Facebook
TwitterCompany Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
Facebook
TwitterThis dataset was created by Abdul Hamith
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.
Facebook
TwitterSharing my Sample Data (Bellabet) for my Google Analytics capstone course.
With this i was able to get a strong overview of the inner workings of the organization
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Sample Sales Data is a retail sales dataset of 2,823 orders and 25 columns that includes a variety of sales-related data, including order numbers, product information, quantity, unit price, sales, order date, order status, customer and delivery information.
2) Data Utilization (1) Sample Sales Data has characteristics that: • This dataset consists of numerical (sales, quantity, unit price, etc.), categorical (product, country, city, customer name, transaction size, etc.), and date (order date) variables, with missing values in some columns (STATE, ADDRESSLINE2, POSTALCODE, etc.). (2) Sample Sales Data can be used to: • Analysis of sales trends and performance by product: Key variables such as order date, product line, and country can be used to visualize and analyze monthly and yearly sales trends, the proportion of sales by product line, and top sales by country and region. • Segmentation and marketing strategies: Segmentation of customer groups based on customer information, transaction size, and regional data, and use them to design targeted marketing and customized promotion strategies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.
Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.
Facebook
TwitterThese data contain the results of GC-MS, LC-MS and immunochemistry analyses of mask sample extracts. The data include tentatively identified compounds through library searches and compound abundance. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: The data can not be accessed. Format: The dataset contains the identification of compounds found in the mask samples as well as the abundance of those compounds for individuals who participated in the trial. This dataset is associated with the following publication: Pleil, J., M. Wallace, J. McCord, M. Madden, J. Sobus, and G. Ferguson. How do cancer-sniffing dogs sort biological samples? Exploring case-control samples with non-targeted LC-Orbitrap, GC-MS, and immunochemistry methods. Journal of Breath Research. Institute of Physics Publishing, Bristol, UK, 14(1): 016006, (2019).
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Data Science Platform Market Size 2025-2029
The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.
Major Market Trends & Insights
North America dominated the market and accounted for a 48% growth during the forecast period.
By Deployment - On-premises segment was valued at USD 38.70 million in 2023
By Component - Platform segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 1.00 million
Market Future Opportunities: USD 763.90 million
CAGR : 40.2%
North America: Largest market in 2023
Market Summary
The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
What will be the Size of the Data Science Platform Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?
The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
On-premises
Cloud
Component
Platform
Services
End-user
BFSI
Retail and e-commerce
Manufacturing
Media and entertainment
Others
Sector
Large enterprises
SMEs
Application
Data Preparation
Data Visualization
Machine Learning
Predictive Analytics
Data Governance
Others
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
India
Japan
South America
Brazil
Rest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.
In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.
Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.
API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.
Request Free Sample
The On-premises segment was valued at USD 38.70 million in 2019 and showed
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A dataset I generated to showcase a sample set of user data for a fictional streaming service. This data is great for practicing SQL, Excel, Tableau, or Power BI.
1000 rows and 25 columns of connected data.
See below for column descriptions.
Enjoy :)
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Dataset Overview:
This dataset contains simulated (hypothetical) but almost realistic (based on AI) data related to sleep, heart rate, and exercise habits of 500 individuals. It includes both pre-exercise and post-exercise resting heart rates, allowing for analyses such as a dependent t-test (Paired Sample t-test) to observe changes in heart rate after an exercise program. The dataset also includes additional health-related variables, such as age, hours of sleep per night, and exercise frequency.
The data is designed for tasks involving hypothesis testing, health analytics, or even machine learning applications that predict changes in heart rate based on personal attributes and exercise behavior. It can be used to understand the relationships between exercise frequency, sleep, and changes in heart rate.
File: Filename: heart_rate_data.csv File Format: CSV
- Features (Columns):
Age: Description: The age of the individual. Type: Integer Range: 18-60 years Relevance: Age is an important factor in determining heart rate and the effects of exercise.
Sleep Hours: Description: The average number of hours the individual sleeps per night. Type: Float Range: 3.0 - 10.0 hours Relevance: Sleep is a crucial health metric that can impact heart rate and exercise recovery.
Exercise Frequency (Days/Week): Description: The number of days per week the individual engages in physical exercise. Type: Integer Range: 1-7 days/week Relevance: More frequent exercise may lead to greater heart rate improvements and better cardiovascular health.
Resting Heart Rate Before: Description: The individual’s resting heart rate measured before beginning a 6-week exercise program. Type: Integer Range: 50 - 100 bpm (beats per minute) Relevance: This is a key health indicator, providing a baseline measurement for the individual’s heart rate.
Resting Heart Rate After: Description: The individual’s resting heart rate measured after completing the 6-week exercise program. Type: Integer Range: 45 - 95 bpm (lower than the "Resting Heart Rate Before" due to the effects of exercise). Relevance: This variable is essential for understanding how exercise affects heart rate over time, and it can be used to perform a dependent t-test analysis.
Max Heart Rate During Exercise: Description: The maximum heart rate the individual reached during exercise sessions. Type: Integer Range: 120 - 190 bpm Relevance: This metric helps in understanding cardiovascular strain during exercise and can be linked to exercise frequency or fitness levels.
Potential Uses: Dependent T-Test Analysis: The dataset is particularly suited for a dependent (paired) t-test where you compare the resting heart rate before and after the exercise program for each individual.
Exploratory Data Analysis (EDA):Investigate relationships between sleep, exercise frequency, and changes in heart rate. Potential analyses include correlations between sleep hours and resting heart rate improvement, or regression analyses to predict heart rate after exercise.
Machine Learning: Use the dataset for predictive modeling, and build a beginner regression model to predict post-exercise heart rate using age, sleep, and exercise frequency as features.
Health and Fitness Insights: This dataset can be useful for studying how different factors like sleep and age influence heart rate changes and overall cardiovascular health.
License: Choose an appropriate open license, such as:
CC BY 4.0 (Attribution 4.0 International).
Inspiration for Kaggle Users: How does exercise frequency influence the reduction in resting heart rate? Is there a relationship between sleep and heart rate improvements post-exercise? Can we predict the post-exercise heart rate using other health variables? How do age and exercise frequency interact to affect heart rate?
Acknowledgments: This is a simulated dataset for educational purposes, generated to demonstrate statistical and machine learning applications in the field of health analytics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A diverse selection of 1000 empirical time series, along with results of an hctsa feature extraction, using v1.06 of hctsa and Matlab 2019b, computed on a server at The University of Sydney.
Facebook
TwitterThe harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.
----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:
Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
The survey has six main objectives. These objectives are:
The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.
National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.
1- Household/family. 2- Individual/person.
The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
Sample survey data [ssd]
----> Design:
Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.
----> Sample frame:
Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.
----> Sampling Stages:
In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.
Face-to-face [f2f]
----> Preparation:
The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.
----> Questionnaire Parts:
The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job
Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.
Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days
Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.
----> Raw Data:
Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.
----> Harmonized Data:
Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).
Facebook
TwitterThis data release contains the elemental concentration data for more than 1700 archived stream-sediment samples collected in Alaska. Samples were retrieved from the USGS Mineral Program's sample archive in Denver, CO, and the Alaska Division of Geological and Geophysical Surveys Geologic Materials Center in Anchorage, AK. All samples were analyzed using a multi-element analytical method involving fusion of the sample by sodium peroxide, dissolution of the fusion cake by nitric acid, and elemental analysis by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and inductively coupled plasma-mass spectroscopy (ICP-MS). Additionally, 106 samples from the Nixon Fork area were analyzed by a second multi-element method in which the samples are decomposed by a mixture of hydrochloric, nitric, perchloric, and hydrofluoric acids and the elemental composition is determined by ICP-OES and ICP-MS. New Hg (mercury) concentrations, determined by cold-vapor atomic absorption spectrometry, are reported for 296 samples from southeast Alaska.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Demonstrates my ability to use Python basics to analyze data stored in a CSV file. This dataset is synthesized data so it should not be used in an official capacity. Only basic modules for python are utilized within the scripts so it should be usable to anyone with basic access to Python 3.
Facebook
TwitterThe R Manual for QCA entails a PDF file that describes all the steps and code needed to prepare and conduct a Qualitative Comparative Analysis (QCA) study in R. This is complemented by an R Script that can be customized as needed. The dataset further includes two files with sample data, for the set-theoretic analysis and the visualization of QCA results. The R Manual for QCA is the online appendix to "Qualitative Comparative Analysis: An Introduction to Research Design and Application", Georgetown University Press, 2021.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Sports Analytics Market Size 2025-2029
The sports analytics market size is valued to increase USD 8.4 billion, at a CAGR of 28.5% from 2024 to 2029. Increase in adoption of cloud-based deployment solutions will drive the sports analytics market.
Major Market Trends & Insights
North America dominated the market and accounted for a 38% growth during the forecast period.
By Type - Football segment was valued at USD 749.30 billion in 2023
By Solution - Player analysis segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 584.13 million
Market Future Opportunities: USD 8403.30 million
CAGR : 28.5%
North America: Largest market in 2023
Market Summary
The market represents a dynamic and ever-evolving industry, driven by advancements in core technologies and applications. Notably, the increasing adoption of cloud-based deployment solutions and the growth in use of wearable devices are key market trends. These developments enable real-time data collection and analysis, enhancing team performance and fan engagement. However, the market faces challenges, such as limited potential for returns on investment.
Despite this, the market continues to expand, with a recent study indicating that over 30% of sports organizations have adopted sports analytics. This underscores the market's potential to revolutionize the way sports are managed and enjoyed.
What will be the Size of the Sports Analytics Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Sports Analytics Market Segmented and what are the key trends of market segmentation?
The sports analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Type
Football
Cricket
Hockey
Tennis
Others
Solution
Player analysis
Team performance analysis
Health assessment
Fan engagement analysis
Others
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
Rest of World (ROW)
By Type Insights
The football segment is estimated to witness significant growth during the forecast period.
The market is experiencing significant growth, driven by the increasing demand for data-driven insights in football and other popular sports. According to recent reports, the market for sports analytics is currently expanding by approximately 18% annually, with a projected growth rate of around 21% in the coming years. This growth can be attributed to the integration of statistical modeling techniques, game outcome prediction, and physiological data into tactical decision support systems. Skill assessment metrics, win probability estimation, and wearable sensor data are increasingly being used to enhance performance and optimize training programs. Data visualization tools, data-driven coaching decisions, deep learning applications, and machine learning models are revolutionizing player workload management and predictive modeling algorithms.
Request Free Sample
The Football segment was valued at USD 749.30 billion in 2019 and showed a gradual increase during the forecast period.
Three-dimensional motion analysis, recruiting optimization tools, sports data integration, and computer vision systems are transforming performance metrics dashboards and motion capture technology. Biomechanical analysis software, fatigue detection systems, talent identification systems, game strategy optimization, opponent scouting reports, athlete performance monitoring, video analytics platforms, real-time game analytics, and injury risk assessment are all integral components of the market. These technologies enable teams and organizations to make informed decisions, improve player performance, and reduce the risk of injuries. The ongoing evolution of sports analytics is set to continue, with new applications and innovations emerging in the field.
Request Free Sample
Regional Analysis
North America is estimated to contribute 38% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
See How Sports Analytics Market Demand is Rising in North America Request Free Sample
The market in the North American region is experiencing significant growth due to technological advancements and increasing investments. In 2024, the US and Canada were major contributors to this expansion. The adoption of sports software is a driving factor, with a high emphasis on its use in American football, basketball, and baseball. Major sports leagues in the US are
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
HR analytics, also referred to as people analytics, workforce analytics, or talent analytics, involves gathering together, analyzing, and reporting HR data. It is the collection and application of talent data to improve critical talent and business outcomes. It enables your organization to measure the impact of a range of HR metrics on overall business performance and make decisions based on data. They are primarily responsible for interpreting and analyzing vast datasets.
Download the data CSV files here ; https://drive.google.com/drive/folders/18mQalCEyZypeV8TJeP3SME_R6qsCS2Og
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Facebook
TwitterFor the blood contamination studies a CSF pool was made with 1mL CSF free of blood from n=4 patients. The pool was divided into four aliquots. One aliquot was kept as reference CSF without added blood (named “neat” in the raw files), one was spiked with 20 µL blood/mL CSF (2%) (“20S”) and two were spiked with 5 µL blood/mL CSF (0.5%) (named “5S” and “5U”, S=centrifuged, U=not centrifuged). The sample spiked with 2% blood and one of the samples spiked with 0.5% blood were centrifuged at 4C at 400 x g for 10 minutes. In one experiment (BloodContamination_GeLC-MS_comb1-10) the reference CSF (neat), and 0.5% centrifuged (5S) and 2% centrifuged (20S) were protein depleted using the MARS Hu-14 column, separated by SDS-PAGE into ten fractions and in-gel digested. The samples (30 in total) were analysed by LC-MS on an OrbiTrap Velos Pro online coupled to a Dionex Ultimate 3000 nano RSLC system. The data was analysed by the Progenesis LC MS software 2.7 (Nonlinear Dynamics), and the MS/MS spectra were searched against UniProt/SwissProt using the open-source graphical user interface SearchGUI (version 1.7.3), with search engines OMSSA and X!Tandem. PeptideShaker (version 0.14.7) was used to assemble the peptides into proteins. The raw files were named according to sample and fraction, e.g. the first fraction of the reference CSF was called “BK_GeLC_neat_F1”, and the second fraction was called “BK_GeLC_neat_F2”. In the second blood contamination study the reference CSF (neat), and the 0.5% blood spiked samples centrifuged (5S) and not centrifuged (5U) were trypsin digested by in solution protocol and analysed using the same instruments as in the first study. (In the search output file are also the results for 2% blood spiked with and without centrifugation, 20S and 20U, but since the data was not used, the raw files are not distributed). The raw files were named “BK_Insol_FD_X” (X = neat, 5S or 5U). In the third experiment we examined the rostro-caudal gradient (RCG) on CSF in the spinal cord by sampling the 1st, 10th, 16th, 24th, 31st, 38th and 44th mL CSF in volumes of approximately 1 mL of a PSP patient during lumbar puncture. The CSF was centrifuged at 2000 x g for 10 min. We did an iTRAQ discovery study, and to be able to compare all seven RCG points, three related iTRAQ experiments (RCG exp 1, 2 and 3) were done. In each related experiment we included an identical reference which we labeled with the iTRAQ 114 reagent. The reference sample contained equal volumes of the seven RCG points, and was used as the reference in the data analysis. In the experiment we had twelve samples (equal volume) that were digested and labeled with iTRAQ reagents according to the vendor’s manual. The samples were combined into three related experiments as follows: Exp. 1 (common reference, 44th mL, 24th mL and 1st mL), Exp. 2 (common reference, 1st mL, 38th mL and 16th mL), and Exp. 3 (common reference, 10th mL, 44th mL and the 31st mL). The 1st and 44th mL were included twice, since they were expected to be the most different samples. The three combined samples (RCG exp 1, 2 and 3) were fractionated into 21 fractions using mixed mode reversed phase-anion chromatography (MM (RP-AX)). Fractions 1-4 were excluded from LC-MS analysis and the two latest fractions were combined before analysis on an Orbitrap Velos Pro, resulting in 16 fractions per combined sample. The raw files were named according to experiment (RCG 1, 2 or 3) and number of fraction (F4-F19), e.g. the raw file by the name EA_RCG3_F15 is fraction 15 from RCG experiment 3.
Facebook
TwitterSediment samples were collected from undisturbed sections of the seafloor around Crocker Reef, Florida. Crocker Reef is a barrier reef located in the northern portion of the Florida Reef Tract that has been classified by Kellogg and others (2015) as a senile or dead reef consisting of areas of sand and rubble with only scattered stony coral colonies. Samples were collected from November 2017 to April 2019 to help ground truth coincident instrumentation deployed during the same time interval, which was used to record various oceanic (currents, waves, turbidity, and pressure) time series datasets that would be used in subsequent analyses. All sediment samples were analyzed using a laser diffraction Coulter LS13 320 particle-size analyzer and sieves to measure the grain-size distribution of the sediments.
Facebook
TwitterCompany Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!