Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
The Superstore Sales Data dataset, available in an Excel format as "Superstore.xlsx," is a comprehensive collection of sales and customer-related information from a retail superstore. This dataset comprises* three distinct tables*, each providing specific insights into the store's operations and customer interactions.
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
This dataset was created by Andrés Armando Sánchez Martín
Released under Community Data License Agreement - Sharing - Version 1.0
Facebook
TwitterThe annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.
Facebook
TwitterThis dataset was created by Truong Dai
Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1.Introduction
Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.
One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.
This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.
Please cite the following papers when using this dataset:
I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted
The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.
3.1 Data Collection
The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.
The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.
Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.
It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.
The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).
File
Period
Number of Samples (days)
product 1 2020.xlsx
01/01/2020–31/12/2020
363
product 1 2021.xlsx
01/01/2021–31/12/2021
364
product 1 2022.xlsx
01/01/2022–31/12/2022
365
product 2 2020.xlsx
01/01/2020–31/12/2020
363
product 2 2021.xlsx
01/01/2021–31/12/2021
364
product 2 2022.xlsx
01/01/2022–31/12/2022
365
product 3 2020.xlsx
01/01/2020–31/12/2020
363
product 3 2021.xlsx
01/01/2021–31/12/2021
364
product 3 2022.xlsx
01/01/2022–31/12/2022
365
product 4 2020.xlsx
01/01/2020–31/12/2020
363
product 4 2021.xlsx
01/01/2021–31/12/2021
364
product 4 2022.xlsx
01/01/2022–31/12/2022
364
product 5 2020.xlsx
01/01/2020–31/12/2020
363
product 5 2021.xlsx
01/01/2021–31/12/2021
364
product 5 2022.xlsx
01/01/2022–31/12/2022
365
product 6 2020.xlsx
01/01/2020–31/12/2020
362
product 6 2021.xlsx
01/01/2021–31/12/2021
364
product 6 2022.xlsx
01/01/2022–31/12/2022
365
product 7 2020.xlsx
01/01/2020–31/12/2020
362
product 7 2021.xlsx
01/01/2021–31/12/2021
364
product 7 2022.xlsx
01/01/2022–31/12/2022
365
3.2 Dataset Overview
The following table enumerates and explains the features included across all of the included files.
Feature
Description
Unit
Day
day of the month
-
Month
Month
-
Year
Year
-
daily_unit_sales
Daily sales - the amount of products, measured in units, that during that specific day were sold
units
previous_year_daily_unit_sales
Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year
units
percentage_difference_daily_unit_sales
The percentage difference between the two above values
%
daily_unit_sales_kg
The amount of products, measured in kilograms, that during that specific day were sold
kg
previous_year_daily_unit_sales_kg
Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year
kg
percentage_difference_daily_unit_sales_kg
The percentage difference between the two above values
kg
daily_unit_returns_kg
The percentage of the products that were shipped to selling points and were returned
%
previous_year_daily_unit_returns_kg
The percentage of the products that were shipped to selling points and were returned the previous year
%
points_of_distribution
The amount of sales representatives through which the product was sold to the market for this year
previous_year_points_of_distribution
The amount of sales representatives through which the product was sold to the market for the same day for the previous year
Table 1 – Dataset Feature Description
4.1 Dataset Structure
The provided dataset has the following structure:
Where:
Name
Type
Property
Readme.docx
Report
A File that contains the documentation of the Dataset.
product X
Folder
A folder containing the data of a product X.
product X YYYY.xlsx
Data file
An excel file containing the sales data of product X for year YYYY.
Table 2 - Dataset File Description
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 957406 (TERMINET).
References
[1] MEVGAL is a Greek dairy production company
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Categorical scatterplots with R for biologists: a step-by-step guide
Benjamin Petre1, Aurore Coince2, Sophien Kamoun1
1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK
Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.
Protocol
• Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.
• Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.
• Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.
Notes
• Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.
• Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.
replicates
graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()
References
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.
Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035
Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128
Facebook
TwitterThe Delta Food Outlets Study was an observational study designed to assess the nutritional environments of 5 towns located in the Lower Mississippi Delta region of Mississippi. It was an ancillary study to the Delta Healthy Sprouts Project and therefore included towns in which Delta Healthy Sprouts participants resided and that contained at least one convenience (corner) store, grocery store, or gas station. Data were collected via electronic surveys between March 2016 and September 2018 using the Nutrition Environment Measures Survey (NEMS) tools. Survey scores for the NEMS Corner Store, NEMS Grocery Store, and NEMS Restaurant were computed using modified scoring algorithms provided for these tools via SAS software programming. Because the towns were not randomly selected and the sample sizes are relatively small, the data may not be generalizable to all rural towns in the Lower Mississippi Delta region of Mississippi. Dataset one (NEMS-C) contains data collected with the NEMS Corner (convenience) Store tool. Dataset two (NEMS-G) contains data collected with the NEMS Grocery Store tool. Dataset three (NEMS-R) contains data collected with the NEMS Restaurant tool. Resources in this dataset:Resource Title: Delta Food Outlets Data Dictionary. File Name: DFO_DataDictionary_Public.csvResource Description: This file contains the data dictionary for all 3 datasets that are part of the Delta Food Outlets Study.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset One NEMS-C. File Name: NEMS-C Data.csvResource Description: This file contains data collected with the Nutrition Environment Measures Survey (NEMS) tool for convenience stores.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two NEMS-G. File Name: NEMS-G Data.csvResource Description: This file contains data collected with the Nutrition Environment Measures Survey (NEMS) tool for grocery stores.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three NEMS-R. File Name: NEMS-R Data.csvResource Description: This file contains data collected with the Nutrition Environment Measures Survey (NEMS) tool for restaurants.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the framework of Articles 23 and 33 of Regulation (EC) No 178/2002 EFSA has received from the European Commission a mandate (M-2010-0374) to collect all available data on the occurrence of chemical contaminants in food and feed. These data are used in EFSA’s scientific opinions and reports on contaminants in food and feed.
This data providers package provides the data collection configuration and supporting materials for reporting Chemical Contaminants in SSD1. These are to be used for the official data reporting phase.
The package includes:
The Standard Sample Description Version 2 XSD schema definition for CONTAMINANTS reporting.
The general and CONTAMINANTS SSD1 specific business rules applied for the automatic validation of the submitted datasets.
Excel Mapping tool to convert excel files after mapping into XML document.
Please follow the instructions below for the correct use of the mapping tool to avoid compromising its functionalities:
Guidance on how to run the validation report after submitting data to the DCF.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Retail_Analysis_with_Walmart/main/Wallmart1.jpg" alt="">
One of the leading retail stores in the US, Walmart, would like to predict the sales and demand accurately. There are certain events and holidays which impact sales on each day. There are sales data available for 45 stores of Walmart. The business is facing a challenge due to unforeseen demands and runs out of stock some times, due to the inappropriate machine learning algorithm. An ideal ML algorithm will predict demand accurately and ingest factors like economic conditions including CPI, Unemployment Index, etc.
Walmart runs several promotional markdown events throughout the year. These markdowns precede prominent holidays, the four largest of all, which are the Super Bowl, Labour Day, Thanksgiving, and Christmas. The weeks including these holidays are weighted five times higher in the evaluation than non-holiday weeks. Part of the challenge presented by this competition is modeling the effects of markdowns on these holiday weeks in the absence of complete/ideal historical data. Historical sales data for 45 Walmart stores located in different regions are available.
The dataset is taken from Kaggle.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
About this file The Kaggle Global Superstore dataset is a comprehensive dataset containing information about sales and orders in a global superstore. It is a valuable resource for data analysis and visualization tasks. This dataset has been processed and transformed from its original format (txt) to CSV using the R programming language. The original dataset is available here, and the transformed CSV file used in this analysis can be found here.
Here is a description of the columns in the dataset:
category: The category of products sold in the superstore.
city: The city where the order was placed.
country: The country in which the superstore is located.
customer_id: A unique identifier for each customer.
customer_name: The name of the customer who placed the order.
discount: The discount applied to the order.
market: The market or region where the superstore operates.
ji_lu_shu: An unknown or unspecified column.
order_date: The date when the order was placed.
order_id: A unique identifier for each order.
order_priority: The priority level of the order.
product_id: A unique identifier for each product.
product_name: The name of the product.
profit: The profit generated from the order.
quantity: The quantity of products ordered.
region: The region where the order was placed.
row_id: A unique identifier for each row in the dataset.
sales: The total sales amount for the order.
segment: The customer segment (e.g., consumer, corporate, or home office).
ship_date: The date when the order was shipped.
ship_mode: The shipping mode used for the order.
shipping_cost: The cost of shipping for the order.
state: The state or region within the country.
sub_category: The sub-category of products within the main category.
year: The year in which the order was placed.
market2: Another column related to market information.
weeknum: The week number when the order was placed.
This dataset can be used for various data analysis tasks, including understanding sales patterns, customer behavior, and profitability in the context of a global superstore.
Facebook
TwitterThe Delta Produce Sources Study was an observational study designed to measure and compare food environments of farmers markets (n=3) and grocery stores (n=12) in 5 rural towns located in the Lower Mississippi Delta region of Mississippi. Data were collected via electronic surveys from June 2019 to March 2020 using a modified version of the Nutrition Environment Measures Survey (NEMS) Farmers Market Audit tool. The tool was modified to collect information pertaining to source of fresh produce and also for use with both farmers markets and grocery stores. Availability, source, quality, and price information were collected and compared between farmers markets and grocery stores for 13 fresh fruits and 32 fresh vegetables via SAS software programming. Because the towns were not randomly selected and the sample sizes are relatively small, the data may not be generalizable to all rural towns in the Lower Mississippi Delta region of Mississippi. Resources in this dataset:Resource Title: Delta Produce Sources Study dataset . File Name: DPS Data Public.csvResource Description: The dataset contains variables corresponding to availability, source (country, state and town if country is the United States), quality, and price (by weight or volume) of 13 fresh fruits and 32 fresh vegetables sold in farmers markets and grocery stores located in 5 Lower Mississippi Delta towns.Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/en-us/microsoft-365/excel Resource Title: Delta Produce Sources Study data dictionary. File Name: DPS Data Dictionary Public.csvResource Description: This file is the data dictionary corresponding to the Delta Produce Sources Study dataset.Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/en-us/microsoft-365/excel
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset was created and deposited onto the University of Sheffield Online Research Data repository (ORDA) on 23-Jun-2023 by Dr. Matthew S. Hanchard, Research Associate at the University of Sheffield iHuman Institute.
The dataset forms part of three outputs from a project titled ‘Fostering cultures of open qualitative research’ which ran from January 2023 to June 2023:
· Fostering cultures of open qualitative research: Dataset 1 – Survey Responses · Fostering cultures of open qualitative research: Dataset 2 – Interview Transcripts · Fostering cultures of open qualitative research: Dataset 3 – Coding Book
The project was funded with £13,913.85 Research England monies held internally by the University of Sheffield - as part of their ‘Enhancing Research Cultures’ scheme 2022-2023.
The dataset aligns with ethical approval granted by the University of Sheffield School of Sociological Studies Research Ethics Committee (ref: 051118) on 23-Jan-2021.This includes due concern for participant anonymity and data management.
ORDA has full permission to store this dataset and to make it open access for public re-use on the basis that no commercial gain will be made form reuse. It has been deposited under a CC-BY-NC license.
This dataset comprises one spreadsheet with N=91 anonymised survey responses .xslx format. It includes all responses to the project survey which used Google Forms between 06-Feb-2023 and 30-May-2023. The spreadsheet can be opened with Microsoft Excel, Google Sheet, or open-source equivalents.
The survey responses include a random sample of researchers worldwide undertaking qualitative, mixed-methods, or multi-modal research.
The recruitment of respondents was initially purposive, aiming to gather responses from qualitative researchers at research-intensive (targetted Russell Group) Universities. This involved speculative emails and a call for participant on the University of Sheffield ‘Qualitative Open Research Network’ mailing list. As result, the responses include a snowball sample of scholars from elsewhere.
The spreadsheet has two tabs/sheets: one labelled ‘SurveyResponses’ contains the anonymised and tidied set of survey responses; the other, labelled ‘VariableMapping’, sets out each field/column in the ‘SurveyResponses’ tab/sheet against the original survey questions and responses it relates to.
The survey responses tab/sheet includes a field/column labelled ‘RespondentID’ (using randomly generated 16-digit alphanumeric keys) which can be used to connect survey responses to interview participants in the accompanying ‘Fostering cultures of open qualitative research: Dataset 2 – Interview transcripts’ files.
A set of survey questions gathering eligibility criteria detail and consent are not listed with in this dataset, as below. All responses provide in the dataset gained a ‘Yes’ response to all the below questions (with the exception of one question, marked with an asterisk (*) below):
· I am aged 18 or over · I have read the information and consent statement and above. · I understand how to ask questions and/or raise a query or concern about the survey. · I agree to take part in the research and for my responses to be part of an open access dataset. These will be anonymised unless I specifically ask to be named. · I understand that my participation does not create a legally binding agreement or employment relationship with the University of Sheffield · I understand that I can withdraw from the research at any time. · I assign the copyright I hold in materials generated as part of this project to The University of Sheffield. · * I am happy to be contacted after the survey to take part in an interview.
The project was undertaken by two staff: Co-investigator: Dr. Itzel San Roman Pineda ORCiD ID: 0000-0002-3785-8057 i.sanromanpineda@sheffield.ac.uk
Postdoctoral Research Assistant Principal Investigator (corresponding dataset author): Dr. Matthew Hanchard ORCiD ID: 0000-0003-2460-8638 m.s.hanchard@sheffield.ac.uk Research Associate iHuman Institute, Social Research Institutes, Faculty of Social Science
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This Excel spreadsheet provides sediment description information for samples obtained with a modified van Veen grab sampler during R/V Pritchard and R/V Seawolf surveys of eastern Long Island Sound in August and November 2023. The sampling was done as part of the Long Island Sound mapping project Phase 4B. A photo of each sample was taken and the samples were described visually in the field. Based on the findings a preliminary lithology was determined. A sub-sample of the top two centimeters was taken and stored in a jar for later analysis. Sample location is based on the ship D-GPS system. The work was funded with CT DEEP award CDEP 2003-191.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Abstract: This Excel spreadsheet provides sediment description information for samples obtained with a Ponar grab sampler during R/V Lowell Weicker surveys of western Long Island Sound in June 2023. The sampling was done as part of the Long Island Sound mapping project Phase 3A. A photo of each sample was taken and the samples were described visually in the field. Based on the findings a preliminary lithology was determined. A sub-sample of the top two centimeters was taken and stored in a jar for later analysis. Sample location is based on the ship DGPS system. This project was made possible by the Long Island Sound Research and Restoration Fund, established by a Memorandum of Understanding among the members of the Policy Committee of the Long Island Sound Management Conference and administered by Long Island Sound Cable Fund Steering Committee.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 2. Example of transformed metadata: In this .xlsx (MS Excel) file, we list all the output metadata categories generated for each sample from the transformation of the 1KGP input datasets. The output metadata include information collected from all the four 1KGP metadata files considered. Some categories are not reported in the source metadata files—they are identified by the label manually_curated_...—and were added by the developed pipeline to store technical details (e.g., download date, the md5 hash of the source file, file size, etc.) and information derived from the knowledge of the source, such as the species, the processing pipeline used in the source and the health status. For every information category, the table reports a possible value. The third column (cardinality > 1) tells whether the same key can appear multiple times in the output GDM metadata file. This is used to represent multi-valued metadata categories; for example, in a GDM metadata file, the key manually_curated_chromosome appears once for every chromosome mutated by the variants of the sample.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Data Collection
The sentiment data used in this project was collected manually. The dataset, stored in an Excel file (Sentiment.xlsx), includes text samples with corresponding sentiment labels. Details about the manual data collection process, sources, and criteria are explained in the data collection section of the code.
Data Cleaning
Before training the sentiment analysis model, the collected data undergoes a cleaning process. The clean_text function is applied to each… See the full description on the dataset page: https://huggingface.co/datasets/DineshKumar1329/Sentiment_Analysis.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Warning: Large file size (over 1GB). Each monthly data set is large (over 4 million rows), but can be viewed in standard software such as Microsoft WordPad (save by right-clicking on the file name and selecting 'Save Target As', or equivalent on Mac OSX). It is then possible to select the required rows of data and copy and paste the information into another software application, such as a spreadsheet. Alternatively, add-ons to existing software, such as the Microsoft PowerPivot add-on for Excel, to handle larger data sets, can be used. The Microsoft PowerPivot add-on for Excel is available from Microsoft http://office.microsoft.com/en-gb/excel/download-power-pivot-HA101959985.aspx Once PowerPivot has been installed, to load the large files, please follow the instructions below. Note that it may take at least 20 to 30 minutes to load one monthly file. 1. Start Excel as normal 2. Click on the PowerPivot tab 3. Click on the PowerPivot Window icon (top left) 4. In the PowerPivot Window, click on the "From Other Sources" icon 5. In the Table Import Wizard e.g. scroll to the bottom and select Text File 6. Browse to the file you want to open and choose the file extension you require e.g. CSV Once the data has been imported you can view it in a spreadsheet. What does the data cover? General practice prescribing data is a list of all medicines, dressings and appliances that are prescribed and dispensed each month. A record will only be produced when this has occurred and there is no record for a zero total. For each practice in England, the following information is presented at presentation level for each medicine, dressing and appliance, (by presentation name): - the total number of items prescribed and dispensed - the total net ingredient cost - the total actual cost - the total quantity The data covers NHS prescriptions written in England and dispensed in the community in the UK. Prescriptions written in England but dispensed outside England are included. The data includes prescriptions written by GPs and other non-medical prescribers (such as nurses and pharmacists) who are attached to GP practices. GP practices are identified only by their national code, so an additional data file - linked to the first by the practice code - provides further detail in relation to the practice. Presentations are identified only by their BNF code, so an additional data file - linked to the first by the BNF code - provides the chemical name for that presentation.
Facebook
TwitterThe link for the Excel project to download can be found on GitHub here.
It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt="">
The link for the Tableau adjusted dashboard can be found here.
A screenshot of the interactive Excel dashboard is also included below for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
FireClay_data_table.xlsx is an excel file with the raw data 40Ar/39Ar single fusion measurements on the Fire Clay tonstein. This data is full reduced and defines the interference corrections used and methodology of the mass discrimination.Final_Bayes_Input_Data.xlsx is an excel file with all input data into the model. This file contains: 238U/206Pb - measured ratios, uncertainties, and MSWD (where available); 235U/207Pb - measured ratios, uncertainties, and MSWD (where available); RX_FCs - measured ratios, uncertainties, and MSWD (where available). File also contains some notes and descriptions of each sample.BayesCal_InputData.ipynb -(Jupyter notebook) Reads in the preliminary file from pathway, modifies and propagates uncertainties using linear matrix algebra and sqrt(mswd) saves final data frame to user defined excel fileRunning_Input_Data Class.ipynb (Jupyter notebook) - Example of how to read in preliminary data and get formatted final input dataset for the model.Uni_delta.xlsx - Excel Spread sheet of delta ages between 235U/2307Pb and 40Ar/39Ar and 238U/2306Pb and 40Ar/39ArUni_Res_Time.xlsx - Excel Spread sheet of residence times for all appropriate samplesUni_U_decay_constants.xlsx - Excel Spread sheet of posterior values and uncertainties for 235U and 238U decay constantsUni_lam.xlsx - Summary of all posterior values for 40K decay schemeUni_FCs.xlsx - Summary of all posterior values for Fish Canyon sanidine Uni_u238_Xi.xlsx - Summary of all posterior values for age perturbations for each 238U/206Pb age of each sampleUni_u235_Xi.xlsx - Summary of all posterior values for age perturbations for each 235U/207Pb age of each sampleUni_Ar_Xi.xlsx - Summary of all posterior values for age perturbations for each 40Ar/39Ar age of each sampleUni_K40K_samples.xlsx - Summary of all posterior values for 40K/K ratios of each sampleUni_K40K_standards.xlsx - Summary of all posterior values for 40K/K ratio for Fish Canyon sanidine and the 40K/K for the decay constant materialPotassium Isotopic Variability and implications for age.ipynb - Notebook for summary plot of potassium isotopic variability - Figures S8 and S9 in the supplementary materialCalibration Comparison Figure.ipynb - Notebook for plotting comparison of Min/Kuiper, Renne et al., and the Bayesian calibrations as a function of age. Figure 3 in the manuscript.Bayesian Calibration Paper Plots.ipynb - Notebook for plotting Figures 1, 2, and 4 in the associated manuscript.Residence time and delta age plots.ipynb - Plots of age perturbation parameter values and residence time - Figures S5 and S6 in the supplementary material. Ar_ages_and_uncertainties (Jupyter notebook) - Notebook for calculating ages and uncertainties given a R-value relationship between the unknown and Fish Canyon sanidine. Covariance between the total decay constant and FCs is included. It is assumed that the the covariance in a measured R-value to both the FCs age and total decay constant is zero. Ages are given for the R-values reported in Table 9 in the manuscript and reported in section 4.5. All ages should agree.BayesCal Comp (Jupyter notebook) - Jupyter notebook containing the entire code for the MCMC algorithm described in the "Bayesian Calibration of the 40K Decay Scheme and its implications for 40K-based geochronology" manuscript. Some plots are given in this note book but, the majority are store as summary excel files to be plotted elsewhere.Potassium Isotopic Variability and implications for age.ipynb - Notebook for plotting and summary of the implications for a calculated 40Ar/39Ar age accounting for the model variance in the 40K/K ratio between samples, FCs neutron fluence monitor, and material used to measure the total decay constant.Residence time and delta age plots.ipynb - Notebook for plotting the output residence times summary and the age-perturbing parameters summary.40K decay constant comparison.ipynb - Notebook for plotting the model estimate 40K decay constant against all other decay constants (Table 1 in the manuscript). Also contains calculation for updating the decay constant for variability in 40K/K.Bayesian Calibration Paper Plots.ipynb - Notebook for reading in the model outputs and plotting Figures 1, 2, and 4 in the manuscript.Calibration Comparison Figure.ipynb - Notebook for comparison of the most widely used calibrations of Min/Kuiper et al. and Renne et al. 2011 with the Bayesian calibration this study.Z-score_comparison.ipynb - Notebook for calculating the Z-scores of the Renne et al. (2011) and Bayesian calibrations ages of ACs, Melilla sample, and FCs with the astronomical age estimates.
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
The Superstore Sales Data dataset, available in an Excel format as "Superstore.xlsx," is a comprehensive collection of sales and customer-related information from a retail superstore. This dataset comprises* three distinct tables*, each providing specific insights into the store's operations and customer interactions.