log file. Each line in the label files references the log event corresponding to an attack by the line number counted from the beginning of the file ("line"), the labels assigned to the line that state the respective attack step ("labels"), and the labeling rules that assigned the labels ("rules"). An example is provided below.
    • The processing directory contains the source code that was used to generate the labels.
    • The rules directory contains the labeling rules.
    • The environment directory contains the source code that was used to deploy the testbed and run the simulation using the Kyoushi Testbed Environment.
    • The dataset.yml file specifies the start and end time of the simulation.

    The following table summarizes relevant properties of the datasets:

    • fox
      • Simulation time: 2022-01-15 00:00 - 2022-01-20 00:00
      • Attack time: 2022-01-18 11:59 - 2022-01-18 13:15
      • Scan volume: High
      • Unpacked size: 26 GB
    • harrison
      • Simulation time: 2022-02-04 00:00 - 2022-02-09 00:00
      • Attack time: 2022-02-08 07:07 - 2022-02-08 08:38
      • Scan volume: High
      • Unpacked size: 27 GB
    • russellmitchell
      • Simulation time: 2022-01-21 00:00 - 2022-01-25 00:00
      • Attack time: 2022-01-24 03:01 - 2022-01-24 04:39
      • Scan volume: Low
      • Unpacked size: 14 GB
    • santos
      • Simulation time: 2022-01-14 00:00 - 2022-01-18 00:00
      • Attack time: 2022-01-17 11:15 - 2022-01-17 11:59
      • Scan volume: Low
      • Unpacked size: 17 GB
    • shaw
      • Simulation time: 2022-01-25 00:00 - 2022-01-31 00:00
      • Attack time: 2022-01-29 14:37 - 2022-01-29 15:21
      • Scan volume: Low
      • Data exfiltration is not visible in DNS logs
      • Unpacked size: 27 GB
    • wardbeck
      • Simulation time: 2022-01-19 00:00 - 2022-01-24 00:00
      • Attack time: 2022-01-23 12:10 - 2022-01-23 12:56
      • Scan volume: Low
      • Unpacked size: 26 GB
    • wheeler
      • Simulation time: 2022-01-26 00:00 - 2022-01-31 00:00
      • Attack time: 2022-01-30 07:35 - 2022-01-30 17:53
      • Scan volume: High
      • No password cracking in attack chain
      • Unpacked size: 30 GB
    • wilson
      • Simulation time: 2022-02-03 00:00 - 2022-02-09 00:00
      • Attack time: 2022-02-07 10:57 - 2022-02-07 11:49
      • Scan volume: High
      • Unpacked size: 39 GB

    The following attacks are launched in the network:

    • Scans (nmap, WPScan, dirb)
    • Webshell upload (CVE-2020-24186)
    • Password cracking (John the Ripper)
    • Privilege escalation
    • Remote command execution
    • Data exfiltration (DNSteal)

    Note that attack parameters and their execution orders vary in each dataset. Labeled log files are trimmed to the simulation time to ensure that their labels (which reference the related event by the line number in the file) are not misleading. Other log files, however, also contain log events generated before or after the simulation time and may therefore be affected by testbed setup or data collection. It is therefore recommended to only consider logs with timestamps within the simulation time for analysis.

    The structure of labels is explained using the audit logs from the intranet server in the russellmitchell data set as an example in the following. The first four labels in the labels/intranet_server/logs/audit/audit.log file are as follows:

    {"line": 1860, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

    {"line": 1861, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

    {"line": 1862, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

    {"line": 1863, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

    Each JSON object in this file assigns a label to one specific log line in the corresponding log file located at gather/intranet_server/logs/audit/audit.log. The field "line" in the JSON objects specify the line number of the respective event in the original log file, while the field "labels" comprise the corresponding labels. For example, the lines in the sample above provide the information that lines 1860-1863 in the gather/intranet_server/logs/audit/audit.log file are labeled with "attacker_change_user" and "escalate" corresponding to the attack step where the attacker receives escalated privileges. Inspecting these lines shows that they indeed correspond to the user authenticating as root:

    type=USER_AUTH msg=audit(1642999060.603:2226): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:authentication acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

    type=USER_ACCT msg=audit(1642999060.603:2227): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:accounting acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

    type=CRED_ACQ msg=audit(1642999060.615:2228): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:setcred acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

    type=USER_START msg=audit(1642999060.627:2229): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:session_open acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

    The same applies to all other labels for this log file and all other log files. There are no labels for logs generated by "normal" (i.e., non-attack) behavior; instead, all log events that have no corresponding JSON object in one of the files from the labels directory, such as the lines 1-1859 in the example above, can be considered to be labeled as "normal". This means that in order to figure out the labels for the log data it is necessary to store the line numbers when processing the original logs from the gather directory and see if these line numbers also appear in the corresponding file in the labels directory.

    Beside the attack labels, a general overview of the exact times when specific attack steps are launched are available in gather/attacker_0/logs/attacks.log. An enumeration of all hosts and their IP addresses is stated in processing/config/servers.yml. Moreover, configurations of each host are provided in gather/ and gather/.

    Version history:

    • AIT-LDS-v1.x: Four datasets, logs from single host, fine-granular audit logs, mail/CMS.
    • AIT-LDS-v2.0: Eight datasets, logs from all hosts, system logs and network traffic, mail/CMS/cloud/web.

    Acknowledgements: Partially funded by the FFG projects INDICAETING (868306) and DECEPT (873980), and the EU projects GUARD (833456) and PANDORA (SI2.835928).

    If you use the dataset, please cite the following publications:

    [1] M. Landauer, F. Skopik, M. Frank, W. Hotwagner,

  2. Z

    AIT Alert Data Set

    • data.niaid.nih.gov
    • zenodo.org
    Updated Oct 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Landauer, Max (2024). AIT Alert Data Set [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8263180
    Explore at:
    Dataset updated
    Oct 14, 2024
    Dataset provided by
    Wurzenberger, Markus
    Landauer, Max
    Skopik, Florian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the AIT Alert Data Set (AIT-ADS), a collection of synthetic alerts suitable for evaluation of alert aggregation, alert correlation, alert filtering, and attack graph generation approaches. The alerts were forensically generated from the AIT Log Data Set V2 (AIT-LDSv2) and origin from three intrusion detection systems, namely Suricata, Wazuh, and AMiner. The data sets comprise eight scenarios, each of which has been targeted by a multi-step attack with attack steps such as scans, web application exploits, password cracking, remote command execution, privilege escalation, etc. Each scenario and attack chain has certain variations so that attack manifestations and resulting alert sequences vary in each scenario; this means that the data set allows to develop and evaluate approaches that compute similarities of attack chains or merge them into meta-alerts. Since only few benchmark alert data sets are publicly available, the AIT-ADS was developed to address common issues in the research domain of multi-step attack analysis; specifically, the alert data set contains many false positives caused by normal user behavior (e.g., user login attempts or software updates), heterogeneous alert formats (although all alerts are in JSON format, their fields are different for each IDS), repeated executions of attacks according to an attack plan, collection of alerts from diverse log sources (application logs and network traffic) and all components in the network (mail server, web server, DNS, firewall, file share, etc.), and labels for attack phases. For more information on how this alert data set was generated, check out our paper accompanying this data set [1] or our GitHub repository. More information on the original log data set, including a detailed description of scenarios and attacks, can be found in [2].

    The alert data set contains two files for each of the eight scenarios, and a file for their labels:

    _aminer.json contains alerts from AMiner IDS

    _wazuh.json contains alerts from Wazuh IDS and Suricata IDS

    labels.csv contains the start and end times of attack phases in each scenario

    Beside false positive alerts, the alerts in the AIT-ADS correspond to the following attacks:

    Scans (nmap, WPScan, dirb)

    Webshell upload (CVE-2020-24186)

    Password cracking (John the Ripper)

    Privilege escalation

    Remote command execution

    Data exfiltration (DNSteal) and stopped service

    The total number of alerts involved in the data set is 2,655,821, of which 2,293,628 origin from Wazuh, 306,635 origin from Suricata, and 55,558 origin from AMiner. The numbers of alerts in each scenario are as follows. fox: 473,104; harrison: 593,948; russellmitchell: 45,544; santos: 130,779; shaw: 70,782; wardbeck: 91,257; wheeler: 616,161; wilson: 634,246.

    Acknowledgements: Partially funded by the European Defence Fund (EDF) projects AInception (101103385) and NEWSROOM (101121403), and the FFG project PRESENT (FO999899544). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. The European Union cannot be held responsible for them.

    If you use the AIT-ADS, please cite the following publications:

    [1] Landauer, M., Skopik, F., Wurzenberger, M. (2024): Introducing a New Alert Data Set for Multi-Step Attack Analysis. Proceedings of the 17th Cyber Security Experimentation and Test Workshop. [PDF]

    [2] Landauer M., Skopik F., Frank M., Hotwagner W., Wurzenberger M., Rauber A. (2023): Maintainable Log Datasets for Evaluation of Intrusion Detection Systems. IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 4, pp. 3466-3482. [PDF]

  3. f

    Data_Sheet_1_Integrative Differential Expression Analysis for Multiple...

    • frontiersin.figshare.com
    txt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Verónica Jiménez-Jacinto; Alejandro Sanchez-Flores; Leticia Vega-Alvarado (2023). Data_Sheet_1_Integrative Differential Expression Analysis for Multiple EXperiments (IDEAMEX): A Web Server Tool for Integrated RNA-Seq Data Analysis.CSV [Dataset]. http://doi.org/10.3389/fgene.2019.00279.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Verónica Jiménez-Jacinto; Alejandro Sanchez-Flores; Leticia Vega-Alvarado
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The current DNA sequencing technologies and their high-throughput yield, allowed the thrive of genomic and transcriptomic experiments but it also have generated big data problem. Due to this exponential growth of sequencing data, also the complexity of managing, processing and interpreting it in order to generate results, has raised. Therefore, the demand of easy-to-use friendly software and websites to run bioinformatic tools is imminent. In particular, RNA-Seq and differential expression analysis have become a popular and useful method to evaluate the genetic expression change in any organism. However, many scientists struggle with the data analysis since most of the available tools are implemented in a UNIX-based environment. Therefore, we have developed the web server IDEAMEX (Integrative Differential Expression Analysis for Multiple EXperiments). The IDEAMEX pipeline needs a raw count table for as many desired replicates and conditions, allowing the user to select which conditions will be compared, instead of doing all-vs.-all comparisons. The whole process consists of three main steps (1) Data Analysis: that allows a preliminary analysis for quality control based on the data distribution per sample, using different types of graphs; (2) Differential expression: performs the differential expression analysis with or without batch effect error awareness, using the bioconductor packages, NOISeq, limma-Voom, DESeq2 and edgeR, and generate reports for each method; (3) Result integration: the obtained results the integrated results are reported using different graphical outputs such as correlograms, heatmaps, Venn diagrams and text lists. Our server allows an easy and friendly visualization for results, providing an easy interaction during the analysis process, as well as error tracking and debugging by providing output log files. The server is currently available and can be accessed at http://www.uusmb.unam.mx/ideamex/ where the documentation and example input files are provided. We consider that this web server can help other researchers with no previous bioinformatic knowledge, to perform their analyses in a simple manner.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber; Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber (2024). AIT Log Data Set V2.0 [Dataset]. http://doi.org/10.5281/zenodo.5789064
Organization logo

AIT Log Data Set V2.0

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
zipAvailable download formats
Dataset updated
Jun 28, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber; Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Description

AIT Log Data Sets

This repository contains synthetic log data suitable for evaluation of intrusion detection systems, federated learning, and alert aggregation. A detailed description of the dataset is available in [1]. The logs were collected from eight testbeds that were built at the Austrian Institute of Technology (AIT) following the approach by [2]. Please cite these papers if the data is used for academic publications.

In brief, each of the datasets corresponds to a testbed representing a small enterprise network including mail server, file share, WordPress server, VPN, firewall, etc. Normal user behavior is simulated to generate background noise over a time span of 4-6 days. At some point, a sequence of attack steps is launched against the network. Log data is collected from all hosts and includes Apache access and error logs, authentication logs, DNS logs, VPN logs, audit logs, Suricata logs, network traffic packet captures, horde logs, exim logs, syslog, and system monitoring logs. Separate ground truth files are used to label events that are related to the attacks. Compared to the AIT-LDSv1.1, a more complex network and diverse user behavior is simulated, and logs are collected from all hosts in the network. If you are only interested in network traffic analysis, we also provide the AIT-NDS containing the labeled netflows of the testbed networks. We also provide the AIT-ADS, an alert data set derived by forensically applying open-source intrusion detection systems on the log data.

The datasets in this repository have the following structure:

  • The gather directory contains all logs collected from the testbed. Logs collected from each host are located in gather/.
  • The labels directory contains the ground truth of the dataset that indicates which events are related to attacks. The directory mirrors the structure of the gather directory so that each label files is located at the same path and has the same name as the corresponding log file. Each line in the label files references the log event corresponding to an attack by the line number counted from the beginning of the file ("line"), the labels assigned to the line that state the respective attack step ("labels"), and the labeling rules that assigned the labels ("rules"). An example is provided below.
  • The processing directory contains the source code that was used to generate the labels.
  • The rules directory contains the labeling rules.
  • The environment directory contains the source code that was used to deploy the testbed and run the simulation using the Kyoushi Testbed Environment.
  • The dataset.yml file specifies the start and end time of the simulation.

The following table summarizes relevant properties of the datasets:

  • fox
    • Simulation time: 2022-01-15 00:00 - 2022-01-20 00:00
    • Attack time: 2022-01-18 11:59 - 2022-01-18 13:15
    • Scan volume: High
    • Unpacked size: 26 GB
  • harrison
    • Simulation time: 2022-02-04 00:00 - 2022-02-09 00:00
    • Attack time: 2022-02-08 07:07 - 2022-02-08 08:38
    • Scan volume: High
    • Unpacked size: 27 GB
  • russellmitchell
    • Simulation time: 2022-01-21 00:00 - 2022-01-25 00:00
    • Attack time: 2022-01-24 03:01 - 2022-01-24 04:39
    • Scan volume: Low
    • Unpacked size: 14 GB
  • santos
    • Simulation time: 2022-01-14 00:00 - 2022-01-18 00:00
    • Attack time: 2022-01-17 11:15 - 2022-01-17 11:59
    • Scan volume: Low
    • Unpacked size: 17 GB
  • shaw
    • Simulation time: 2022-01-25 00:00 - 2022-01-31 00:00
    • Attack time: 2022-01-29 14:37 - 2022-01-29 15:21
    • Scan volume: Low
    • Data exfiltration is not visible in DNS logs
    • Unpacked size: 27 GB
  • wardbeck
    • Simulation time: 2022-01-19 00:00 - 2022-01-24 00:00
    • Attack time: 2022-01-23 12:10 - 2022-01-23 12:56
    • Scan volume: Low
    • Unpacked size: 26 GB
  • wheeler
    • Simulation time: 2022-01-26 00:00 - 2022-01-31 00:00
    • Attack time: 2022-01-30 07:35 - 2022-01-30 17:53
    • Scan volume: High
    • No password cracking in attack chain
    • Unpacked size: 30 GB
  • wilson
    • Simulation time: 2022-02-03 00:00 - 2022-02-09 00:00
    • Attack time: 2022-02-07 10:57 - 2022-02-07 11:49
    • Scan volume: High
    • Unpacked size: 39 GB

The following attacks are launched in the network:

  • Scans (nmap, WPScan, dirb)
  • Webshell upload (CVE-2020-24186)
  • Password cracking (John the Ripper)
  • Privilege escalation
  • Remote command execution
  • Data exfiltration (DNSteal)

Note that attack parameters and their execution orders vary in each dataset. Labeled log files are trimmed to the simulation time to ensure that their labels (which reference the related event by the line number in the file) are not misleading. Other log files, however, also contain log events generated before or after the simulation time and may therefore be affected by testbed setup or data collection. It is therefore recommended to only consider logs with timestamps within the simulation time for analysis.

The structure of labels is explained using the audit logs from the intranet server in the russellmitchell data set as an example in the following. The first four labels in the labels/intranet_server/logs/audit/audit.log file are as follows:

{"line": 1860, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

{"line": 1861, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

{"line": 1862, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

{"line": 1863, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

Each JSON object in this file assigns a label to one specific log line in the corresponding log file located at gather/intranet_server/logs/audit/audit.log. The field "line" in the JSON objects specify the line number of the respective event in the original log file, while the field "labels" comprise the corresponding labels. For example, the lines in the sample above provide the information that lines 1860-1863 in the gather/intranet_server/logs/audit/audit.log file are labeled with "attacker_change_user" and "escalate" corresponding to the attack step where the attacker receives escalated privileges. Inspecting these lines shows that they indeed correspond to the user authenticating as root:

type=USER_AUTH msg=audit(1642999060.603:2226): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:authentication acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

type=USER_ACCT msg=audit(1642999060.603:2227): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:accounting acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

type=CRED_ACQ msg=audit(1642999060.615:2228): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:setcred acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

type=USER_START msg=audit(1642999060.627:2229): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:session_open acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

The same applies to all other labels for this log file and all other log files. There are no labels for logs generated by "normal" (i.e., non-attack) behavior; instead, all log events that have no corresponding JSON object in one of the files from the labels directory, such as the lines 1-1859 in the example above, can be considered to be labeled as "normal". This means that in order to figure out the labels for the log data it is necessary to store the line numbers when processing the original logs from the gather directory and see if these line numbers also appear in the corresponding file in the labels directory.

Beside the attack labels, a general overview of the exact times when specific attack steps are launched are available in gather/attacker_0/logs/attacks.log. An enumeration of all hosts and their IP addresses is stated in processing/config/servers.yml. Moreover, configurations of each host are provided in gather/ and gather/.

Version history:

  • AIT-LDS-v1.x: Four datasets, logs from single host, fine-granular audit logs, mail/CMS.
  • AIT-LDS-v2.0: Eight datasets, logs from all hosts, system logs and network traffic, mail/CMS/cloud/web.

Acknowledgements: Partially funded by the FFG projects INDICAETING (868306) and DECEPT (873980), and the EU projects GUARD (833456) and PANDORA (SI2.835928).

If you use the dataset, please cite the following publications:

[1] M. Landauer, F. Skopik, M. Frank, W. Hotwagner,

Search
Clear search
Close search
Google apps
Main menu