100+ datasets found
  1. w

    Reproductive and Child Health Survey 1999 - Tanzania

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jun 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (NBS) (2017). Reproductive and Child Health Survey 1999 - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/1508
    Explore at:
    Dataset updated
    Jun 6, 2017
    Dataset authored and provided by
    National Bureau of Statistics (NBS)
    Time period covered
    1999
    Area covered
    Tanzania
    Description

    Abstract

    The Tanzania Demographic and Health Survey (TDHS) is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1999 TRCHS was to collect data at the national level (with breakdowns by urban-rural and Mainland-Zanzibar residence wherever warranted) on fertility levels and preferences, family planning use, maternal and child health, breastfeeding practices, nutritional status of young children, childhood mortality levels, knowledge and behaviour regarding HIV/AIDS, and the availability of specific health services within the community.1 Related objectives were to produce these results in a timely manner and to ensure that the data were disseminated to a wide audience of potential users in governmental and nongovernmental organisations within and outside Tanzania. The ultimate intent is to use the information to evaluate current programmes and to design new strategies for improving health and family planning services for the people of Tanzania.

    Geographic coverage

    National. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately.

    Analysis unit

    • Households
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The TRCHS used a three-stage sample design. Overall, 176 census enumeration areas were selected (146 on the Mainland and 30 in Zanzibar) with probability proportional to size on an approximately self-weighting basis on the Mainland, but with oversampling of urban areas and Zanzibar. To reduce costs and maximise the ability to identify trends over time, these enumeration areas were selected from the 357 sample points that were used in the 1996 TDHS, which in turn were selected from the 1988 census frame of enumeration in a two-stage process (first wards/branches and then enumeration areas within wards/branches). Before the data collection, fieldwork teams visited the selected enumeration areas to list all the households. From these lists, households were selected to be interviewed. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately. The health facilities component of the TRCHS involved visiting hospitals, health centres, and pharmacies located in areas around the households interviewed. In this way, the data from the two components can be linked and a richer dataset produced.

    See detailed sample implementation in the APPENDIX A of the final report.

    Mode of data collection

    Face-to-face

    Research instrument

    The household survey component of the TRCHS involved three questionnaires: 1) a Household Questionnaire, 2) a Women’s Questionnaire for all individual women age 15-49 in the selected households, and 3) a Men’s Questionnaire for all men age 15-59.

    The health facilities survey involved six questionnaires: 1) a Community Questionnaire administered to men and women in each selected enumeration area; 2) a Facility Questionnaire; 3) a Facility Inventory; 4) a Service Provider Questionnaire; 5) a Pharmacy Inventory Questionnaire; and 6) a questionnaire for the District Medical Officers.

    All these instruments were based on model questionnaires developed for the MEASURE programme, as well as on the questionnaires used in the 1991-92 TDHS, the 1994 TKAP, and the 1996 TDHS. These model questionnaires were adapted for use in Tanzania during meetings with representatives from the Ministry of Health, the University of Dar es Salaam, the Tanzania Food and Nutrition Centre, USAID/Tanzania, UNICEF/Tanzania, UNFPA/Tanzania, and other potential data users. The questionnaires and manual were developed in English and then translated into and printed in Kiswahili.

    The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview and children under five who were to be weighed and measured. Information was also collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, ownership of various consumer goods, and use of iodised salt. Finally, the Household Questionnaire was used to collect some rudimentary information about the extent of child labour.

    The Women’s Questionnaire was used to collect information from women age 15-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, type of employment) · Birth history · Knowledge and use of family planning methods · Antenatal, delivery, and postnatal care · Breastfeeding and weaning practices · Vaccinations, birth registration, and health of children under age five · Marriage and recent sexual activity · Fertility preferences · Knowledge and behaviour concerning HIV/AIDS.

    The Men’s Questionnaire covered most of these same issues, except that it omitted the sections on the detailed reproductive history, maternal health, and child health. The final versions of the English questionnaires are provided in Appendix E.

    Before the questionnaires could be finalised, a pretest was done in July 1999 in Kibaha District to assess the viability of the questions, the flow and logical sequence of the skip pattern, and the field organisation. Modifications to the questionnaires, including wording and translations, were made based on lessons drawn from the exercise.

    Response rate

    In all, 3,826 households were selected for the sample, out of which 3,677 were occupied. Of the households found, 3,615 were interviewed, representing a response rate of 98 percent. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants were not at home despite of several callbacks.

    In the interviewed households, a total of 4,118 eligible women (i.e., women age 15-49) were identified for the individual interview, and 4,029 women were actually interviewed, yielding a response rate of 98 percent. A total of 3,792 eligible men (i.e., men age 15-59), were identified for the individual interview, of whom 3,542 were interviewed, representing a response rate of 93 percent. The principal reason for nonresponse among both eligible men and women was the failure to find them at home despite repeated visits to the household. The lower response rate among men than women was due to the more frequent and longer absences of men.

    The response rates are lower in urban areas due to longer absence of respondents from their homes. One-member households are more common in urban areas and are more difficult to interview because they keep their houses locked most of the time. In urban settings, neighbours often do not know the whereabouts of such people.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TRCHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TRCHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TRCHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TRCHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rate

    Note: See detailed sampling error calculation in the APPENDIX B

  2. i

    Household Health Survey 2012-2013, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Jun 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Organization (CSO) (2017). Household Health Survey 2012-2013, Economic Research Forum (ERF) Harmonization Data - Iraq [Dataset]. https://catalog.ihsn.org/index.php/catalog/6937
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset provided by
    Kurdistan Regional Statistics Office (KRSO)
    Central Statistical Organization (CSO)
    Economic Research Forum
    Time period covered
    2012 - 2013
    Area covered
    Iraq
    Description

    Abstract

    The harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.

    ----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:

    Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    The survey has six main objectives. These objectives are:

    1. Provide data for poverty analysis and measurement and monitor, evaluate and update the implementation Poverty Reduction National Strategy issued in 2009.
    2. Provide comprehensive data system to assess household social and economic conditions and prepare the indicators related to the human development.
    3. Provide data that meet the needs and requirements of national accounts.
    4. Provide detailed indicators on consumption expenditure that serve making decision related to production, consumption, export and import.
    5. Provide detailed indicators on the sources of households and individuals income.
    6. Provide data necessary for formulation of a new consumer price index number.

    The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.

    Geographic coverage

    National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    ----> Design:

    Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.

    ----> Sample frame:

    Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.

    ----> Sampling Stages:

    In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    ----> Preparation:

    The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.

    ----> Questionnaire Parts:

    The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job

    Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.

    Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days

    Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.

    Cleaning operations

    ----> Raw Data:

    Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.

    ----> Harmonized Data:

    • The SPSS package is used to harmonize the Iraq Household Socio Economic Survey (IHSES) 2007 with Iraq Household Socio Economic Survey (IHSES) 2012.
    • The harmonization process starts with raw data files received from the Statistical Office.
    • A program is generated for each dataset to create harmonized variables.
    • Data is saved on the household and individual level, in SPSS and then converted to STATA, to be disseminated.

    Response rate

    Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).

  3. f

    Annual Agricultural Sample Survey 2022/23 - United Republic of Tanzania

    • microdata.fao.org
    Updated Nov 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of the Chief Government Statistician (2025). Annual Agricultural Sample Survey 2022/23 - United Republic of Tanzania [Dataset]. https://microdata.fao.org/index.php/catalog/2689
    Explore at:
    Dataset updated
    Nov 3, 2025
    Dataset provided by
    National Bureau of Statistics
    Office of the Chief Government Statistician
    Time period covered
    2023 - 2024
    Area covered
    Tanzania
    Description

    Abstract

    The Annual Agricultural Sample Survey (AASS) for the year 2022/23 aimed to enhance the understanding of agricultural activities across the United Republic of Tanzania by collecting comprehensive data on various aspects of the agricultural sector. This survey is crucial for policy formulation, development planning, and service delivery, providing reliable data to monitor and evaluate national and international development frameworks.

    The 2022/23 survey is particularly significant as it informs the monitoring and evaluation of key agricultural development strategies and frameworks. The collected data will contribute to the Tanzania Development Vision 2025, Zanzibar Development Vision 2020, the Five-Year Development Plan 2021/22–2025/26, the National Strategy for Growth and Reduction of Poverty (NSGRP) known as MKUKUTA, and the Zanzibar Strategy for Growth and Reduction of Poverty (ZSGRP) known as MKUZA. The survey data also supports the evaluation of Sustainable Development Goals (SDGs) and Comprehensive Africa Agriculture Development Programme (CAADP). Key indicators for agricultural performance and poverty monitoring are directly measured from the survey data.

    The 2022/23 AASS provides a detailed descriptive analysis and related tables on the main thematic areas. These areas include household members and holder identification, field roster, seasonal plot and crop rosters (Vuli, Masika, and Dry Season), permanent crop production, crop harvest use, seed and seedling acquisition, input use and acquisition (fertilizers and pesticides), livestock inventory and changes, livestock production costs, milk and eggs production, other livestock products, aquaculture production, and labor dynamics. The 2022/23 AASS offers an extensive dataset essential for understanding the current state of agriculture in Tanzania. The insights gained will support the development of policies and interventions aimed at enhancing agricultural productivity, sustainability, and the livelihoods of farming communities. This data is indispensable for stakeholders addressing challenges in the agricultural sector and promoting sustainable agricultural development.

    Statistical Disclosure Control (SDC) methods have been applied to the microdata, to protect the confidentiality of the individual data collected. Users must be aware that these anonymization or SDC methods modify the data, including suppression of some data points. This affects the aggregated values derived from the anonymized microdata, and may have other unwanted consequences, such as sampling error and bias. Additional details about the SDC methods and data access conditions are provided in the data processing and data access conditions below.

    Geographic coverage

    National, Mainland Tanzania and Zanzibar, Regions

    Analysis unit

    Households for Smallholder Farmers and Farm for Large Scale Farms

    Universe

    The survey covered agricultural households and large-scale farms.

    Agricultural households are those that meet one or more of the following two conditions: a) Have or operate at least 25 square meters of arable land, b) Own or keep at least one head of cattle or five goats/sheep/pigs or fifty chicken/ducks/turkeys during the agriculture year.

    Large-scale farms are those farms with at least 20 hectares of cultivated land, or 50 herds of cattle, or 100 goats/sheep/pigs, or 1,000 chickens. In addition to this, they should fulfill all of the following four conditions: i) The greater part of the produce should go to the market, ii) Operation of farm should be continuous, iii) There should be application of machinery / implements on the farm, and iv) There should be at least one permanent employee.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The frame used to extract the sample for the Annual Agricultural Sample Survey (AASS-2022/23) in Tanzania was derived from the 2022 Population and Housing Census (PHC-2022) Frame that lists all the Enumeration Areas (EAs/Hamlets) of the country. The AASS 2022/23 used a stratified two-stage sampling design which allows to produce reliable estimates at regional level for both Mainland Tanzania and Zanzibar.

    In the first stage, the EAs (primary sampling units) were stratified into 2-3 strata within each region and then selected by using a systematic sampling procedure with probability proportional to size (PPS), where the measure of size is the number of agricultural households in the EA. Before the selection, within each stratum and domain (region), the Enumeration Areas (EAs) were ordered according to the codes of District and Council which reflect the geographical proximity, and then ordered according to the codes of Constituency, Division, Wards, and Village. An implicit stratification was also performed, ordering by Urban/Rural type at Ward level.

    In the second stage, a simple random sampling selection was conducted . In hamlets with more than 200 households, twelve (12) agricultural households were drawn from the PHC 2022 list with a simple random sampling without replacement procedure in each sampled hamlet. In hamlets with 200 households or less, a listing exercise was carried out in each sampled hamlet, and twelve (12) agricultural households were selected with a simple random sampling without replacement procedure. A total of 1,352 PSUs were selected from the 2022 Population and Housing Census frame, of which 1,234 PSUs were from Mainland Tanzania and 118 from Zanzibar. A total number of 16,224 agricultural households were sampled (14,808 households from Mainland Tanzania and 1,416 from Zanzibar).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The 2022/23 Annual Agricultural Survey used two main questionnaires consolidated into a single questionnaire within the CAPIthe CAPI System, Smallholder Farmers and Large-Scale Farms Questionnaire. Smallholder Farmers questionnaire captured information at household level while Large Scale Farms questionnaire captured information at establishment/holding level. These questionnaires were used for data collection that covered core agricultural activities (crops, livestock, and fish farming) in both short and long rainy seasons. The 2022/23 AASS questionnaire covered 23 sections which are:

    1. COVER; The cover page included the title of the survey, survey year (2022/23), general instructions for both the interviewers and respondents. It sets the context for the survey and also it shows the survey covers the United Republic of Tanzania.

    2. SCREENING: Included preliminary questions designed to determine if the respondent or household is eligible to participate in the survey. It checks for core criteria such as involvement in agricultural activities.

    3. START INTERVIEW: The introductory section where basic details about the interview are recorded, such as the date, location, and interviewer’s information. This helped in the identification and tracking of the interview process.

    4. HOUSEHOLD MEMBERS AND HOLDER IDENTIFICATION: Collected information about all household members, including age, gender, relationship to the household head, and the identification of the main agricultural holder. This section helped in understanding the demographic composition of the agriculture household.

    5. FIELD ROSTER: Provided the details of the various agricultural fields operated by the agriculture household. Information includes the size, location, and identification of each field. This section provided a comprehensive overview of the land resources available to the household.

    6. VULI PLOT ROSTER: Focused on plots used during the Vuli season (short rainy season). It includes details on the crops planted, plot sizes, and any specific characteristics of these plots. This helps in assessing seasonal agricultural activities.

    7. VULI CROP ROSTER: Provided detailed information on the types of crops grown during the Vuli season, including quantities produced and intended use (e.g., consumption, sale, storage). This section captures the output of short rainy season farming.

    8. MASIKA PLOT ROSTER: Similar to Section 4 but focuses on the Masika season (long rainy season). It collects data on plot usage, crop types, and sizes. This helps in understanding the agricultural practices during the primary growing season.

    9. MASIKA CROP ROSTER: Provided detailed information on crops grown during the Masika season, including production quantities and uses. This section captures the output from the main agricultural season.

    10. PERMANENT CROP PRODUCTION: Focuses on perennial or permanent crops (e.g., fruit trees, tea, coffee). It includes data on the types of permanent crops, area under cultivation, production volumes, and uses. This section tracks long-term agricultural investments.

    11. CROP HARVEST USE: In this, provided the details how harvested crops are utilized within the household. Categories included consumption, sale, storage, and other uses. This section helps in understanding food security and market engagement.

    12. SEED AND SEEDLINGS ACQUISITION: Collected information on how the agriculture household acquires seeds and seedlings, including sources (e.g., purchased, saved, gifted) and types (local, improved, etc). This section provided insights into input supply chains and planting decisions based on the households, or head.

    13. INPUT USE AND ACQUISITION (FERTILIZERS AND PESTICIDES): It provided the details of the use and acquisition of agricultural inputs such as fertilizers and pesticides. It included information on quantities used, sources, and types of inputs. This section assessed the input dependency and agricultural practices.

    14. LIVESTOCK IN STOCK AND CHANGE IN STOCK: The

  4. Household Income and Expenditure Survey - 2005 - Sri Lanka

    • nada.statistics.gov.lk
    • catalog.ihsn.org
    Updated Jan 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Census and Statistics (2023). Household Income and Expenditure Survey - 2005 - Sri Lanka [Dataset]. https://nada.statistics.gov.lk/index.php/catalog/34
    Explore at:
    Dataset updated
    Jan 5, 2023
    Dataset authored and provided by
    Department of Census and Statistics
    Time period covered
    2005
    Area covered
    Sri Lanka
    Description

    Abstract

    This survey provides information on household income and expenditure leading to measure the levels and changes of the living conditions of the people and to observe the consumption patterns .

    Key objectives of the survey - To identify the income patterns in Urban, Rural and Estate Sectors & provinces. - To identify the income patterns by income levels. - Average consumption of food items and non food items - Expenditure patterns by sector and by income level.

    Geographic coverage

    National coverage.

    Analysis unit

    Household, Individuals

    Universe

    For this survey a sample of buildings and the occupants therein was drawn from the whole island

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A two stage stratified random sample design was used in the survey. Urban, Rural and Estate sectors of the Districts were the domains for stratification. The sample frame was the list of buildings that were prepared for the Census of Population and Housing 2001.

    Selection of Primary Sampling Units (PSU's) Primary sampling units are the census blocks prepared for the Census of Population and Housing - 2001. The sample frame, which is a collection of all census blocks in the domain, was used for the selection of primary sampling units. A sample of 500 primary sampling units was selected from the sampling frame for the survey.

    Selection of Secondary Sampling Units (SSU's) Secondary Sampling Units are the housing units in the selected 500 primary sampling units (census blocks). From each primary sampling unit 10 housing units (SSU) were selected for the survey. The total sample size of 5000 housing units was selected and distributed among Districts in Sri Lanka.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionaires

           The survey schedule was designed to collect data by household and separate schedules were used for each household identified according to the definition of the household within the housing units selected for the survey. The survey schedule consists three main sections . 
    
           1. Demographic section 
           2. Expenditure
           3. Income
    

    The Demographic characteristics and usual activities of the inmates belonging to the household were reported in the Demographic section of the schedule (and close relatives temporarily living away are also listed in this section). Expenditure section has two sub sections to report food and non-food consumption data separately. Expenditure incurred on their own decisions by boarders and servants are recorded in the sub section under the Main expenditure section. The income has seven sub sections categorized according to the main sources of income.

    Sampling error estimates

    The exact differences or sampling error ,varies depending on the particular sample selected and the variability is measured by the standard error of the estimate. There is about a 95% chance or level of confidence that an estimate based on a sample will differ by no more than 1.96 standard errors from the true population value because of sampling error. Analyses relating to the HIES are generally conducted at the 95% level of confidence .

              confidence interval =  Estimate value ± (standard error )*(1.96)
    

    Data appraisal

    http://www.statistics.gov.lk/HIES/HIES%202007/introduction%20%20HIES.pdf

    By visiting the above website a description about the adjustments for non-response could be read in section 1.2 of the Final report.

  5. Annual Household Survey 2012-2013 - Nepal

    • microdata.nsonepal.gov.np
    • catalog.ihsn.org
    Updated Dec 9, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Bureau of Statistics (2015). Annual Household Survey 2012-2013 - Nepal [Dataset]. https://microdata.nsonepal.gov.np/index.php/catalog/49
    Explore at:
    Dataset updated
    Dec 9, 2015
    Dataset authored and provided by
    Central Bureau of Statisticshttp://cbs.gov.np/
    Time period covered
    2012 - 2013
    Area covered
    Nepal
    Description

    Abstract

    Annual Household Survey 2012-2013 is a nation- wide household survey, data collection operation of which was conducted from December 2012 to July 2013. The AHS consists of multiple topics related to household information including demography, education, housing facilities, consumption and labour force. However the survey is primarily focused on the annual household consumption and current labour force statistics. The food consumption and labour force related information was collected for past 7 days of the reference period whereas for other information related to non-food was past 12 months. Therefore, the result of the survey refers to the year 2012-201313. The results of AHS are presented in this statistical report covering five sections of the survey questionnaire. Structurally, the report contains six chapters including 42 tables, 21 figures and 5 appendices. Since the design of the survey questionnaire has followed the concepts and definitions adopted in Nepal Living Standards Surveys and Nepal Labour Force Surveys especially to capture household consumption aggregates and the current labour force related information respectively, the data analysis and tabulation is also done accordingly.

    Objectives The objectives of Annual Household Survey 2012-2013 are: • to estimate the label and structure of household consumption expenditure each year; • to measure unemployment and underemployment on yearly basis; • to collect information on the areas of demography, literacy, housing facilities etc; and • to create an annual database of household sector.

    The survey is intended to support the National Accounts estimates, particularly of household sector. Moreover, the survey will explore the possibility of consumption based poverty measurement also.

    Geographic coverage

    The survey covers the whole country(National), Ecological belts( Mountain , Hill , Terai), rural and urban.

    Analysis unit

    Household and Induvisual

    Universe

    • All households in the country determined on the basis of the usual place of their residence (de jure househols). The households of diplomatic missions, the institutional households (like people living in schools hostels, prisons, army camps and hospitals) were excluded from the survey.
    • All persons aged 5 years and above household members.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample frame from the National Population and Housing Census 2011 is being used for sampling of AHS 2012-2013. The Annual Household Survey 2012-2013 is the multi-stage random sampling design with equal PSUs or households distributed between urban and rural areas considering the heterogeneous labour force activities to provide a detailed picture of employment situation in the urban areas. So the prescribed 200 PSUs are divided equally in two parts, i.e., 100 PSUs each for urban and rural. The design has applied the concept of master sample frame. The sample size for the survey has been estimated at 3000 households in 200 Primary Sampling Units (PSUs). These 200 PSU shave been equally distributed between two study domains, viz. Urban Nepal and Rural Nepal. The PSUs were selected with Probability Proportional to Size, the measure of size being the square root of the number of households in each ward. Fifteen households were selected for the interview from each of the selected PSU using Systematic Sampling. The technical note of the sampling procedure is given at Appendix I of report AHS 2012-2013 .

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire of AHS 2012/13 survey contains five sections. The first section contains individual or demographic information. Section two, three and four includes on household consumption including housing and housing expenses, food expenses and home production, and non-food expenses, consumption of durables and own account production respectively. The last section deals with current economic activity or labour force. The food consumption part of the questionnaire has covered broad food categories only. The household consumption part of the questionnaire has been designed in line with that of Nepal Living Standards Survey. Likewise, for the labour force part, it has followed the structure of Nepal Labour Force Survey 2008, but in current basis only. A 16-paged household questionnaire with 5 sections and 4 appendices in Nepali language was administered in the AHS. The English translation of the questionnaire has been presented at Appendix II of AHS 2012/13 report.

    Cleaning operations

    Data entry and data verification of Annual Household Survey 2012-2013was conductaed at field. For this task, a simple and clear data entry programme was developed in CSPro software, and each team was given a personal computer having the entry program so that every team could be able to enter the interviewed household data in the respective field area. In other words, data entry and data verification work was done in the field residing in the corresponding PSU. Therefor both mannual and batch editing was carried out and CSPro programme wsa used for consistancy checking.

    Response rate

    The survey enumerated 1485 (99%) sample households from 99 PSUs out of 100 PSUs of rural area. As regards to urban sample, all 1500 (100%) sample household from 100 PSUs are interviewed. Thus, in total 2985 (99.5%) households were enumerated in the survey.

  6. Enterprise Survey 2009-2019, Panel Data - Slovenia

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Aug 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (WBG) (2020). Enterprise Survey 2009-2019, Panel Data - Slovenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3762
    Explore at:
    Dataset updated
    Aug 6, 2020
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    European Investment Bankhttp://eib.org/
    European Bank for Reconstruction and Developmenthttp://ebrd.com/
    Time period covered
    2008 - 2019
    Area covered
    Slovenia
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.

    The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.

    Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.

    For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.

    For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).

    Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).

    For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.

    For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.

    Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.

    For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

    For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.

    For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.

    Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.

  7. w

    Multiple Indicator Cluster Survey 2006 - Viet Nam

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social and Environmental Statistics Department (2023). Multiple Indicator Cluster Survey 2006 - Viet Nam [Dataset]. https://microdata.worldbank.org/index.php/catalog/31
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Social and Environmental Statistics Department
    Time period covered
    2006
    Area covered
    Vietnam
    Description

    Abstract

    The Multiple Indicator Cluster Survey (MICS) is a household survey programme developed by UNICEF to assist countries in filling data gaps for monitoring human development in general and the situation of children and women in particular. MICS is capable of producing statistically sound, internationally comparable estimates of social indicators. The Viet Nam Multiple Indicator Cluster Survey provides valuable information on the situation of children and women in Viet Nam, and was based, in large part, on the needs to monitor progress towards goals and targets emanating from recent international agreements: the Millennium Declaration, adopted by all 191 United Nations Member States in September 2000, and the Plan of Action of A World Fit For Children, adopted by 189 Member States at the United Nations Special Session on Children in May 2002. Both of these commitments build upon promises made by the international community at the 1990 World Summit for Children.

    Survey Objectives: The 2006 Viet Nam Multiple Indicator Cluster Survey has as its primary objectives: - To provide up-to-date information for assessing the situation of children and women in Viet Nam; - To furnish data needed for monitoring progress toward goals established by the Millennium Development Goals, the goals of A World Fit For Children (WFFC), and other internationally agreed upon goals, as a basis for future action; - To provide valuable information for the 3rd and 4th National Report of Vietnam's implementation of the Convention on the child rights in the period 2002-2007 as well as for monitoring the National Plan of Action for Children 2001-2010.
    - To contribute to the improvement of data and monitoring systems in Viet Nam and to strengthen technical expertise in the design, implementation, and analysis of such systems.

    Survey Content Following the MICS global questionnaire templates, the questionnaires were designed in a modular fashion customized to the needs of Viet Nam. The questionnaires consist of a household questionnaire, a questionnaire for women aged 15-49 and a questionnaire for children under the age of five (to be administered to the mother or caretaker).

    Survey Implementation The Viet Nam Multiple Indicator Cluster Survey (MICS) was carried by General Statistics Office of Viet Nam (GSO) in collaboration with Viet Nam Committee for Population, Family and Children (VCPFC). Financial and technical support was provided by the United Nations Children's Fund (UNICEF). Technical assistance and training for the survey was provided through a series of regional workshops organised by UNICEF covering questionnaire content, sampling and survey implementation; data processing; data quality and data analysis; report writing and dissemination.

    Geographic coverage

    The survey is nationally representative and covers the whole of Viet Nam.

    Analysis unit

    Households (defined as a group of persons who usually live and eat together)

    Household members (defined as members of the household who usually live in the household, which may include people who did not sleep in the household the previous night, but does not include visitors who slept in the household the previous night but do not usually live in the household)

    Women aged 15-49

    Children aged 0-4

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-4 years (under age 5) resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the Viet Nam Multiple Indicator Cluster Survey (MICS) was designed to provide reliable estimates on a large number of indicators on the situation of children and women at the national level, for urban and rural areas, and for 8 regions: Red River Delta, North West, North East, North Central Coast, South Central Coast, Central Highlands, South East, and Mekong River Delta. Regions were identified as the main sampling domains and the sample was selected in two stages. At the first stage 250 census enumeration areas (EA) were selected, of which all 240 EAs of MICS2 with systematic method were reselected and 10 new EAs were added. The addition of 10 more EAs (together with the increase in the sample size) was to increase the reliability level for regional estimates. Consequently, within each region, 30-33 EAs were selected for MICS3. After a household listing was carried out within the selected enumeration areas, a systematic sample of 1/3 of households in each EA was drawn. The survey managed to visit all of 250 selected EAs during the fieldwork period. The sample was stratified by region and is not self-weighting. For reporting national level results, sample weights are used. A more detailed description of the sample design can be found in the technical documents and in Appendix A of the final report.

    Sampling deviation

    No major deviations from the original sample design were made. All sample enumeration areas were accessed and successfully interviewed with good response rates.

    Mode of data collection

    Face-to-face

    Research instrument

    The questionnaires are based on the MICS3 model questionnaire. From the MICS3 model English version, the questionnaires were translated in to Vietnamese and were pretested in one province (Bac Giang) during July 2006. Based on the results of this pre-test, modifications were made to the wording and translation of the questionnaires.

    Cleaning operations

    Data editing took place at a number of stages throughout the processing (see Other processing), including: a) Office editing and coding b) During data entry c) Structure checking and completeness d) Secondary editing e) Structural checking of SPSS data files

    Detailed documentation of the editing of data can be found in the data processing guidelines in the MICS manual http://www.childinfo.org/mics/mics3/manual.php.

    Response rate

    8356 households were selected for the sample. Of these all were found to be occupied households and 8355 were successfully interviewed for a response rate of 100%. Within these households, 10063 eligible women aged 15-49 were identified for interview, of which 9473 were successfully interviewed (response rate 94.1%), and 2707 children aged 0-4 were identified for whom the mother or caretaker was successfully interviewed for 2680 children (response rate 99%).

    Sampling error estimates

    Estimates from a sample survey are affected by two types of errors: 1) non-sampling errors and 2) sampling errors. Non-sampling errors are the results of mistakes made in the implementation of data collection and data processing. Numerous efforts were made during implementation of the MICS - 3 to minimize this type of error, however, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors can be evaluated statistically. The sample of respondents to the MICS - 3 is only one of many possible samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that different somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability in the results of the survey between all possible samples, and, although, the degree of variability is not known exactly, it can be estimated from the survey results. The sampling errors are measured in terms of the standard error for a particular statistic (mean or percentage), which is the square root of the variance. Confidence intervals are calculated for each statistic within which the true value for the population can be assumed to fall. Plus or minus two standard errors of the statistic is used for key statistics presented in MICS, equivalent to a 95 percent confidence interval.

    If the sample of respondents had been a simple random sample, it would have been possible to use straightforward formulae for calculating sampling errors. However, the MICS - 3 sample is the result of a two-stage stratified design, and consequently needs to use more complex formulae. The SPSS complex samples module has been used to calculate sampling errors for the MICS - 3. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. This method is documented in the SPSS file CSDescriptives.pdf found under the Help, Algorithms options in SPSS.

    Sampling errors have been calculated for a select set of statistics (all of which are proportions due to the limitations of the Taylor linearization method) for the national sample, urban and rural areas, and for each of the five regions. For each statistic, the estimate, its standard error, the coefficient of variation (or relative error -- the ratio between the standard error and the estimate), the design effect, and the square root design effect (DEFT -- the ratio between the standard error using the given sample design and the standard error that would result if a simple random sample had been used), as well as the 95 percent confidence intervals (+/-2 standard errors).

    Data appraisal

    A series of data quality tables and graphs are available to review the quality of the data and include the following:

    Age distribution of the household population Age distribution of eligible women and interviewed women Age distribution of eligible children and children for whom the mother or caretaker was interviewed Age distribution of children under age 5 by 3 month groups Age and period ratios at

  8. Taking Part 2010/11 quarter 4: Statistical release

    • gov.uk
    Updated Aug 9, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Digital, Culture, Media & Sport (2011). Taking Part 2010/11 quarter 4: Statistical release [Dataset]. https://www.gov.uk/government/statistics/taking-part-the-national-survey-of-culture-leisure-and-sport-2010-11
    Explore at:
    Dataset updated
    Aug 9, 2011
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Digital, Culture, Media & Sport
    Description

    The latest estimates from the 2010/11 Taking Part adult survey produced by DCMS were released on 30 June 2011 according to the arrangements approved by the UK Statistics Authority.

    Released:

    30 June 2011
    **

    Period covered:

    April 2010 to April 2011
    **

    Geographic coverage:

    National and Regional level data for England.
    **

    Next release date:

    Further analysis of the 2010/11 adult dataset and data for child participation will be published on 18 August 2011.

    Summary

    The latest data from the 2010/11 Taking Part survey provides reliable national estimates of adult engagement with sport, libraries, the arts, heritage and museums & galleries. This release also presents analysis on volunteering and digital participation in our sectors and a look at cycling and swimming proficiency in England. The Taking Part survey is a continuous annual survey of adults and children living in private households in England, and carries the National Statistics badge, meaning that it meets the highest standards of statistical quality.

    Statistical Report

    Statistical Worksheets

    These spreadsheets contain the data and sample sizes for each sector included in the survey:

    Previous release

    The previous Taking Part release was published on 31 March 2011 and can be found online.

    The UK Statistics Authority

    This release is published in accordance with the Code of Practice for Official Statistics (2009), as produced by the http://www.statisticsauthority.gov.uk/">UK Statistics Authority (UKSA). The UKSA has the overall objective of promoting and safeguarding the production and publication of official statistics that serve the public good. It monitors and reports on all official statistics, and promotes good practice in this area.

    Pre-release access

    The document below contains a list of Ministers and Officials who have received privileged early access to this release of Taking Part data. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours.

    The responsible statistician for this release is Neil Wilson. For any queries please contact the Taking Part team on 020 7211 6968 or takingpart@culture.gsi.gov.uk.

    Releated information

  9. p

    Business Activity Survey 2009 - Samoa

    • microdata.pacificdata.org
    Updated Jul 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samoa Bureau of Statistics (2019). Business Activity Survey 2009 - Samoa [Dataset]. https://microdata.pacificdata.org/index.php/catalog/253
    Explore at:
    Dataset updated
    Jul 2, 2019
    Dataset authored and provided by
    Samoa Bureau of Statistics
    Time period covered
    2009
    Area covered
    Samoa
    Description

    Abstract

    The intention is to collect data for the calendar year 2009 (or the nearest year for which each business keeps its accounts. The survey is considered a one-off survey, although for accurate NAs, such a survey should be conducted at least every five years to enable regular updating of the ratios, etc., needed to adjust the ongoing indicator data (mainly VAGST) to NA concepts. The questionnaire will be drafted by FSD, largely following the previous BAS, updated to current accounting terminology where necessary. The questionnaire will be pilot tested, using some accountants who are likely to complete a number of the forms on behalf of their business clients, and a small sample of businesses. Consultations will also include Ministry of Finance, Ministry of Commerce, Industry and Labour, Central Bank of Samoa (CBS), Samoa Tourism Authority, Chamber of Commerce, and other business associations (hotels, retail, etc.).

    The questionnaire will collect a number of items of information about the business ownership, locations at which it operates and each establishment for which detailed data can be provided (in the case of complex businesses), contact information, and other general information needed to clearly identify each unique business. The main body of the questionnaire will collect data on income and expenses, to enable value added to be derived accurately. The questionnaire will also collect data on capital formation, and will contain supplementary pages for relevant industries to collect volume of production data for selected commodities and to collect information to enable an estimate of value added generated by key tourism activities.

    The principal user of the data will be FSD which will incorporate the survey data into benchmarks for the NA, mainly on the current published production measure of GDP. The information on capital formation and other relevant data will also be incorporated into the experimental estimates of expenditure on GDP. The supplementary data on volumes of production will be used by FSD to redevelop the industrial production index which has recently been transferred under the SBS from the CBS. The general information about the business ownership, etc., will be used to update the Business Register.

    Outputs will be produced in a number of formats, including a printed report containing descriptive information of the survey design, data tables, and analysis of the results. The report will also be made available on the SBS website in “.pdf” format, and the tables will be available on the SBS website in excel tables. Data by region may also be produced, although at a higher level of aggregation than the national data. All data will be fully confidentialised, to protect the anonymity of all respondents. Consideration may also be made to provide, for selected analytical users, confidentialised unit record files (CURFs).

    A high level of accuracy is needed because the principal purpose of the survey is to develop revised benchmarks for the NA. The initial plan was that the survey will be conducted as a stratified sample survey, with full enumeration of large establishments and a sample of the remainder.

    Geographic coverage

    National Coverage

    Analysis unit

    The main statistical unit to be used for the survey is the establishment. For simple businesses that undertake a single activity at a single location there is a one-to-one relationship between the establishment and the enterprise. For large and complex enterprises, however, it is desirable to separate each activity of an enterprise into establishments to provide the most detailed information possible for industrial analysis. The business register will need to be developed in such a way that records the links between establishments and their parent enterprises. The business register will be created from administrative records and may not have enough information to recognize all establishments of complex enterprises. Large businesses will be contacted prior to the survey post-out to determine if they have separate establishments. If so, the extended structure of the enterprise will be recorded on the business register and a questionnaire will be sent to the enterprise to be completed for each establishment.

    SBS has decided to follow the New Zealand simplified version of its statistical units model for the 2009 BAS. Future surveys may consider location units and enterprise groups if they are found to be useful for statistical collections.

    It should be noted that while establishment data may enable the derivation of detailed benchmark accounts, it may be necessary to aggregate up to enterprise level data for the benchmarks if the ongoing data used to extrapolate the benchmark forward (mainly VAGST) are only available at the enterprise level.

    Universe

    The BAS's covered all employing units, and excluded small non-employing units such as the market sellers. The surveys also excluded central government agencies engaged in public administration (ministries, public education and health, etc.). It only covers businesses that pay the VAGST. (Threshold SAT$75,000 and upwards).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    -Total Sample Size was 1240 -Out of the 1240, 902 successfully completed the questionnaire. -The other remaining 338 either never responded or were omitted (some businesses were ommitted from the sample as they do not meet the requirement to be surveyed) -Selection was all employing units paying VAGST (Threshold SAT $75,000 upwards)

    WILL CONFIRM LATER!!

    OSO LE MEA E LE FAASA...AEA :-)

    Mode of data collection

    Mail Questionnaire [mail]

    Research instrument

    1. General instructions, authority for the survey, etc;
    2. Business demography information on ownership, contact details, structure, etc.;
    3. Employment;
    4. Income;
    5. Expenses;
    6. Inventories;
    7. Profit or loss and reconciliation to business accounts' profit and loss;
    8. Fixed assets - purchases, disposals, book values
    9. Thank you and signature of respondent.

    Supplementary Pages Additional pages have been prepared to collect data for a limited range of industries. 1.Production data. To rebase and redevelop the Industrial Production Index (IPI), it is intended to collect volume of production information from a selection of large manufacturing businesses. The selection of businesses and products is critical to the usefulness of the IPI. The products must be homogeneous, and be of enough importance to the economy to justify collecting the data. Significance criteria should be established for the selection of products to include in the IPI, and the 2009 BAS provides an opportunity to collect benchmark data for a range of products known to be significant (based on information in the existing IPI, CPI weights, export data, etc.) as well as open questions for respondents to provide information on other significant products. 2.Tourism. There is a strong demand for estimates of tourism value added. To estimate tourism value added using the international standard Tourism Satellite Account methodology requires the use of an input-output table, which is beyond the capacity of SBS at present. However, some indicative estimates of the main parts of the economy influenced by tourism can be derived if the necessary data are collected. Tourism is a demand concept, based on defining tourists (the international standard includes both international and domestic tourists), what products are characteristically purchased by tourists, and which industries supply those products. Some questions targeted at those industries that have significant involvement with tourists (hotels, restaurants, transport and tour operators, vehicle hire, etc.), on how much of their income is sourced from tourism would provide valuable indicators of the size of the direct impact of tourism.

    Cleaning operations

    Partial imputation was done at the time of receipt of questionnaires, after follow-up procedures to obtain fully completed questionnaires have been followed. Imputation followed a process, i.e., apply ratios from responding units in the imputation cell to the partial data that was supplied. Procedures were established during the editing stage (a) to preserve the integrity of the questionnaires as supplied by respondents, and (b) to record all changes made to the questionnaires during editing. If SBS staff writes on the form, for example, this should only be done in red pen, to distinguish the alterations from the original information.

    Additional edit checks were developed, including checking against external data at enterprise/establishment level. External data to be checked against include VAGST and SNPF for turnover and purchases, and salaries and wages and employment data respectively. Editing and imputation processes were undertaken by FSD using Excel.

    Sampling error estimates

    NOT APPLICABLE!!

  10. Agricultural Sample Survey 2007-2008 (2000 E.C) - Ethiopia

    • catalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Agency (2019). Agricultural Sample Survey 2007-2008 (2000 E.C) - Ethiopia [Dataset]. https://catalog.ihsn.org/index.php/catalog/1386
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Central Statistical Agencyhttps://ess.gov.et/
    Time period covered
    2007
    Area covered
    Ethiopia
    Description

    Abstract

    The sound performance of agriculture warrants the availability of food crops. This accomplishment in agriculture does not only signify the adequate acquisition of food crops to attain food security, but also heralds a positive aspect of the economy. In regard to this, collective efforts are being geared to securing agricultural outputs of the desired level so that self reliance in food supply can be achieved and disaster caused food shortages be contained in the shortest possible time in Ethiopia. The prime role that agriculture plays in a country's political, economic and social stability makes measures of agricultural productions extremely sensitive. Statistics collected on agricultural productions are, therefore, fraught with questions of reliability by data users. To tackle these questions convincingly and dissipate the misgivings of users, information on agriculture has to be collected using standard procedures of data collection. Upholding this principle, the Central Statistical Agency (CSA) has been furnishing statistical information on the country's agriculture since 1980/81 to alert policy interventionists on the changes taking place in the agricultural sector. As part of this task the 2007-08 (2000E.C) Agricultural Sample Survey (AgSS) was conducted to provide data on crop area and production of crops within the private peasant holdings for Main (“Meher”) Season of the specified year.

    The general objective of CSA's Agricultural Sample Survey (AgSS) is to collect basic quantitative information on the country's agriculture that is essential for planning, policy formulation, monitoring and evaluation of mainly food security and other agricultural activities.

    The specific objectives of Main (“Meher”) Season Post Harvest Survey are: - To estimate the total crop area, volume of crop production and yield of crops for Main (“Meher”) Season agriculture in Ethiopia. - To estimate the total volume of inputs used, inputs applied area and number of holders using inputs. - To estimate the total cultivated area and other forms of land use.

    Geographic coverage

    The 2007-08 (2000 E.C) annual Agricultural Sample Survey (Meher season) covered the entire rural parts of the country except the non-sedentary population of three zones of Afar and six zones of Somali regions. Accordingly, the survey took into account all parts of Harari, Dire Dawa, and 68 additional Zones / Special weredas (that are treated as zones) of other regions.

    Analysis unit

    Agricultural household/ Holder/ Crop

    Universe

    Agricultural households

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling Frame: The list containing EAs of all regions and their respective agricultural households obtained from the 2006/07 (1999 E.C) cartographic census frame was used as the sampling frame in order to select the primary sampling units (EAs). Consequently, all sample EAs were selected from this frame based on the design proposed for the 4 survey. The second stage sampling units, households, were selected from a fresh list of households that were prepared for each EA at the beginning of the survey.

    Sample Design: In order to select the sample a stratified two-stage cluster sample design was implemented. Enumeration areas (EAs) were taken to be the primary sampling units (PSUs) and the secondary sampling units (SSUs) were agricultural households. The sample size for the 2007/08 (2000 E.C) agricultural sample survey was determined by taking into account both the required level of precision for the most important estimates within each domain and the amount of resources allocated to the survey. In order to reduce non-sampling errors, manageability of the survey in terms of quality and operational control was also considered. Except Harari and Dire Dawa, where each region as a whole was taken to be the domain of estimation; each zone of a region / special wereda was adopted as a stratum for which major findings of the survey are reported.

    Selection Scheme: Enumeration areas from each stratum were selected systematically using probability proportional to size sampling technique; size being number of agricultural households. The sizes for EAs were obtained from the 2006/07 (1999 E.C) cartographic census frame. From the fresh list of households prepared at the beginning of the survey 20 agricultural households within each sample EA were selected systematically. Estimation procedure of totals, ratios, sampling error and the measurement of precision of estimates (CV) are given in Appendix I and II respectively.

    Note: Distribution of sampling units (sampled and covered EAs) by stratum is also presented in Appendix III of 2007-2008 Agricultural Sample Survey, Volume I report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2007-2008 annual Agricultural Sample Survey used structured questionnaires to collect agricultural information from selected sample households. List of forms in the questionnaires: - AgSS Form 2000/0: It contains forms that used to list all households in the sample areas. - AgSS Form 2000/1: It contains forms that used to list selected agricultural households and holders in the sample areas. - AgSS Form 2000/2A: It contains forms that used to collect information about crops, results of area measurements covered by crops and other land uses. - AgSS Form 2000/2B: It contains forms that used to collect information about miscellaneous questions for the holders. - AgSS Form 2000/4: It contains forms that used to collect information about list of temporary crop fields for selecting crop cutting plots. - AgSS Form 2000/5: It contains forms that used to collect information about list of temporary crop cutting results.

    Note: The questionnaires are presented in the Appendix IV of the 2007-2008 Agricultural Sample Survey report Volume I.

    Cleaning operations

    a) Editing, Coding and Verification: Statistical data editing plays an important role in ensuring the quality of the collected survey data. It minimizes the effects of errors introduced while collecting data in the field, hence the need for data editing, coding and verification. Although coding and editing are done by the enumerators and supervisors in the field, respectively, verification of this task is done at the Head Office. An editing, coding and verification instruction manual was prepared and reproduced for this purpose. Then 34 editors-coders and verifiers were trained for two days in editing, coding and verification using the aforementioned manual as a reference and teaching aid. The completed questionnaires were edited, coded and later verified on a 100 % basis before the questionnaires were passed over to the data entry unit. The editing, coding and verification exercise of all questionnaires took 35 days.

    b) Data Entry, Cleaning and Tabulation: Before data entry, the Natural Resources and Agricultural Statistics Department of the CSA prepared edit specification for the survey for use on personal computers for data consistency checking purposes. The data on the edited and coded questionnaires were then entered into personal computers. The data were then checked and cleaned using the edit specifications prepared earlier for this purpose. The data entry operation involved about 97 data encoders, 4 data encoder supervisors, 8 data cleaning operators and 57 personal computers. The data entered into the computers using the entry module of the CSPRO (Census and Survey Processing System) software, which is a software package developed by the United States Bureau of the Census. Following the data entry operations, the data was further reviewed for data inconsistencies, missing data … etc. by the regular professional staff from Natural Resources and Agricultural Statistics Department. The final stage of the data processing was to summarizing the cleaned data and produce statistical tables that present the results of the survey using the tabulation component of the PC based CSPRO software produced by professional staff from Data processing Department.

    Response rate

    To be covered by the survey, a total of 2,200 enumeration areas (EAs) were selected. However, due to various reasons that are beyond control, in 75 EAs the survey could not be successful and hence interrupted. Thus, all in all the survey succeeded to cover 2,125 EAs (96.59%) throughout the regions. The Annual Agricultural Sample survey (Meher season) was conducted on the basis of 20 agricultural households selected from each EA. Regarding the ultimate sampling units, it was intended to cover a total of 44,200 agricultural households, however, 42,523 (96.21%) were actually covered by the survey.

    Sampling error estimates

    Estimation procedure of totals, ratios, sampling error and the measurement of precision of estimates (CV) are given in Appendix I and II respectively of 2007-2008 Agricultural Sample Survey, Volume I report.

  11. i

    General Household Survey-2007 - Nigeria

    • catalog.ihsn.org
    • microdata.nigerianstat.gov.ng
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (NBS) (2019). General Household Survey-2007 - Nigeria [Dataset]. https://catalog.ihsn.org/index.php/catalog/3335
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    National Bureau of Statistics, Nigeria
    Authors
    National Bureau of Statistics (NBS)
    Time period covered
    2008
    Area covered
    Nigeria
    Description

    Abstract

    The Geneal Household Survey is a brainchild of the National Bureau of Statistics (NBS) and is often referred to as Regular survey carried out on quarterly basis by the NBS over the years. In recent times, starting from 2004 to be precise, there is a collaborative effort between the NBS and the CBN in 2004 and 2005 and in 2006 the collaboration incorporated Nigerian Communications commission (NCC).

    The main reason of for conducting the survey was to enable the collaborating agencies fulfil their mandate in the production of current and credible statistics, to monitor and evaluate the status of the economy and the various government programmes such as the National Economic Empowerment and Development Strategy (NEEDS) and the Millennium Development Goals (MDGs).

    The collaborative survey also assured the elimination of conflicts in data generated by the different agencies and ensured a reliable, authentic national statistics for the country.

    Geographic coverage

    National Zone State Local Government

    Analysis unit

    Household analysis

    Universe

    Household

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The GHS was implemented as a NISH module. Six replicates were studied per state including the FCT, Abuja. With a fixed-take of 10 HUs systematically selected per EA, 600 HUs thus were selected for interview per state including the FCT, Abuja. Hence, nationally, a total of 22,200 HUs were drawn from the 2,220 EAs selected for interview for the GHS. The selected EAs (and hence the HUs) cut across the rural and urban sectors.

    The General Household Survey and the National Agricultural Sample Survey designs derived from NBS 2007/12 NISH sample design. The 2007/12 NISH sample design is a 2-stage, replicated and rotated cluster sample design with Enumeration Areas (EAs) as first stage sampling units or Primary Sampling Units (PSUs) while Housing Units constituted the second stage units (secondary sampling units). The housing units were the Ultimate Sampling Units for the multi-subject survey.

    First Stage Selection: Generally, the NISH Master Sample in each state is made up of 200 EAs drawn in 20 replicates. A replicate consists of 10 EAs. Replicates 4 - 9, subsets of the Master Sample were studied for modules of the NISH. Sixty EAs were selected with equal probability from the list of EAs in each state of the federation and FCT, Abuja.

    Second Stage Selection: In each selected EA, a listing of housing units was carried out. The result provided the frame for the second stage selection. Ten housing units were selected systematically in each EA after the completion of the listing exercise. Thereafter, all the households within the selected HUs were interviewed using GHS questionnaire.

    At EAs level ,out of the expected 2,220 EAs 2,204 were covered. (by the table on page 177 of the report) and TABLE 1.6 RETRIEVAL STATUS OF GHS RECORDS

    At housing units level, out of the 22,200 expected to be covered, 21,796 were canvassed. (same as above)

    AS PER DATA SET At EAs level ,out of the expected 2,220 EAs 2,204 were covered. At housing units level, out of the 22,200 expected to be covered, 18,355 were canvassed.

    Sampling deviation

    Variance Estimate (Jackknife Method) Estimating variances using the Jackknife method will require forming replicate from the full sample by randomly eliminating one sample cluster [Enumeration Area (EA) at a time from a state containing k EAs, k replicated estimates are formed by eliminating one of these, at a time, and increasing the weight of the remaining (k-1) EAs by a factor of k/(k-1). This process is repeated for each EA.

    For a given state or reporting domain, the estimate of the variance of a rate, r, is given by k Var(r ) = (Se)2 = 1 S (ri - r)2 k(k-1) i=1

    where (Se) is the standard error, k is the number of EAs in the state or reporting domain.

    r is the weighted estimate calculated from the entire sample of EAs in the state or reporting domain.
    ri = kr - (k - 1)r(i), where

    r(i) is the re-weighted estimate calculated from the reduced sample of k-1 EAs.

    To obtain an estimate of the variance at a higher level, say, at the national level, the process is repeated over all states, with k redefined to refer to the total number of EAs (as opposed to the number in the states).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire for the GHS is a structured questionnaire based on household characteristics with some modifications and additions. The House project module is a new addition and some new questions on ICT.

    The questionnaires were scaned.

    This section were divided into eleven parts.

    Part A: Identification code, Response status, Housing characteristics/amenities and Information communication Technology (ICT). Part B: Socio-demographic characteristics and Labour force characteristics Part C: Information about the people in the household who were absent during the period of the survey. Part D: Female contraceptive only, and children ever born by mothers aged 15 years and above Part E: Births of children in the last 12 months, and trained birth attendant used during child delivery. Part F: Immunization of children aged 1 year or less and records of their vaccination Part G: Child nutrition, exclusive breast feeding and length of breast feeding. Part H: Deaths in the last 12 months, and causes of such deaths. Part I: Health of all members, of the household and health care providers. Part J: Household enterprises, income and profit made from such activities. Part K: Household expenditure, such as school fees, medical expenses, housing expenses, remittance, cloth expenses, transport expenses and food expenses.

    Cleaning operations

    The data editing is in 2 phases namely manual editing before the questionnaires were scanned. This involved using editors at the various zones to manually edit and ensure consistency in the information on the questionnaire.

    The second editing is the computer editing, this is the cleaning of the already scanned data by the subject mater group. The questionnaires were processed at the zones. On completion, computer editing was also carried out to ensure the integrity of the data. .

    Response rate

    At National basis, 99.3 percent response rate was acheived at EA level .

    While 82.7 percent was acheived at housing units level.

    Sampling error estimates

    No sampling error estimate

    Data appraisal

    The Quality Control measures were carried out during the survey, essentially to ensure quality of data. There were three levels of supervision involving the supervisors at the first level, CBN staff, NBS State Officers and Zonal Controllers at second level and finally the NBS/NCC Headquarters staff constituting the third level supervision.

  12. f

    Project for Statistics on Living Standards and Development 1993 - South...

    • microdata.fao.org
    • catalog.ihsn.org
    • +2more
    Updated Oct 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southern Africa Labour and Development Research Unit (2020). Project for Statistics on Living Standards and Development 1993 - South Africa [Dataset]. https://microdata.fao.org/index.php/catalog/1527
    Explore at:
    Dataset updated
    Oct 20, 2020
    Dataset authored and provided by
    Southern Africa Labour and Development Research Unit
    Time period covered
    1993
    Area covered
    South Africa
    Description

    Abstract

    The Project for Statistics on Living standards and Development was a countrywide World Bank Living Standards Measurement Survey. It covered approximately 9000 households, drawn from a representative sample of South African households. The fieldwork was undertaken during the nine months leading up to the country's first democratic elections at the end of April 1994. The purpose of the survey was to collect statistical information about the conditions under which South Africans live in order to provide policymakers with the data necessary for planning strategies. This data would aid the implementation of goals such as those outlined in the Government of National Unity's Reconstruction and Development Programme.

    Geographic coverage

    National

    Analysis unit

    Households

    Universe

    All Household members. Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described above for the households in ESDs.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    (a) SAMPLING DESIGN

    Sample size is 9,000 households. The sample design adopted for the study was a two-stage self-weighting design in which the first stage units were Census Enumerator Subdistricts (ESDs, or their equivalent) and the second stage were households. The advantage of using such a design is that it provides a representative sample that need not be based on accurate census population distribution in the case of South Africa, the sample will automatically include many poor people, without the need to go beyond this and oversample the poor. Proportionate sampling as in such a self-weighting sample design offers the simplest possible data files for further analysis, as weights do not have to be added. However, in the end this advantage could not be retained, and weights had to be added.

    (b) SAMPLE FRAME

    The sampling frame was drawn up on the basis of small, clearly demarcated area units, each with a population estimate. The nature of the self-weighting procedure adopted ensured that this population estimate was not important for determining the final sample, however. For most of the country, census ESDs were used. Where some ESDs comprised relatively large populations as for instance in some black townships such as Soweto, aerial photographs were used to divide the areas into blocks of approximately equal population size. In other instances, particularly in some of the former homelands, the area units were not ESDs but villages or village groups. In the sample design chosen, the area stage units (generally ESDs) were selected with probability proportional to size, based on the census population. Systematic sampling was used throughout that is, sampling at fixed interval in a list of ESDs, starting at a randomly selected starting point. Given that sampling was self-weighting, the impact of stratification was expected to be modest. The main objective was to ensure that the racial and geographic breakdown approximated the national population distribution. This was done by listing the area stage units (ESDs) by statistical region and then within the statistical region by urban or rural. Within these sub-statistical regions, the ESDs were then listed in order of percentage African. The sampling interval for the selection of the ESDs was obtained by dividing the 1991 census population of 38,120,853 by the 300 clusters to be selected. This yielded 105,800. Starting at a randomly selected point, every 105,800th person down the cluster list was selected. This ensured both geographic and racial diversity (ESDs were ordered by statistical sub-region and proportion of the population African). In three or four instances, the ESD chosen was judged inaccessible and replaced with a similar one. In the second sampling stage the unit of analysis was the household. In each selected ESD a listing or enumeration of households was carried out by means of a field operation. From the households listed in an ESD a sample of households was selected by systematic sampling. Even though the ultimate enumeration unit was the household, in most cases "stands" were used as enumeration units. However, when a stand was chosen as the enumeration unit all households on that stand had to be interviewed.

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    All the questionnaires were checked when received. Where information was incomplete or appeared contradictory, the questionnaire was sent back to the relevant survey organization. As soon as the data was available, it was captured using local development platform ADE. This was completed in February 1994. Following this, a series of exploratory programs were written to highlight inconsistencies and outlier. For example, all person level files were linked together to ensure that the same person code reported in different sections of the questionnaire corresponded to the same person. The error reports from these programs were compared to the questionnaires and the necessary alterations made. This was a lengthy process, as several files were checked more than once, and completed at the beginning of August 1994. In some cases, questionnaires would contain missing values, or comments that the respondent did not know, or refused to answer a question.

    These responses are coded in the data files with the following values: VALUE MEANING -1 : The data was not available on the questionnaire or form -2 : The field is not applicable -3 : Respondent refused to answer -4 : Respondent did not know answer to question

    Data appraisal

    The data collected in clusters 217 and 218 should be viewed as highly unreliable and therefore removed from the data set. The data currently available on the web site has been revised to remove the data from these clusters. Researchers who have downloaded the data in the past should revise their data sets. For information on the data in those clusters, contact SALDRU http://www.saldru.uct.ac.za/.

  13. Agricultural Sample Survey 2011-2012 (2004 E.C) - Ethiopia

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Agency (CSA) (2019). Agricultural Sample Survey 2011-2012 (2004 E.C) - Ethiopia [Dataset]. https://catalog.ihsn.org/index.php/catalog/3400
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Central Statistical Agencyhttps://ess.gov.et/
    Authors
    Central Statistical Agency (CSA)
    Time period covered
    2011 - 2012
    Area covered
    Ethiopia
    Description

    Abstract

    The general objective of CSA's Agricultural Sample Survey (AgSS) is to collect basic quantitative information on the country's agriculture that is essential for planning, policy formulation, monitoring and evaluation of mainly food security and other agricultural activities. The AgSS is composed of four components: Crop Production Forecast Survey, Meher Season Post Harvest Survey (Area and production, land use, farm management and crop utilization), Livestock Survey and Belg Season Survey.

    The specific objectives of Meher Season Post Harvest Survey are to estimate the total crop area, volume of crop production and yield of crops for Meher Season agriculture in Ethiopia.

    Geographic coverage

    The annual Agricultural Sample Survey (Meher season) covered the entire rural parts of the country except the non-sedentary population of three zones of Afar and six zones of Somali regions

    Analysis unit

    Agricultural household/ Holder/ Crop

    Universe

    The survey covered agricultural households in the sample selected regions.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling Frame The list containing EAs of all regions and their respective households obtained from the 2007 (1999 E.C) cartographic census frame was used as the sampling frame in order to select the primary sampling units (EAs). Consequently, all sample EAs were selected from this frame based on the design proposed for the survey. The second stage sampling units, households, were selected from a fresh list of households that were prepared for each EA at the beginning of the survey.

    Sample Design In order to select the sample a stratified two-stage cluster sample design was implemented. Enumeration areas (EAs) were taken to be the primary sampling units (PSUs) and the secondary sampling units (SSUs) were agricultural households. The sample size for the 2010/11 agricultural sample survey was determined by taking into account of both the required level of precision for the most important estimates within each domain and the amount of resources allocated to the survey. In order to reduce non-sampling errors, manageability of the survey in terms of quality and operational control was also considered.

    All regions were taken to be the domain of estimation for which major findings of the survey are reported.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2011-2012 annual Agricultural Sample Survey used structured questionnaires to collect agricultural information from selected sample households. List of forms in the questionnaires: - AgSS Form 2004/0: It contains forms that used to list all households in the sample areas. - AgSS Form 2004/1: It contains forms that used to list selected agricultural households and holders in the sample areas. - AgSS Form 2004/2A: It contains forms that used to collect information about crops, results of area measurements covered by crops and other land uses. - AgSS Form 2004/2B: It contains forms that used to collect information about miscellaneous questions for the holders. - AgSS Form 2004/4: It contains forms that used to collect information about list of temporary crop fields for selecting crop cutting plots. - AgSS Form 2004/5: It contains forms that used to collect information about list of temporary crop cutting results.

    Cleaning operations

    Editing, Coding and Verification Statistical data editing plays an important role in ensuring the quality of the collected survey data. It minimizes the effects of errors introduced while collecting data in the field, hence the need for data editing, coding and verification. Although coding and editing are done by the enumerators and supervisors in the field, respectively, verification of this task is done at the Head Office.

    An editing, coding and verification instruction manual was prepared and reproduced for this purpose. Then 66 editors-coders and verifiers were trained for two days in editing, coding and verification using the aforementioned manual as a reference and teaching aid. The completed questionnaires were edited, coded and later verified on a 100 % basis before the questionnaires were passed over to the data entry unit. The editing, coding and verification exercise of all questionnaires took 18 days.

    Data Entry, Cleaning and Tabulation Before data entry, the Agriculture, Natural Resources and Environment Statistics Directorate of the CSA prepared edit specification for the survey for use on personal computers for data consistency checking purposes. The data on the edited and coded questionnaires were then entered into personal computers. The data were then checked and cleaned using the edit specifications prepared earlier for this purpose. The data entry operation involved about 70 data encoders, 10 data encoder supervisors, 12 data cleaning operators and 55 personal computers. The data entered into the computers using the entry module of the CSPRO (Census and Survey Processing System) software, which is a software package developed by the United States Bureau of the Census. Following the data entry operations, the data was further reviewed for data inconsistencies, missing data … etc. by the regular professional staff from Agriculture, Natural Resources and Environment Statistics Directorate. The final stage of the data processing was to summarizing the cleaned data and produce statistical tables that present the results of the survey using the tabulation component of the PC based CSPRO software produced by professional staff from Agriculture, Natural Resources and Environment Statistics Directorate.

    Response rate

    A total of 2,290 Enumeration Areas (EAs) were selected. However, due to various reasons that are beyond control, in 17 EAs the survey could not be successful and hence interrupted. Thus, all in all the survey succeeded to cover 2,273 EAs (99.25 %) throughout the regions. The Annual Agricultural Sample survey (Meher season) was conducted on the basis of 20 agricultural households selected from each EA. Regarding the ultimate sampling units, it was intended to cover aa total of 47,080 gricultural households, however, 45,575 (98.9 %) were actually covered by the survey.

    Sampling error estimates

    Estimation procedure of totals, ratios, sampling error and the measurement of precision of estimates (CV) are given in Appendix-I and II of the final report. Distribution of sampling units (sampled and covered EAs and households) by stratum is also presented in Appendix-III of the final report.

  14. d

    Health and Retirement Study (HRS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

  15. D

    Replication Data for: A Three-Year Mixed Methods Study of Undergraduates’...

    • dataverse.no
    • dataverse.azure.uit.no
    • +2more
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ellen Nierenberg; Ellen Nierenberg (2024). Replication Data for: A Three-Year Mixed Methods Study of Undergraduates’ Information Literacy Development: Knowing, Doing, and Feeling [Dataset]. http://doi.org/10.18710/SK0R1N
    Explore at:
    txt(21865), txt(19475), csv(55030), txt(14751), txt(26578), txt(16861), txt(28211), pdf(107685), pdf(657212), txt(12082), txt(16243), text/x-fixed-field(55030), pdf(65240), txt(8172), pdf(634629), txt(31896), application/x-spss-sav(51476), txt(4141), pdf(91121), application/x-spss-sav(31612), txt(35011), txt(23981), text/x-fixed-field(15653), txt(25369), txt(17935), csv(15653)Available download formats
    Dataset updated
    Oct 8, 2024
    Dataset provided by
    DataverseNO
    Authors
    Ellen Nierenberg; Ellen Nierenberg
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Aug 8, 2019 - Jun 10, 2022
    Area covered
    Norway
    Description

    This data set contains the replication data and supplements for the article "Knowing, Doing, and Feeling: A three-year, mixed-methods study of undergraduates’ information literacy development." The survey data is from two samples: - cross-sectional sample (different students at the same point in time) - longitudinal sample (the same students and different points in time)Surveys were distributed via Qualtrics during the students' first and sixth semesters. Quantitative and qualitative data were collected and used to describe students' IL development over 3 years. Statistics from the quantitative data were analyzed in SPSS. The qualitative data was coded and analyzed thematically in NVivo. The qualitative, textual data is from semi-structured interviews with sixth-semester students in psychology at UiT, both focus groups and individual interviews. All data were collected as part of the contact author's PhD research on information literacy (IL) at UiT. The following files are included in this data set: 1. A README file which explains the quantitative data files. (2 file formats: .txt, .pdf)2. The consent form for participants (in Norwegian). (2 file formats: .txt, .pdf)3. Six data files with survey results from UiT psychology undergraduate students for the cross-sectional (n=209) and longitudinal (n=56) samples, in 3 formats (.dat, .csv, .sav). The data was collected in Qualtrics from fall 2019 to fall 2022. 4. Interview guide for 3 focus group interviews. File format: .txt5. Interview guides for 7 individual interviews - first round (n=4) and second round (n=3). File format: .txt 6. The 21-item IL test (Tromsø Information Literacy Test = TILT), in English and Norwegian. TILT is used for assessing students' knowledge of three aspects of IL: evaluating sources, using sources, and seeking information. The test is multiple choice, with four alternative answers for each item. This test is a "KNOW-measure," intended to measure what students know about information literacy. (2 file formats: .txt, .pdf)7. Survey questions related to interest - specifically students' interest in being or becoming information literate - in 3 parts (all in English and Norwegian): a) information and questions about the 4 phases of interest; b) interest questionnaire with 26 items in 7 subscales (Tromsø Interest Questionnaire - TRIQ); c) Survey questions about IL and interest, need, and intent. (2 file formats: .txt, .pdf)8. Information about the assignment-based measures used to measure what students do in practice when evaluating and using sources. Students were evaluated with these measures in their first and sixth semesters. (2 file formats: .txt, .pdf)9. The Norwegain Centre for Research Data's (NSD) 2019 assessment of the notification form for personal data for the PhD research project. In Norwegian. (Format: .pdf)

  16. World Bank Enterprise Survey 2023 - Viet Nam

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (WBG) (2025). World Bank Enterprise Survey 2023 - Viet Nam [Dataset]. https://datacatalog.ihsn.org/catalog/12684
    Explore at:
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank Group (WBG)
    Time period covered
    2023
    Area covered
    Vietnam
    Description

    Abstract

    The World Bank Enterprise Survey (WBES) is a firm-level survey of a representative sample of an economy's private sector. The surveys cover a broad range of topics related to the business environment including access to finance, corruption, infrastructure, competition, and performance.

    Geographic coverage

    National coverage

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The universe of inference includes all formal (i.e., registered) private sector businesses (with at least 1% private ownership) and with at least five employees. In terms of sectoral criteria, all manufacturing businesses (ISIC Rev 4. codes 10-33) are eligible; for services businesses, those corresponding to the ISIC Rev 4 codes 41-43, 45-47, 49-53, 55-56, 58, 61-62, 69-75, 79, and 95 are included in the Enterprise Surveys. Cooperatives and collectives are excluded from the Enterprise Surveys. All eligible establishments must be registered with the registration agency. In the case of Viet Nam, the listing from the General Statistics Office of Vietnam, the 2021 Economic Census, was used. The registration agency is the Department of Planning and investment.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The WBES use stratified random sampling, where the population of establishments is first separated into non-overlapping groups, called strata, and then respondents are selected through simple random sampling from each stratum. The detailed methodology is provided in the Sampling Note (https://www.enterprisesurveys.org/content/dam/enterprisesurveys/documents/methodology/Sampling_Note-Consolidated-2-16-22.pdf). Stratified random sampling has several advantages over simple random sampling. In particular, it:

    • produces unbiased estimates of the whole population or universe of inference, as well as at the levels of stratification
    • ensures representativeness by including observations in all of those categories
    • produces more precise estimates for a given sample size or budget allocation, and
    • may reduce implementation costs by splitting the population into convenient subdivisions.

    The WBES typically use three levels of stratification: industry classification, establishment size, and subnational region (used in combination). Starting in 2022, the WBES bases the industry classification on ISIC Rev. 4 (with earlier surveys using ISIC Rev. 3.1). For regional coverage within a country, the WBES has national coverage.

    Note: Refer to Sampling Structure section in "The Viet Nam 2023 World Bank Enterprise Survey Implementation Report" for detailed methodology on sampling.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The standard WBES questionnaire covers several topics regarding the business environment and business performance. These topics include general firm characteristics, infrastructure, sales and supplies, management practices, competition, innovation, capacity, land and permits, finance, business-government relations, exposure to bribery, labor, and performance. Information about the general structure of the questionnaire is available in the Enterprise Surveys Manual and Guide (https://www.enterprisesurveys.org/content/dam/enterprisesurveys/documents/methodology/Enterprise-Surveys-Manual-and-Guide.pdf).

    The questionnaire implemented in the Viet Nam 2023 WBES included additional questions tailored for the Business Ready Report covering infrastructure, trade, government regulations, finance, labor, and other topics.

    Response rate

    Overall survey response rate was 31.7%.

  17. Enterprise Survey 2006-2017 Panel Data - Uruguay

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Nov 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The World Bank (2018). Enterprise Survey 2006-2017 Panel Data - Uruguay [Dataset]. https://microdata.worldbank.org/index.php/catalog/3381
    Explore at:
    Dataset updated
    Nov 19, 2018
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    The World Bank
    Time period covered
    2006 - 2017
    Area covered
    Uruguay
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Uruguay in 2006, 2010 and 2017. The Enterprise Survey is a firm-level survey of a representative sample of an economy's private sector. The surveys cover a broad range of business environment topics including access to finance, corruption, infrastructure, crime, competition, and performance measures. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National coverage

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The samples for 2006, 2010 and 2017 Uruguay Enterprise Surveys were selected using stratified random sampling, following the methodology explained in the Sampling Note.

    Three levels of stratification were used in Honduras ES: industry, establishment size, and region.

    In 2006 ES, industry stratification was designed in the following way: In small economies the population was stratified into 3 manufacturing industries, one services industry - retail-, and one residual sector as defined in the sampling manual. Each industry had a target of 120 interviews.

    In 2010 ES, industry stratification was designed in the way that follows: the universe was stratified into 3 manufacturing industries, 1 service industry -retail -, and 1 residual sector as defined in the sampling manual. All sectors had a target of 120 interviews. Regional stratification was defined in two regions (city and the surrounding business area): Montevideo and Canelones.

    In 2017 ES, industry stratification was designed as follows: the universe was stratified into Manufacturing industries (ISIC Rev. 3.1 codes 15-37), Retail industries (ISIC code 52) and Other Services (ISIC codes 45, 50, 51, 55, 60-64, and 72). For the Uruguay ES, size stratification was defined as follows: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees). Regional stratification was done across two regions: Montevideo and Canelones.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Two questionnaires - Manufacturing amd Services were used to collect the survey data.

    The Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module).

  18. d

    COVID Impact Survey - Public Data

    • data.world
    csv, zip
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). COVID Impact Survey - Public Data [Dataset]. https://data.world/associatedpress/covid-impact-survey-public-data
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 16, 2024
    Authors
    The Associated Press
    Description

    Overview

    The Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.

    Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).

    The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.

    The survey is focused on three core areas of research:

    • Physical Health: Symptoms related to COVID-19, relevant existing conditions and health insurance coverage.
    • Economic and Financial Health: Employment, food security, and government cash assistance.
    • Social and Mental Health: Communication with friends and family, anxiety and volunteerism. (Questions based on those used on the U.S. Census Bureau’s Current Population Survey.) ## Using this Data - IMPORTANT This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!

    Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.

    Queries

    If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".

    Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.

    Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.

    The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."

    Margin of Error

    The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:

    • At least twice the margin of error, you can report there is a clear difference.
    • At least as large as the margin of error, you can report there is a slight or apparent difference.
    • Less than or equal to the margin of error, you can report that the respondents are divided or there is no difference. ## A Note on Timing Survey results will generally be posted under embargo on Tuesday evenings. The data is available for release at 1 p.m. ET Thursdays.

    About the Data

    The survey data will be provided under embargo in both comma-delimited and statistical formats.

    Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)

    Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.

    Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.

    Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.

    Attribution

    Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.

    AP Data Distributions

    ​To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  19. Taking Part 2011/12 Quarter 2: Statistical Release

    • gov.uk
    Updated Dec 22, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Digital, Culture, Media & Sport (2011). Taking Part 2011/12 Quarter 2: Statistical Release [Dataset]. https://www.gov.uk/government/statistics/taking-part-2011-12-quarter-2-statistical-release
    Explore at:
    Dataset updated
    Dec 22, 2011
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Digital, Culture, Media & Sport
    Description

    It is a continuous face to face household survey of adults aged 16 and over in England and chidren aged 5-15 years old. This latest releases presents rolling estimates incorporating data from the second quarter of year seven of the survey.

    Released:

    21 December 2011

    Period covered:

    October 2010 to September 2011

    Geographic coverage:

    National and Regional level data for England.

    Next release date:

    Rolling annual estimates for adults, including the third quarter of the 2011/12 survey year, is scheduled for the end of March 2012.

    Summary

    The latest data from the 2010/11 Taking Part survey provides reliable national estimates of adult and child engagement with sport, libraries, the arts, heritage and museums & galleries. This release builds on the first release of data from 2010/11 to look at a number of areas in depth and present measures that begin to consider broader definitions of participation in our sectors. The report also looks at some of the other measures in the survey that provide estimates of volunteering and charitable giving and civic engagement.

    The Taking Part survey is a continuous annual survey of adults and children living in private households in England, and carries the National Statistics badge, meaning that it meets the highest standards of statistical quality.

    Statistical Report

    Dashboard

    Statistical Worksheets

    These spreadsheets contain the data and sample sizes to support the material in this release:

    Previous release

    The previous Taking Part release was published on 29 September 2011 and can be found online. It also provides spreadsheets containing the data and sample sizes for each sector included in the survey.

    Pre-release access

    The document below contains a list of Ministers and Officials who have received privileged early access to this release of Taking Part data. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours.

    The UK Statistics Authority

    This release is published in accordance with the Code of Practice for Official Statistics (2009), as produced by the UK Statistics Authority (UKSA). The UKSA has the overall objective of promoting and s

  20. Taking Part 2011/12 Quarter 3: Statistical Release

    • gov.uk
    Updated Mar 29, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Digital, Culture, Media & Sport (2012). Taking Part 2011/12 Quarter 3: Statistical Release [Dataset]. https://www.gov.uk/government/statistics/taking-part-2011-12-quarter-3-statistical-release
    Explore at:
    Dataset updated
    Mar 29, 2012
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Digital, Culture, Media & Sport
    Description

    The Taking Part survey has run since 2005 and is the key evidence source for DCMS. It is a continuous face to face household survey of adults aged 16 and over in England and children aged 5-15 years old. This latest releases presents rolling estimates incorporating data from the third quarter of year seven of the survey.

    Released:

    29 March 2012

    Period covered:

    January 2011 - December 2011

    Geographic coverage:

    National and Regional level data for England.

    Next release date:

    A release of rolling annual estimates for adults, including the fourth quarter of the 2011/12 survey year, is scheduled for the end of June 2012.

    Summary

    The latest data from the 2011/12 Taking Part survey provides reliable national estimates of adult and child engagement with sport, libraries, the arts, heritage and museums and galleries. This release builds on the data from 2010/2011 and data from quarter 1 and quarter 2 releases of data from earlier in 2011/12 to look at a number of areas in depth and present measures that begin to consider broader definitions of participation in our sectors. The report also looks at some of the other measures in the survey that provide estimates of volunteering and charitable giving and civic engagement.

    The Taking Part survey is a continuous annual survey of adults and children living in private households in England, and carries the National Statistics badge, meaning that it meets the highest standards of statistical quality.

    Statistical Report

    Dashboard

    Statistical Worksheets

    These spreadsheets contain the data and sample sizes to support the material in this release:

    Previous release

    The previous Taking Part release was published on 21 December 2011 and can be found online. It also provides spreadsheets containing the data and sample sizes for each sector included in the survey.

    Pre-release access

    The document below contains a list of Ministers and Officials who have received privileged early access to this release of Taking Part data. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours.

    The UK Statistics Authority

    This release is published in accordance with the Code of Practice for Off

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Bureau of Statistics (NBS) (2017). Reproductive and Child Health Survey 1999 - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/1508

Reproductive and Child Health Survey 1999 - Tanzania

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 6, 2017
Dataset authored and provided by
National Bureau of Statistics (NBS)
Time period covered
1999
Area covered
Tanzania
Description

Abstract

The Tanzania Demographic and Health Survey (TDHS) is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.

The primary objective of the 1999 TRCHS was to collect data at the national level (with breakdowns by urban-rural and Mainland-Zanzibar residence wherever warranted) on fertility levels and preferences, family planning use, maternal and child health, breastfeeding practices, nutritional status of young children, childhood mortality levels, knowledge and behaviour regarding HIV/AIDS, and the availability of specific health services within the community.1 Related objectives were to produce these results in a timely manner and to ensure that the data were disseminated to a wide audience of potential users in governmental and nongovernmental organisations within and outside Tanzania. The ultimate intent is to use the information to evaluate current programmes and to design new strategies for improving health and family planning services for the people of Tanzania.

Geographic coverage

National. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately.

Analysis unit

  • Households
  • Children under five years
  • Women age 15-49
  • Men age 15-59

Kind of data

Sample survey data

Sampling procedure

The TRCHS used a three-stage sample design. Overall, 176 census enumeration areas were selected (146 on the Mainland and 30 in Zanzibar) with probability proportional to size on an approximately self-weighting basis on the Mainland, but with oversampling of urban areas and Zanzibar. To reduce costs and maximise the ability to identify trends over time, these enumeration areas were selected from the 357 sample points that were used in the 1996 TDHS, which in turn were selected from the 1988 census frame of enumeration in a two-stage process (first wards/branches and then enumeration areas within wards/branches). Before the data collection, fieldwork teams visited the selected enumeration areas to list all the households. From these lists, households were selected to be interviewed. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately. The health facilities component of the TRCHS involved visiting hospitals, health centres, and pharmacies located in areas around the households interviewed. In this way, the data from the two components can be linked and a richer dataset produced.

See detailed sample implementation in the APPENDIX A of the final report.

Mode of data collection

Face-to-face

Research instrument

The household survey component of the TRCHS involved three questionnaires: 1) a Household Questionnaire, 2) a Women’s Questionnaire for all individual women age 15-49 in the selected households, and 3) a Men’s Questionnaire for all men age 15-59.

The health facilities survey involved six questionnaires: 1) a Community Questionnaire administered to men and women in each selected enumeration area; 2) a Facility Questionnaire; 3) a Facility Inventory; 4) a Service Provider Questionnaire; 5) a Pharmacy Inventory Questionnaire; and 6) a questionnaire for the District Medical Officers.

All these instruments were based on model questionnaires developed for the MEASURE programme, as well as on the questionnaires used in the 1991-92 TDHS, the 1994 TKAP, and the 1996 TDHS. These model questionnaires were adapted for use in Tanzania during meetings with representatives from the Ministry of Health, the University of Dar es Salaam, the Tanzania Food and Nutrition Centre, USAID/Tanzania, UNICEF/Tanzania, UNFPA/Tanzania, and other potential data users. The questionnaires and manual were developed in English and then translated into and printed in Kiswahili.

The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview and children under five who were to be weighed and measured. Information was also collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, ownership of various consumer goods, and use of iodised salt. Finally, the Household Questionnaire was used to collect some rudimentary information about the extent of child labour.

The Women’s Questionnaire was used to collect information from women age 15-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, type of employment) · Birth history · Knowledge and use of family planning methods · Antenatal, delivery, and postnatal care · Breastfeeding and weaning practices · Vaccinations, birth registration, and health of children under age five · Marriage and recent sexual activity · Fertility preferences · Knowledge and behaviour concerning HIV/AIDS.

The Men’s Questionnaire covered most of these same issues, except that it omitted the sections on the detailed reproductive history, maternal health, and child health. The final versions of the English questionnaires are provided in Appendix E.

Before the questionnaires could be finalised, a pretest was done in July 1999 in Kibaha District to assess the viability of the questions, the flow and logical sequence of the skip pattern, and the field organisation. Modifications to the questionnaires, including wording and translations, were made based on lessons drawn from the exercise.

Response rate

In all, 3,826 households were selected for the sample, out of which 3,677 were occupied. Of the households found, 3,615 were interviewed, representing a response rate of 98 percent. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants were not at home despite of several callbacks.

In the interviewed households, a total of 4,118 eligible women (i.e., women age 15-49) were identified for the individual interview, and 4,029 women were actually interviewed, yielding a response rate of 98 percent. A total of 3,792 eligible men (i.e., men age 15-59), were identified for the individual interview, of whom 3,542 were interviewed, representing a response rate of 93 percent. The principal reason for nonresponse among both eligible men and women was the failure to find them at home despite repeated visits to the household. The lower response rate among men than women was due to the more frequent and longer absences of men.

The response rates are lower in urban areas due to longer absence of respondents from their homes. One-member households are more common in urban areas and are more difficult to interview because they keep their houses locked most of the time. In urban settings, neighbours often do not know the whereabouts of such people.

Sampling error estimates

The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TRCHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TRCHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TRCHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TRCHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rate

Note: See detailed sampling error calculation in the APPENDIX B

Search
Clear search
Close search
Google apps
Main menu