Facebook
TwitterThe documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.
Facebook
TwitterAnalytical and field sampling data for each 2018-2019 NRSA Fish Tissue Study chemical contaminant are provided, along with a data dictionary that describes the contents of each data file. All results for the fillet tissue concentrations are reported on a wet weight basis. All the fish fillet samples analyzed contained detectable levels of mercury and PCBs, and PFAS were detected in 95% of the fillet samples. This dataset is associated with the following publication: Stahl, L., B.D. Snyder, H.B. McCarty, T. Kincaid, A. Olsen, T.R. Cohen, and J. Healey. Contaminants in Fish from U.S. Rivers: Probability-Based National Assessments. SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 861(25): 160557, (2023).
Facebook
TwitterAs the U.S. Environmental Protection Agency (EPA) pursues its mission to protect human health and the environment, we actively work with communities and local partners all over America to limit the risk of exposure to contaminants that might have negative health impacts. We have been working in Dallas, Texas, at the Lane Plating Works, Inc. Superfund Site to identify and understand any potential risks to human health or the environment and to mitigate those risks.
In March 2016, the EPA performed a Removal Assessment based on previous investigations conducted by the Texas Commission on Environmental Quality (TCEQ). Based on EPA and TCEQ investigations, it was determined that the Site presented a threat to public health or the environment or the welfare of the United States. EPA conducted additional sampling events from 2016 to 2022 to determine the extent of site-related contaminants of concern (COC) in soil and air. Site COCs in soil included hexavalent chromium, lead, mercury, arsenic, cadmium, and chromium present at concentrations exceeding EPA cleanup levels. Air samples collected from inside the former plating facility EPA exhibited hexavalent chromium levels above health-based standards. Asbestos was identified to be present in the former plating facility. The contaminants identified at the site present a threat to human health and the environment.
EPA completed the final removal assessment in September 2022. The EPA collected 1,060 samples during the assessments, including 712 soil samples. The overall highest detection levels found in soil and dates are as follows:
Hexavalent Chromium: 5,620 mg/Kg in April 2016 Lead: 24,500 mg/Kg in April 2016 Mercury: 839 mg/Kg in June 2022 Arsenic: 25.9 mg/Kg in September 2022
The EPA Site-specific COCs and cleanup levels in soil are:
Hexavalent Chromium: 30 mg/Kg Lead: 400 mg/Kg Mercury: 11 mg/Kg Arsenic: 35 mg/Kg
Based on the analytical data from air and soil samples collected, it was determined that the Lane Plating Site does pose a threat to public health and the environment. The Environmental Protection Agency authorized a Time-Critical Removal Action to begin in November 2022. During the course of the Time-Critical Removal Action, perimeter air monitoring will be conducted on site and EPA will notify the community if there are exceedances to the particulate site action level.
Facebook
TwitterExcel spreadsheet containing all the data related to soil sampling (sheet 1, Full Dataset) as well as all of the egg related information (sheet 2, Egg information).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An Excel spreadsheet containing the full dataset, showing its sub-sampling
Facebook
TwitterThis dataset contains measurements of the water column activities of the naturally occuring isotopes 226Ra and 228Ra. Because 228Ra (T1/2= 5.77y) is derived through input from shelf sediments, it is an unambiguous marker of water that has been in contact with shelves. Its relative distribution in the shelf and basin water is therefore very valuable in assessing the degree of shelf-basin interaction. These data were collected aboard the United States Coast Guard Cutter (USCGC) Healy cruise HLY-02-03.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was extracted via Python code from the home page of BBC News. It exists for educational purposes only. The code for extraction into an Excel spreadsheet can be found here: https://www.kaggle.com/code/thomasirvin01/extract-bbc-news-home-page-headlines/notebook.
Facebook
TwitterThis data set contains measurements of the water column activities of the naturally occurring isotopes 224 RA and 228Th. Because 224RA (T1/2=3.64d) is derived through input from shelf sediments, its excess over the parent 228Th is an unambiguous marker of water that has been in very recent contact with the shelves. Its relative distribution in shelf and basin water is therefore very valuable in assessing the degree of shelf-basin interaction. These data were collected during the U.S. Coast Guard Cutter (USCGC) Healy cruise HLY-02-03.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here
Facebook
TwitterIn order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and harmful algal blooms. The research carried out as part of the study described here was designed, in part, to help refine assumptions required by earlier versions of models about the nature of submarine groundwater flow and discharge at CCNS. This study was conducted in four phases, with a variety of field techniques and equipment employed in each phase. Phase 1 consisted of continuous resistivity profiling (CRP) surveys of the entire study area conducted in 2004. Phase 2 consisted of CRP ground-truthing via resistivity probe measurements and submarine groundwater sampling from hydraulically-drive piezometers using a barge in the Salt Pond/Nauset Marsh area in 2005. Phase 3 consisted of supplemental detailed CRP surveys in the Salt Pond/Nauset Marsh area in 2006. Finally, Phase 4 consisted of sediment coring and porewater extraction in the Salt Pond/Nauset Marsh area later in 2006 to supplement the 2005 sampling.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel. The dataset can be utilized to understand the population distribution of Excel by age. For example, using this dataset, we can identify the largest age group in Excel.
Key observations
The largest age group in Excel, AL was for the group of age 5 to 9 years years with a population of 77 (15.28%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Excel, AL was the 85 years and over years with a population of 2 (0.40%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel Population by Age. You can refer the same here
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This Excel spreadsheet provides sediment description information for samples obtained with a modified van Veen grab sampler during R/V Pritchard and R/V Seawolf surveys of eastern Long Island Sound in August and November 2023. The sampling was done as part of the Long Island Sound mapping project Phase 4B. A photo of each sample was taken and the samples were described visually in the field. Based on the findings a preliminary lithology was determined. A sub-sample of the top two centimeters was taken and stored in a jar for later analysis. Sample location is based on the ship D-GPS system. The work was funded with CT DEEP award CDEP 2003-191.
Facebook
TwitterPurpose:This feature layer describes water quality sampling data performed at several operating coal mines in the South Fork of Cherry watershed, West Virginia.Source & Data:Data was downloaded from WV Department of Environmental Protection's ApplicationXtender online database and EPA's ECHO online database between January and April, 2023.There are five data sets here: Surface Water Monitoring Sites, which contains basic information about monitoring sites (name, lat/long, etc.) and NPDES Outlet Monitoring Sites, which contains similar information about outfall discharges surrounding the active mines. Biological Assessment Stations (BAS) contain similar information for pre-project biological sampling. NOV Summary contains locations of Notices of Violation received by South Fork Coal Company from WV Department of Environmental Protection. The Quarterly Monitoring Reports table contains the sampling data for the Surface Water Monitoring Sites, which actually goes as far back as 2018 for some mines. Parameters of concern include iron, aluminum and selenium, among others.A relationship class between Surface Water Monitoring Sites and the Quarterly Monitoring Reports allows access to individual sample results.Processing:Notices of Violation were obtained from the WV DEP AppXtender database for Mining and Reclamation Article 3 (SMCRA) Permitting, and Mining and Reclamation NPDES Permitting. Violation data were entered into Excel and loaded into ArcGIS Pro as a CSV text file with Lat/Long coordinates for each Violation. The CSV file was converted to a point feature class.Water quality data were downloaded in PDF format from the WVDEP AppXtender website. Non-searchable PDFs were converted via Optical Character Recognition, so that data could be copied. Sample results were copied and pasted manually to Notepad++, and several columns were re-ordered. Data was grouped by sample station and sorted chronologically. Sample data, contained in the associated table (SW_QM_Reports) were linked back to the monitoring station locations using the Station_ID text field in a geodatabase relationship class.Water monitoring station locations were taken from published Drainage Maps and from water quality reports. A CSV table was created with station Lat/Long locations and loaded into ArcGIS Pro. It was then converted to a point feature class.Stream Crossings and Road Construction Areas were digitized as polygon feature classes from project Drainage and Progress maps that were converted to TIFF image format from PDF and georeferenced.The ArcGIS Pro map - South Fork Cherry River Water Quality, was published as a service definition to ArcGIS Online.Symbology:NOV Summary - dark blue, solid pointLost Flats Surface Water Monitoring Sites: Data Available - medium blue point, black outlineLost Flats Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineLost Flats NPDES Outlet Monitoring Sites - orange point, black outlineBlue Knob Surface Water Monitoring Sites: Data Available - medium blue point, black outlineBlue Knob Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineBlue Knob NPDES Outlet Monitoring Sites - orange point, black outlineBlue Knob Biological Assessment Stations: Data Available - medium green point, black outlineBlue Knob Biological Assessment Stations: No Data Available - no-fill point, thick medium green outlineRocky Run Surface Water Monitoring Sites: Data Available - medium blue point, black outlineRocky Run Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineRocky Run NPDES Outlet Monitoring Sites - orange point, black outlineRocky Run Biological Assessment Stations: Data Available - medium green point, black outlineRocky Run Biological Assessment Stations: No Data Available - no-fill point, thick medium green outlineRocky Run Stream Crossings: turquoise blue polygon with red outlineRocky Run Haul Road Construction Areas: dark red (40% transparent) polygon with black outlineHaul Road No 2 Surface Water Monitoring Sites: Data Available - medium blue point, black outlineHaul Road No 2 Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineHaul Road No 2 NPDES Outlet Monitoring Sites - orange point, black outline
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
TwitterThis data set presents sediment sample data consisting of biofacies abundance and sediment grain size and properties for samples collected in 2021 over the Vitoria Trindade Ridge during research cruise CORE-VTRCC on naval vessel Nho Cruzeiro do Sul. During the sampling program, nine seafloor sediment samples were collected within the Vitória-Trindade Ridge with a Van-Veen grab sampler (3600 cm²) on the top of the volcanic seamounts. Sample V7 collected only rhodoliths, without additional sediments. Grain sizes larger than 40 mm diameter (pebble size) were separated for rhodolith measurements. Sediment samples were washed to dissolve the salt concentration for 48 hours, then oven-dried at 45 °C for 72 hours. The rhodolith samples were dried at 35 °C for 48 hours. The morphometry of the rhodoliths was classified in spheirodal, discoidal and ellipsoidal based on the measurement of the long (L), intermediate (I) and short (S) axis with a Vernier Caliper. Samples were weighed and sieved in phi fractions (-1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 and > 4.0) for 10 minutes. Samples sieved were described in phi fractions and were grouped in the following orders: granules (-2 to -1), very coarse sand (-1 to 0), coarse sand (0 to 1), medium sand (1 to 2), fine sand (2 to 3), very fine sand (3 to 4) and silt (> 4). The mean grain size and sorting were analyzed on Gradistat v9.1 software. Sediment samples were also placed on a Petri dish for microscope analysis and photography using Fiji software. Grains were then classified (Carbonate debris, foraminifers, bryozoans, sponge spicules, bivalves, gastropods, crustaceans, echinoderms, and annelida) and abundance was quantified based on 300 random point counts per sample. The data file is in Excel spreadsheet format. In the file names, SS = "Seafloor Samples". For the analysis, each seafloor sample was subdivided into ten subsamples (Q number). Codes: V# - Number of Sample (_# goes when there is multiple images for the same sample); Q# - Number of the quartile sample (only for the biofacies). Funding for this work was provided through FAPESP awards 2016/24946-9 and 2020/08847-6, and through the Brazilian Navy program PROAMAZONIA AZUL.
Facebook
TwitterThe intention is to collect data for the calendar year 2009 (or the nearest year for which each business keeps its accounts. The survey is considered a one-off survey, although for accurate NAs, such a survey should be conducted at least every five years to enable regular updating of the ratios, etc., needed to adjust the ongoing indicator data (mainly VAGST) to NA concepts. The questionnaire will be drafted by FSD, largely following the previous BAS, updated to current accounting terminology where necessary. The questionnaire will be pilot tested, using some accountants who are likely to complete a number of the forms on behalf of their business clients, and a small sample of businesses. Consultations will also include Ministry of Finance, Ministry of Commerce, Industry and Labour, Central Bank of Samoa (CBS), Samoa Tourism Authority, Chamber of Commerce, and other business associations (hotels, retail, etc.).
The questionnaire will collect a number of items of information about the business ownership, locations at which it operates and each establishment for which detailed data can be provided (in the case of complex businesses), contact information, and other general information needed to clearly identify each unique business. The main body of the questionnaire will collect data on income and expenses, to enable value added to be derived accurately. The questionnaire will also collect data on capital formation, and will contain supplementary pages for relevant industries to collect volume of production data for selected commodities and to collect information to enable an estimate of value added generated by key tourism activities.
The principal user of the data will be FSD which will incorporate the survey data into benchmarks for the NA, mainly on the current published production measure of GDP. The information on capital formation and other relevant data will also be incorporated into the experimental estimates of expenditure on GDP. The supplementary data on volumes of production will be used by FSD to redevelop the industrial production index which has recently been transferred under the SBS from the CBS. The general information about the business ownership, etc., will be used to update the Business Register.
Outputs will be produced in a number of formats, including a printed report containing descriptive information of the survey design, data tables, and analysis of the results. The report will also be made available on the SBS website in “.pdf” format, and the tables will be available on the SBS website in excel tables. Data by region may also be produced, although at a higher level of aggregation than the national data. All data will be fully confidentialised, to protect the anonymity of all respondents. Consideration may also be made to provide, for selected analytical users, confidentialised unit record files (CURFs).
A high level of accuracy is needed because the principal purpose of the survey is to develop revised benchmarks for the NA. The initial plan was that the survey will be conducted as a stratified sample survey, with full enumeration of large establishments and a sample of the remainder.
National Coverage
The main statistical unit to be used for the survey is the establishment. For simple businesses that undertake a single activity at a single location there is a one-to-one relationship between the establishment and the enterprise. For large and complex enterprises, however, it is desirable to separate each activity of an enterprise into establishments to provide the most detailed information possible for industrial analysis. The business register will need to be developed in such a way that records the links between establishments and their parent enterprises. The business register will be created from administrative records and may not have enough information to recognize all establishments of complex enterprises. Large businesses will be contacted prior to the survey post-out to determine if they have separate establishments. If so, the extended structure of the enterprise will be recorded on the business register and a questionnaire will be sent to the enterprise to be completed for each establishment.
SBS has decided to follow the New Zealand simplified version of its statistical units model for the 2009 BAS. Future surveys may consider location units and enterprise groups if they are found to be useful for statistical collections.
It should be noted that while establishment data may enable the derivation of detailed benchmark accounts, it may be necessary to aggregate up to enterprise level data for the benchmarks if the ongoing data used to extrapolate the benchmark forward (mainly VAGST) are only available at the enterprise level.
The BAS's covered all employing units, and excluded small non-employing units such as the market sellers. The surveys also excluded central government agencies engaged in public administration (ministries, public education and health, etc.). It only covers businesses that pay the VAGST. (Threshold SAT$75,000 and upwards).
Sample survey data [ssd]
-Total Sample Size was 1240 -Out of the 1240, 902 successfully completed the questionnaire. -The other remaining 338 either never responded or were omitted (some businesses were ommitted from the sample as they do not meet the requirement to be surveyed) -Selection was all employing units paying VAGST (Threshold SAT $75,000 upwards)
WILL CONFIRM LATER!!
OSO LE MEA E LE FAASA...AEA :-)
Mail Questionnaire [mail]
Supplementary Pages Additional pages have been prepared to collect data for a limited range of industries. 1.Production data. To rebase and redevelop the Industrial Production Index (IPI), it is intended to collect volume of production information from a selection of large manufacturing businesses. The selection of businesses and products is critical to the usefulness of the IPI. The products must be homogeneous, and be of enough importance to the economy to justify collecting the data. Significance criteria should be established for the selection of products to include in the IPI, and the 2009 BAS provides an opportunity to collect benchmark data for a range of products known to be significant (based on information in the existing IPI, CPI weights, export data, etc.) as well as open questions for respondents to provide information on other significant products. 2.Tourism. There is a strong demand for estimates of tourism value added. To estimate tourism value added using the international standard Tourism Satellite Account methodology requires the use of an input-output table, which is beyond the capacity of SBS at present. However, some indicative estimates of the main parts of the economy influenced by tourism can be derived if the necessary data are collected. Tourism is a demand concept, based on defining tourists (the international standard includes both international and domestic tourists), what products are characteristically purchased by tourists, and which industries supply those products. Some questions targeted at those industries that have significant involvement with tourists (hotels, restaurants, transport and tour operators, vehicle hire, etc.), on how much of their income is sourced from tourism would provide valuable indicators of the size of the direct impact of tourism.
Partial imputation was done at the time of receipt of questionnaires, after follow-up procedures to obtain fully completed questionnaires have been followed. Imputation followed a process, i.e., apply ratios from responding units in the imputation cell to the partial data that was supplied. Procedures were established during the editing stage (a) to preserve the integrity of the questionnaires as supplied by respondents, and (b) to record all changes made to the questionnaires during editing. If SBS staff writes on the form, for example, this should only be done in red pen, to distinguish the alterations from the original information.
Additional edit checks were developed, including checking against external data at enterprise/establishment level. External data to be checked against include VAGST and SNPF for turnover and purchases, and salaries and wages and employment data respectively. Editing and imputation processes were undertaken by FSD using Excel.
NOT APPLICABLE!!
Facebook
TwitterFeral Cat Distance 6.0 DataThis is the data file for Distance 6.0 containing feral cat distance sampling data, along with the density analysis.catthesis.dstRaw Cat Distance Sampling DataThis is the excel file of raw feral cat distance sampling data that was used for entry into Distance 6.0.Cat_Data.xlsx
Facebook
TwitterThe main objectives of the survey were: - To obtain weights for the revision of the Consumer Price Index (CPI) for Funafuti; - To provide information on the nature and distribution of household income, expenditure and food consumption patterns; - To provide data on the household sector's contribution to the National Accounts - To provide information on economic activity of men and women to study gender issues - To undertake some poverty analysis
National, including Funafuti and Outer islands
All the private household are included in the sampling frame. In each household selected, the current resident are surveyed, and people who are usual resident but are currently away (work, health, holydays reasons, or border student for example. If the household had been residing in Tuvalu for less than one year: - but intend to reside more than 12 months => The household is included - do not intend to reside more than 12 months => out of scope
Sample survey data [ssd]
It was decided that 33% (one third) sample was sufficient to achieve suitable levels of accuracy for key estimates in the survey. So the sample selection was spread proportionally across all the island except Niulakita as it was considered too small. For selection purposes, each island was treated as a separate stratum and independent samples were selected from each. The strategy used was to list each dwelling on the island by their geographical position and run a systematic skip through the list to achieve the 33% sample. This approach assured that the sample would be spread out across each island as much as possible and thus more representative.
For details please refer to Table 1.1 of the Report.
Only the island of Niulakita was not included in the sampling frame, considered too small.
Face-to-face [f2f]
There were three main survey forms used to collect data for the survey. Each question are writen in English and translated in Tuvaluan on the same version of the questionnaire. The questionnaires were designed based on the 2004 survey questionnaire.
HOUSEHOLD FORM - composition of the household and demographic profile of each members - dwelling information - dwelling expenditure - transport expenditure - education expenditure - health expenditure - land and property expenditure - household furnishing - home appliances - cultural and social payments - holydays/travel costs - Loans and saving - clothing - other major expenditure items
INDIVIDUAL FORM - health and education - labor force (individu aged 15 and above) - employment activity and income (individu aged 15 and above): wages and salaries, working own business, agriculture and livestock, fishing, income from handicraft, income from gambling, small scale activies, jobs in the last 12 months, other income, childreen income, tobacco and alcohol use, other activities, and seafarer
DIARY (one diary per week, on a 2 weeks period, 2 diaries per household were required) - All kind of expenses - Home production - food and drink (eaten by the household, given away, sold) - Goods taken from own business (consumed, given away) - Monetary gift (given away, received, winning from gambling) - Non monetary gift (given away, received, winning from gambling)
Questionnaire Design Flaws Questionnaire design flaws address any problems with the way questions were worded which will result in an incorrect answer provided by the respondent. Despite every effort to minimize this problem during the design of the respective survey questionnaires and the diaries, problems were still identified during the analysis of the data. Some examples are provided below:
Gifts, Remittances & Donations Collecting information on the following: - the receipt and provision of gifts - the receipt and provision of remittances - the provision of donations to the church, other communities and family occasions is a very difficult task in a HIES. The extent of these activities in Tuvalu is very high, so every effort should be made to address these activities as best as possible. A key problem lies in identifying the best form (questionnaire or diary) for covering such activities. A general rule of thumb for a HIES is that if the activity occurs on a regular basis, and involves the exchange of small monetary amounts or in-kind gifts, the diary is more appropriate. On the other hand, if the activity is less infrequent, and involves larger sums of money, the questionnaire with a recall approach is preferred. It is not always easy to distinguish between the two for the different activities, and as such, both the diary and questionnaire were used to collect this information. Unfortunately it probably wasn?t made clear enough as to what types of transactions were being collected from the different sources, and as such some transactions might have been missed, and others counted twice. The effects of these problems are hopefully minimal overall.
Defining Remittances Because people have different interpretations of what constitutes remittances, the questionnaire needs to be very clear as to how this concept is defined in the survey. Unfortunately this wasn?t explained clearly enough so it was difficult to distinguish between a remittance, which should be of a more regular nature, and a one-off monetary gift which was transferred between two households.
Business Expenses Still Recorded The aim of the survey is to measure "household" expenditure, and as such, any expenditure made by a household for an item or service which was primarily used for a business activity should be excluded. It was not always clear in the questionnaire that this was the case, and as such some business expenses were included. Efforts were made during data cleaning to remove any such business expenses which would impact significantly on survey results.
Purchased goods given away as a gift When a household makes a gift donation of an item it has purchased, this is recorded in section 5 of the diary. Unfortunately it was difficult to know how to treat these items as it was not clear as to whether this item had been recorded already in section 1 of the diary which covers purchases. The decision was made to exclude all information of gifts given which were considered to be purchases, as these items were assumed to have already been recorded already in section 1. Ideally these items should be treated as a purchased gift given away, which in turn is not household consumption expenditure, but this was not possible.
Some key items missed in the Questionnaire Although not a big issue, some key expenditure items were omitted from the questionnaire when it would have been best to collect them via this schedule. A key example being electric fans which many households in Tuvalu own.
Consistency of the data: - each questionnaire was checked by the supervisor during and after the collection - before data entry, all the questionnaire were coded - the CSPRo data entry system included inconsistency checks which allow the NSO staff to point some errors and to correct them with imputation estimation from their own knowledge (no time for double entry), 4 data entry operators. - after data entry, outliers were identified in order to check their consistency.
All data entry, including editing, edit checks and queries, was done using CSPro (Census Survey Processing System) with additional data editing and cleaning taking place in Excel.
The staff from the CSD was responsible for undertaking the coding and data entry, with assistance from an additional four temporary staff to help produce results in a more timely manner.
Although enumeration didn't get completed until mid June, the coding and data entry commenced as soon as forms where available from Funafuti, which was towards the end of March. The coding and data entry was then completed around the middle of July.
A visit from an SPC consultant then took place to undertake initial cleaning of the data, primarily addressing missing data items and missing schedules. Once the initial data cleaning was undertaken in CSPro, data was transferred to Excel where it was closely scrutinized to check that all responses were sensible. In the cases where unusual values were identified, original forms were consulted for these households and modifications made to the data if required.
Despite the best efforts being made to clean the data file in preparation for the analysis, no doubt errors will still exist in the data, due to its size and complexity. Having said this, they are not expected to have significant impacts on the survey results.
Under-Reporting and Incorrect Reporting as a result of Poor Field Work Procedures The most crucial stage of any survey activity, whether it be a population census or a survey such as a HIES is the fieldwork. It is crucial for intense checking to take place in the field before survey forms are returned to the office for data processing. Unfortunately, it became evident during the cleaning of the data that fieldwork wasn?t checked as thoroughly as required, and as such some unexpected values appeared in the questionnaires, as well as unusual results appearing in the diaries. Efforts were made to indentify the main issues which would have the greatest impact on final results, and this information was modified using local knowledge, to a more reasonable answer, when required.
Data Entry Errors Data entry errors are always expected, but can be kept to a minimum with
Facebook
TwitterThe purpose of this analysis is the development of an efficient sampling protocol for plastic waste streams.
A model waste from different polymers was formulated, rich in ABS and containing PS, PP and PE in smaller proportions. Additionally, one bromine containing flame retardant is added to a final concentration of either 500ppm or 50ppm. Different sampling approaches were followed including extrusion and/or cryogenic grinding as a homogenization step. Each approach was assessed via various analytical techniques as to homogenization efficiency.
This dataset contains raw MFR data of the model waste from the different sampling approaches. The content is:
·One Excel file containing MFR data of the model waste, wherein the approach was based on extrusion and measurement protocol
·One Excel file containing MFR data of the model waste, wherein the approach was based on cryogenic grinding and measurement protocol
·One Word file containing further information about the methodology and nomenclature
This dataset was generated in the framework of PRecycling Horizon Europe project (101058670)
Facebook
TwitterThis dataset contains dissolved organic carbon (DOC) data collected during the 2004 SBI Spring Cruise (HLY-04-02).
Facebook
TwitterThe documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.