This dataset comprises road centerlines for all roads in San Diego County. Road centerline information is collected from recorded documents (subdivision and parcel maps) and information provided by local jurisidictions (Cities in San Diego County, County of San Diego). Road names and address ranges are as designated by the official address coordinator for each jurisidcition. Jurisdictional information is created from spatial overlays with other data layers (e.g. Jurisdiction, Census Tract).The layer contains both public and private roads. Not all roads are shown on official, recorded documents. Centerlines may be included for dedicated public roads even if they have not been constructed. Public road names are the official names as maintained by the addressing authority for the jurisdiction in which the road is located. Official road names may not match the common or local name used to identify the road (e.g. State Route 94 is the official name of certain road segments commonly referred to as Campo Road).Private roads are either named or unnamed. Named private roads are as shown on official recorded documents or as directed by the addressing authority for the jurisdiction in which the road is located. Unnamed private roads are included where requested by the local jurisidiction or by SanGIS JPA members (primarily emergency response dispatch agencies). Roads are comprised of road segments that are individually identified by a unique, and persistent, ID (ROADSEGID). Roads segments are terminated where they intersect with each other, at jurisdictional boundaries (i.e. city limits), certain census tract and law beat boundaries, at locations where road names change, and at other locations as required by SanGIS JPA members. Each road segment terminates at an intersection point that can be found in the ROADS_INTERSECTION layer.Road centerlines do not necessarily follow the centerline of dedicated rights-of-way (ROW). Centerlines are adjusted as needed to fit the actual, constructed roadway. However, many road centerline segments are created intially based on record documents prior to construction and may not have been updated to meet as-built locations. Please notify SanGIS if the actual location differs from that shown. See the SanGIS website for contact information and reporting problems (http://www.sangis.org/contact/problem.html).Note, the road speeds in this layer are based on road segment class and were published as part of an agreement between San Diego Fire-Rescue, the San Diego County Sheriff's Department, and SanGIS. The average speed is based on heavy fire vehicles and may not represent the posted speed limit.
A collection of maps of San Diego County MPAs to target various audiences for improving understanding of the location, purpose and management of California’s marine protected areas.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty boundaries boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, coastal buffers are removed, leaving the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal Buffers (this dataset)Cities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal BuffersWithout Coastal BuffersPlace AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Edge refers to the linear topological primitives that make up MTDB. The All Lines Shapefile contains linear features such as roads, railroads, and hydrography. Additional attribute data associated with the linear features found in the All Lines Shapefile are available in relationship (.dbf) files that users must download separately. The All Lines Shapefile contains the geometry and attributes of each topological primitive edge. Each edge has a unique TIGER/Line identifier (TLID) value.
This dataset comprises centerline segments for roads (both active and inactive, public and private, constructed or of record) in San Diego County based on data received from all official jurisdictions within the County (the County and 18 cities).
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The All Roads Shapefile includes all features within the MTDB Super Class "Road/Path Features" distinguished where the MAF/TIGER Feature Classification Code (MTFCC) for the feature in MTDB that begins with "S". This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, and stairways.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, the coastline is used to separate coastal buffers from the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal Buffers (this dataset)Without Coastal BuffersPlace AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year
This data set maps the soil-slip susceptibility for several areas in southwestern California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of raster maps containing grid cells coded with soil- slip susceptibility values. In addition, the data set includes the following graphic and text products: (1) postscript graphic plot files containing the soil-slip susceptibility map, topography, cultural data, and a key of the colored map units, and (2) PDF and text files of the Readme (including the metadata file as an appendix) and accompanying text, and a PDF file of the plot files. Intense winter rains commonly generated debris flows in upland areas of southwestern California. These debris flows initiate as small landslides referred to as soil slips. Most of the soil slips mobilize into debris flows that travel down slope at varying speeds and distances. The debris flows can be a serious hazard to people and structures in their paths. The soil-slip susceptibility maps identify those natural slopes most likely to be the sites of soil slips during periods of intense winter rainfall. The maps were largely derived by extrapolation of debris-flow inventory data collected from selected areas of southwestern California. Based on spatial analyses of soil slips, three factors in addition to rainfall, were found to be most important in the origin of soil slips. These factors are geology, slope, and aspect. Geology, by far the most important factor, was derived from existing geologic maps. Slope and aspect data were obtained from 10-meter digital elevation models (DEM). Soil-slip susceptibility maps at a scale of 1:24,000 were derived from combining numerical values for geology, slope, and aspect on a 10-meter cell size for 128 7.5' quadrangles and assembled on 1:100,000-scale topographic maps. The resultant maps of relative soil-slip susceptibility represent the best estimate generated from available debris-flow inventory maps and DEM data.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Feature Shapefile (ADDRFEAT.dbf) contains the geospatial edge geometry and attributes of all unsuppressed address ranges for a county or county equivalent area. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. Single-address address ranges have been suppressed to maintain the confidentiality of the addresses they describe. Multiple coincident address range feature edge records are represented in the shapefile if more than one left or right address ranges are associated to the edge. The ADDRFEAT shapefile contains a record for each address range to street name combination. Address range associated to more than one street name are also represented by multiple coincident address range feature edge records. Note that the ADDRFEAT shapefile includes all unsuppressed address ranges compared to the All Lines Shapefile (EDGES.shp) which only includes the most inclusive address range associated with each side of a street edge. The TIGER/Line shapefile contain potential address ranges, not individual addresses. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.
These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed.
The study involved a three-year evaluation of two efforts to target crime stemming from the Southern Border of the United States - one which funded greater participation by local officers on four FBI-led multi-jurisdictional task forces (MJTFs) and another that created a new multi-jurisdictional team. As part of this evaluation, researchers documented the level of inter-agency collaboration and communication when the project began, gathered information regarding the benefits and challenges of MJTF participation, measured the level of communication and collaboration, and tracked a variety of outcomes specific to the funded MJTFs, as well as three comparison MJTFs. Multiple methodologies were used to achieve these goals including surveys of task forces, law enforcement stakeholders, and community residents; law enforcement focus groups; program observations; and analysis of archival data related to staffing costs; task force activities; task force target criminal history; and prosecution outcomes.
The study is comprised of several data files in SPSS format:
Imperial County Law Enforcement Stakeholder Survey Data (35 cases and 199 variables); Imperial County Resident Survey (402 cases and 70 variables); Imperial Task Force Survey (6 cases and 84 variables); Prosecution Outcome Data (1,973 cases and 115 variables); San Diego County Resident Survey (402 cases and 69 variables); San Diego Law Enforcement Stakeholder Survey (460 cases and 353 variables); San Diego Task Force Survey (18 cases and 101 variables); Staff and Cost Measures Data (7 cases and 61 variables); Criminal Activity Data (110 cases and 50 variables);
Additionally, Calls for Service Data, Countywide Arrest Data, and Data used for Social Network Analysis are available in Excel format.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Feature Names Relationship File (FEATNAMES.dbf) contains a record for each feature name and any attributes associated with it. Each feature name can be linked to the corresponding edges that make up that feature in the All Lines Shapefile (EDGES.shp), where applicable to the corresponding address range or ranges in the Address Ranges Relationship File (ADDR.dbf), or to both files. Although this file includes feature names for all linear features, not just road features, the primary purpose of this relationship file is to identify all street names associated with each address range. An edge can have several feature names; an address range located on an edge can be associated with one or any combination of the available feature names (an address range can be linked to multiple feature names). The address range is identified by the address range identifier (ARID) attribute, which can be used to link to the Address Ranges Relationship File (ADDR.dbf). The linear feature is identified by the linear feature identifier (LINEARID) attribute, which can be used to relate the address range back to the name attributes of the feature in the Feature Names Relationship File or to the feature record in the Primary Roads, Primary and Secondary Roads, or All Roads Shapefiles. The edge to which a feature name applies can be determined by linking the feature name record to the All Lines Shapefile (EDGES.shp) using the permanent edge identifier (TLID) attribute. The address range identifier(s) (ARID) for a specific linear feature can be found by using the linear feature identifier (LINEARID) from the Feature Names Relationship File (FEATNAMES.dbf) through the Address Range / Feature Name Relationship File (ADDRFN.dbf).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This service displays the County Supervisor, City Council, School District and Fire Protection district boundaries within the San Diego region. The Council and Supervisor District services include links to each District website. Layers can be downloaded from the Regional GIS Data Warehouse under the District category.
This dataset contains the county boundaries that make up the Southern California Association of Governments service area. These county boundaries are consistent with the LAFCO city boundaries as of 08/2016 (Ver. 1.0).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern California include flood-hazard information for the coast from the border of Mexico to Pt. Conception. Several changes from Phase 1 projections are reflected in many areas; please read the model summary and inspect output carefully. Data are complete for the information presented. Details: Model background: The CoSMoS model comprises three tiers. Tier I consists of one Delft3D hydrodynamics FLOW grid for computation of tides, water level variations, flows, and currents and one SWAN grid for computation of wave generation and propagation across the continental shelf. The FLOW and SWAN models are two-way coupled so that tidal currents are accounted for in wave propagation and growth and conversely, so that orbital velocities generated by waves impart changes on tidal currents. The Tier I SWAN and FLOW models consist of identical structured curvilinear grids that extend from far offshore to the shore and range in resolution from 0.5 km in the offshore to 0.2 km in the nearshore. Spatially varying astronomic tidal amplitudes and phases and steric rises in water levels due to large-scale effects (for example, a prolonged rise in sea level) are applied along all open boundaries of the Tier I FLOW grid. Winds (split into eastward and northward components) and sea-level pressure (SLP) fields from CaRD10 (Dr. Dan Cayan, Scripps Institute of Oceanography, San Diego, California, written commun., 2014) that vary in both space and time are applied to all grid cells at each model time-step. Deep-water wave conditions, applied at the open boundaries of the Tier I SWAN model runs, were projected for the 21st century Representative Concentration Pathway (RCP) 4.5 climate scenario (2011-2100) using the WaveWatch III numerical wave model (Tolman and others, 2002) and 3-hourly winds from the GFDL-ESM2M Global Climate Model (GCM). Tier II provides higher resolution near the shore and in areas that require greater resolution of physical processes (such as bays, harbors, and estuaries). A single nested outer grid and multiple two-way coupled domain decomposition (DD) structured grids allow for local grid refinement and higher resolution where needed. Tier II was segmented into 11 sections along the Southern California Bight, to reduce computation time and complete runs within computational limitations. Water-level and Neumann time-series, extracted from Tier I simulations, are applied to the shore-parallel and lateral open boundaries of each Tier II sub-model outer grid respectively. Several of the sub-models proved to be unstable with lateral Neumann boundaries; for those cases one or both of the lateral boundaries were converted to water-level time-series or left unassigned. The open-boundary time-series are extracted from completed Tier I simulations so that there is no communication from Tier II to Tier I. Because this one-way nesting could produce erroneous results near the boundaries of Tier II and because data near any model boundary are always suspect, Tier II sub-model extents were designed to overlap in the along-coast direction. In the landward direction, Tier II DD grids extend to the 10-m topographic contour; exceptions exist where channels (such as the Los Angeles River) or other low-lying regions extend very far inland. Space- and time-varying wind and SLP fields, identical to those used in Tier I simulations, are applied to all Tier II DD grids to allow for wind-setup and local inverse barometer effects (IBE, rise or depression of water levels in response to atmospheric pressure gradients). A total of 42 time-series fluvial discharges are included in the Tier II FLOW domains in an effort to simulate exacerbated flooding caused by backflow at the confluence of high river seaward flows and elevated coastal surge levels migrating inland. Time-varying fluvial discharges are applied either at the closed boundaries or distributed as point sources within the relevant model domains. Wave computations are accomplished with the SWAN model using two grids for each Tier II sub-model: one larger grid covering the same area as the outer FLOW grid and a second finer resolution two-way coupled nearshore nested grid. The nearshore grid extends from approximately 800-1,000 m water depth up to 8-10 m elevations onshore. The landward extension is included to allow for wave computations of the higher SLR scenarios. Time- and space-varying 2D wave spectra extracted from previously completed Tier I simulations are applied approximately every kilometer along the open boundaries of the outer Tier II sub-model SWAN grids. The same space- and time-varying wind fields used in Tier I simulations are also applied to both Tier II SWAN grids to allow for computation of local wave generation. Tier III for the entire Southern California Bight consists of 4,802 cross-shore transects (CST) spaced approximately 100 m apart in the along-shore direction. The profiles extend from the -15 m isobath to at least 10 m above NAVD88. The CSTs are truncated for cases where a lagoon or other waterway exists on the landward end of the profile. Time-varying water levels and wave parameters (significant wave heights, Hs; peak periods, Tp; and peak incident wave directions, Dp), extracted from Tier II grid cells that coincide with the seaward end of the CSTs, are applied at the open boundary of each CST. The XBeach model is run in a hydrostatic (no vertical pressure gradients) mode including event-based morphodynamic change. Wave propagation, two-way wave-current interaction, water-level variations, and wave runup are computed at each transect. XBeach simulations are included in the CoSMoS model to account for infragravity waves that can significantly extend the reach of wave runup (Roelvink and others, 2009) compared to short-wave incident waves. The U.S. west coast is particularly susceptible to infragravity waves at the shore due to breaking of long-period swell waves (Tp > 15). Resulting water levels (WLs) from both Delft3D (high interest bays and marshes) and open-coast XBeach (CSTs) were spatially combined and interpolated to a 10 m grid. These WL elevations are differenced from the originating 2 m digital elevation model (DEM) to determine final flooding extent and depth of flooding. Events: The model system is run for pre-determined scenarios of interest such as the 1-yr or 100-yr storm event in combination with sea-level rise. Storms are first identified from time-series of total water level proxies (TWLpx) at the shore. TWLpx are computed for the majority of the 21st century (2010-2100), assuming a linear super-position of the major processes that contribute to the overall total water level. TWLpx time-series are then evaluated for extreme events, which define the boundary conditions for subsequent modeling with CoSMoS. Multiple 100-yr events are determined (varying Hs, Tp, Dp) and used for multiple model runs to better account for regional and directional flooding affects. Model results are combined and compiled into scenario-specific composites of flood projection. Digital Elevation Model (DEM): Our seamless, topobathymetric digital elevation model (DEM) was based largely upon the Coastal California TopoBathy Merge Project DEM, with some modifications performed by the USGS Earth Resources Observation and Science (EROS) Center to incorporate the most recent, high-resolution topographic and bathymetric datasets available. Topography is derived from bare-earth light detection and ranging (lidar) data collected in 2009-2011 for the CA Coastal Conservancy Lidar Project and bathymetry from 2009-2010 bathymetric lidar as well as acoustic multi- and single-beam data collected primarily between 2001 and 2013. The DEM was constructed to define the shape of nearshore, beach, and cliff surfaces as accurately as possible, utilizing dozens of bathymetric and topographic data sets. These data were used to populate the majority of the tier I and II grids. To describe and include impacts from long-term shoreline evolution, including cumulative storm activity, seasonal trends, ENSO, and SLR, the DEM was modified for each SLR scenario. Long-term shoreline (Vitousek and Barnard, 2015) and cliff (Limber et al., 2015) erosion projections were efficiently combined along the cross-shore transects to evolve the shore-normal profiles. Elevation changes from the profiles were spatially-merged for a cohesive, 3D depiction of coastal evolution used to modify the DEM. These data are used to generate initial profiles of the 4,802 CSTs used for Phase 2 tier III XBeach modeling and determining final projected flood depths in each SLR scenario. All data are referenced to NAD83 horizontal datum and NAVD88 vertical datum. Data for Tiers II and III are projected in UTM, zone 11. Outputs include: Areas of projected flood hazards: The area vulnerable to coastal flooding due to storm surge, sea-level anomalies, tide elevation, and wave run-up during the storm simulation, based on the maximum elevation of still-water level (inundation for several minutes) at each CST profile. Enclosed areas illustrate the projected water surface and is shown extending from offshore to the
This dataset comprises road centerlines for all roads in San Diego County. Road centerline information is collected from recorded documents (subdivision and parcel maps) and information provided by local jurisidictions (Cities in San Diego County, County of San Diego). Road names and address ranges are as designated by the official address coordinator for each jurisidcition. Jurisdictional information is created from spatial overlays with other data layers (e.g. Jurisdiction, Census Tract).The layer contains both public and private roads. Not all roads are shown on official, recorded documents. Centerlines may be included for dedicated public roads even if they have not been constructed. Public road names are the official names as maintained by the addressing authority for the jurisdiction in which the road is located. Official road names may not match the common or local name used to identify the road (e.g. State Route 94 is the official name of certain road segments commonly referred to as Campo Road).Private roads are either named or unnamed. Named private roads are as shown on official recorded documents or as directed by the addressing authority for the jurisdiction in which the road is located. Unnamed private roads are included where requested by the local jurisidiction or by SanGIS JPA members (primarily emergency response dispatch agencies). Roads are comprised of road segments that are individually identified by a unique, and persistent, ID (ROADSEGID). Roads segments are terminated where they intersect with each other, at jurisdictional boundaries (i.e. city limits), certain census tract and law beat boundaries, at locations where road names change, and at other locations as required by SanGIS JPA members. Each road segment terminates at an intersection point that can be found in the ROADS_INTERSECTION layer.Road centerlines do not necessarily follow the centerline of dedicated rights-of-way (ROW). Centerlines are adjusted as needed to fit the actual, constructed roadway. However, many road centerline segments are created intially based on record documents prior to construction and may not have been updated to meet as-built locations. Please notify SanGIS if the actual location differs from that shown. See the SanGIS website for contact information and reporting problems (http://www.sangis.org/contact/problem.html).Note, the road speeds in this layer are based on road segment class and were published as part of an agreement between San Diego Fire-Rescue, the San Diego County Sheriff's Department, and SanGIS. The average speed is based on heavy fire vehicles and may not represent the posted speed limit.