Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the San Francisco metro area from 1950 to 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the San Francisco population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of San Francisco across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of San Francisco was 808,988, a 0.15% increase year-by-year from 2022. Previously, in 2022, San Francisco population was 807,774, a decline of 0.51% compared to a population of 811,935 in 2021. Over the last 20 plus years, between 2000 and 2023, population of San Francisco increased by 31,648. In this period, the peak population was 879,676 in the year 2018. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for San Francisco Population by Year. You can refer the same here
VITAL SIGNS INDICATOR Population (LU1)
FULL MEASURE NAME
Population estimates
LAST UPDATED
February 2023
DESCRIPTION
Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.
DATA SOURCE
California Department of Finance: Population and Housing Estimates - http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
Table E-6: County Population Estimates (1960-1970)
Table E-4: Population Estimates for Counties and State (1970-2021)
Table E-8: Historical Population and Housing Estimates (1990-2010)
Table E-5: Population and Housing Estimates (2010-2021)
Bay Area Jurisdiction Centroids (2020) - https://data.bayareametro.gov/Boundaries/Bay-Area-Jurisdiction-Centroids-2020-/56ar-t6bs
Computed using 2020 US Census TIGER boundaries
U.S. Census Bureau: Decennial Census Population Estimates - http://www.s4.brown.edu/us2010/index.htm- via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University
1970-2020
U.S. Census Bureau: American Community Survey (5-year rolling average; tract) - https://data.census.gov/
2011-2021
Form B01003
Priority Development Areas (Plan Bay Area 2050) - https://opendata.mtc.ca.gov/datasets/MTC::priority-development-areas-plan-bay-area-2050/about
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
All historical data reported for Census geographies (metropolitan areas, county, city and tract) use current legal boundaries and names. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of December 2022.
Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.
Population estimates for Bay Area tracts and PDAs are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Population estimates for PDAs are allocated from tract-level Census population counts using an area ratio. For example, if a quarter of a Census tract lies with in a PDA, a quarter of its population will be allocated to that PDA. Estimates of population density for PDAs use gross acres as the denominator. Note that the population densities between PDAs reported in previous iterations of Vital Signs are mostly not comparable due to minor differences and an updated set of PDAs (previous iterations reported Plan Bay Area 2040 PDAs, whereas current iterations report Plan Bay Area 2050 PDAs).
The following is a list of cities and towns by geographical area:
Big Three: San Jose, San Francisco, Oakland
Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside
Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville
Unincorporated: all unincorporated towns
In 2022, the total population of the Guangdong - Hong Kong - Macao Greater Bay Area reached around 86.6 million. In terms of population, China's Greater Bay Area was larger than other major Bay Areas in the world. However, per capita GDP was only about half of that in the Tokyo Bay Area and only one seventh of that in the San Francisco Bay Area.
INTRODUCTION: As California’s homeless population continues to grow at an alarming rate, large metropolitan regions like the San Francisco Bay Area face unique challenges in coordinating efforts to track and improve homelessness. As an interconnected region of nine counties with diverse community needs, identifying homeless population trends across San Francisco Bay Area counties can help direct efforts more effectively throughout the region, and inform initiatives to improve homelessness at the city, county, and metropolitan level. OBJECTIVES: The primary objective of this research is to compare the annual Point-in-Time (PIT) counts of homelessness across San Francisco Bay Area counties between the years 2018-2022. The secondary objective of this research is to compare the annual Point-in-Time (PIT) counts of homelessness among different age groups in each of the nine San Francisco Bay Area counties between the years 2018-2022. METHODS: Two datasets were used to conduct research. The first dataset (Dataset 1) contains Point-in-Time (PIT) homeless counts published by the U.S. Department of Housing and Urban Development. Dataset 1 was cleaned using Microsoft Excel and uploaded to Tableau Desktop Public Edition 2022.4.1 as a CSV file. The second dataset (Dataset 2) was published by Data SF and contains shapefiles of geographic boundaries of San Francisco Bay Area counties. Both datasets were joined in Tableau Desktop Public Edition 2022.4 and all data analysis was conducted using Tableau visualizations in the form of bar charts, highlight tables, and maps. RESULTS: Alameda, San Francisco, and Santa Clara counties consistently reported the highest annual count of people experiencing homelessness across all 5 years between 2018-2022. Alameda, Napa, and San Mateo counties showed the largest increase in homelessness between 2018 and 2022. Alameda County showed a significant increase in homeless individuals under the age of 18. CONCLUSIONS: Results from this research reveal both stark and fluctuating differences in homeless counts among San Francisco Bay Area Counties over time, suggesting that a regional approach that focuses on collaboration across counties and coordination of services could prove beneficial for improving homelessness throughout the region. Results suggest that more immediate efforts to improve homelessness should focus on the counties of Alameda, San Francisco, Santa Clara, and San Mateo. Changes in homelessness during the COVID-19 pandemic years of 2020-2022 point to an urgent need to support Contra Costa County.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the South San Francisco population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of South San Francisco across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of South San Francisco was 63,484, a 1.36% decrease year-by-year from 2021. Previously, in 2021, South San Francisco population was 64,361, a decline of 2.67% compared to a population of 66,124 in 2020. Over the last 20 plus years, between 2000 and 2022, population of South San Francisco increased by 2,841. In this period, the peak population was 67,147 in the year 2016. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South San Francisco Population by Year. You can refer the same here
In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.
Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.
Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by several different geographic areas and normalized by 2016-2020 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents.
On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021.
Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset.
Dataset is cumulative and covers cases going back to 3/2/2020 when testing began.
Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas
B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents.
C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 7:30 Pacific Time.
D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Death counts greater than 0 and less than 10 are dropped - these will be null (blank) values 3. Cases and deaths dropped altogether for areas where acs_population < 1000
Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology.
A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website.
Row included for Citywide case counts, incidence rate, and deaths A single row is included that has the Citywide case counts and incidence rate. This can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongoing data quality efforts result in improved mapping on a rolling basis.
E. CHANGE LOG
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Disclaimer: These data are updated by the author and are not an official product of the Federal Reserve Bank of Cleveland.This project provides two sets of migration estimates for the major US metro areas. The first series measures net migration of people to and from the urban neighborhoods of the metro areas. The second series covers all neighborhoods but breaks down net migration to other regions by four region types: (1) high-cost metros, (2) affordable, large metros, (3) midsized metros, and (4) small metros and rural areas. These series were introduced in a Cleveland Fed District Data Brief entitled “Urban and Regional Migration Estimates: Will Your City Recover from the Pandemic?"The migration estimates in this project are created with data from the Federal Reserve Bank of New York/Equifax Consumer Credit Panel (CCP). The CCP is a 5 percent random sample of the credit histories maintained by Equifax. The CCP reports the census block of residence for over 10 million individuals each quarter. Each month, Equifax receives individuals’ addresses, along with reports of debt balances and payments, from creditors (mortgage lenders, credit card issuers, student loan servicers, etc.). An algorithm maintained by Equifax considers all of the addresses reported for an individual and identifies the individual’s most likely current address. Equifax anonymizes the data before they are added to the CCP, removing names, addresses, and Social Security numbers (SSNs). In lieu of mailing addresses, the census block of the address is added to the CCP. Equifax creates a unique, anonymous identifier to enable researchers to build individuals’ panels. The panel nature of the data allows us to observe when someone has migrated and is living in a census block different from the one they lived in at the end of the preceding quarter. For more details about the CCP and its use in measuring migration, see Lee and Van der Klaauw (2010) and DeWaard, Johnson and Whitaker (2019). DefinitionsMetropolitan areaThe metropolitan areas in these data are combined statistical areas. This is the most aggregate definition of metro areas, and it combines Washington DC with Baltimore, San Jose with San Francisco, Akron with Cleveland, etc. Metro areas are combinations of counties that are tightly linked by worker commutes and other economic activity. All counties outside of metropolitan areas are tracked as parts of a rural commuting zone (CZ). CZs are also groups of counties linked by commuting, but CZ definitions cover all counties, both metropolitan and non-metropolitan. High-cost metropolitan areasHigh-cost metro areas are those where the median list price for a house was more than $200 per square foot on average between April 2017 and April 2022. These areas include San Francisco-San Jose, New York, San Diego, Los Angeles, Seattle, Boston, Miami, Sacramento, Denver, Salt Lake City, Portland, and Washington-Baltimore. Other Types of RegionsMetro areas with populations above 2 million and house price averages below $200 per square foot are categorized as affordable, large metros. Metro areas with populations between 500,000 and 2 million are categorized as mid-sized metros, regardless of house prices. All remaining counties are in the small metro and rural category.To obtain a metro area's total net migration, sum the four net migration values for the the four types of regions.Urban neighborhoodCensus tracts are designated as urban if they have a population density above 7,000 people per square mile. High density neighborhoods can support walkable retail districts and high-frequency public transportation. They are more likely to have the “street life” that people associate with living in an urban rather than a suburban area. The threshold of 7,000 people per square mile was selected because it was the average density in the largest US cities in the 1930 census. Before World War II, workplaces, shopping, schools and parks had to be accessible on foot. Tracts are also designated as urban if more than half of their housing units were built before WWII and they have a population density above 2,000 people per square mile. The lower population density threshold for the pre-war neighborhoods recognizes that many urban tracts have lost population since the 1960s. While the street grids usually remain, the area also needs su
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the San Francisco township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of San Francisco township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of San Francisco township was 862, a 0.69% decrease year-by-year from 2022. Previously, in 2022, San Francisco township population was 868, a decline of 0.69% compared to a population of 874 in 2021. Over the last 20 plus years, between 2000 and 2023, population of San Francisco township decreased by 36. In this period, the peak population was 923 in the year 2009. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for San Francisco township Population by Year. You can refer the same here
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.
B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases are from: * Case interviews * Laboratories * Medical providers These multiple streams of data are merged, deduplicated, and undergo data verification processes.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.
Gender * The City collects information on gender identity using these guidelines.
Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives. * This dataset includes data for COVID-19 cases reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.
Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to the California Department of Public Health, Virtual Assistant information gathering beginning December 2021. The Virtual Assistant is only sent to adults who are 18+ years old. https://www.sfdph.org/dph/files/PoliciesProcedures/COM9_SexualOrientationGuidelines.pdf">Learn more about our data collection guidelines pertaining to sexual orientation.
Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.
Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.
Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.
Transmission Type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.
C. UPDATE PROCESS This dataset has been archived and will no longer update as of 9/11/2023.
D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cases on each date.
New cases are the count of cases within that characteristic group where the positive tests were collected on that specific specimen collection date. Cumulative cases are the running total of all San Francisco cases in that characteristic group up to the specimen collection date listed.
This data may not be immediately available for recently reported cases. Data updates as more information becomes available.
To explore data on the total number of cases, use the ARCHIVED: COVID-19 Cases Over Time dataset.
E. CHANGE LOG
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the San Francisco County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for San Francisco County. The dataset can be utilized to understand the population distribution of San Francisco County by age. For example, using this dataset, we can identify the largest age group in San Francisco County.
Key observations
The largest age group in San Francisco County, CA was for the group of age 30 to 34 years years with a population of 98,473 (11.57%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in San Francisco County, CA was the 80 to 84 years years with a population of 16,399 (1.93%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for San Francisco County Population by Age. You can refer the same here
A. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals may increase or decrease. Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups. B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health. Data on the population characteristics of COVID-19 deaths are from: Case reports Medical records Electronic lab reports Death certificates Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths. To protect resident privacy, we summarize COVID-19 data by only one population characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more. Data notes on select population characteristic types are listed below. Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. Gender * The City collects information on gender identity using these guidelines. C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week. Dataset will not update on the business day following any federal holiday. D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a dataset based on the San Francisco Population and Demographic Census dataset.These population estimates are from the 2018-2022 5-year American Community Survey (ACS). This dataset includes several characteristic types. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cumulative deaths. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed. To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset. E. CHANGE LOG
In 2021, the per capita income in San Francisco city was at 80,383 U.S. dollars. San Francisco was followed in this regard by Seattle and Washington, D.C. The most populated cities in the U.S. are ranked by per capita income in this statistic. While New York, New York had the highest population, San Francisco had the highest per capita income in 2021. The median household income in San Francisco in 2020 was 119,136 dollars, the highest among the most populated cities in the United States.
In early February 2024, we will be retiring the Mpox Vaccinations Given to SF Residents by Demographics dataset. This dataset will be archived and no longer update. A historic record of this data will remain available.
A. SUMMARY This dataset represents doses of mpox vaccine (JYNNEOS) administered in California to residents of San Francisco ages 18 years or older. This dataset only includes doses of the JYNNEOS vaccine given on or after 5/1/2022. All vaccines given to people who live in San Francisco are included, no matter where the vaccination took place. The data are broken down by multiple demographic stratifications.
B. HOW THE DATASET IS CREATED Information on doses administered to those who live in San Francisco is from the California Immunization Registry (CAIR2), run by the California Department of Public Health (CDPH). Information on individuals’ city of residence, age, race, ethnicity, and sex are recorded in CAIR2 and are self-reported at the time of vaccine administration. Because CAIR2 does not include information on sexual orientation, we pull information from the San Francisco Department of Public Health’s Epic Electronic Health Record (EHR). The populations represented in our Epic data and the CAIR2 data are different. Epic data only include vaccinations administered at SFDPH managed sites to SF residents.
Data notes for population characteristic types are listed below.
Age * Data only include individuals who are 18 years of age or older.
Race/ethnicity * The response option "Other Race" is categorized by the data source system, and the response option "Unknown" refers to a lack of data.
Sex * The response option "Other" is categorized by the source system, and the response option "Unknown" refers to a lack of data.
Sexual orientation * The response option “Unknown/Declined” refers to a lack of data or individuals who reported multiple different sexual orientations during their most recent interaction with SFDPH.
For convenience, we provide the 2020 5-year American Community Survey population estimates.
C. UPDATE PROCESS Updated daily via automated process.
D. HOW TO USE THIS DATASET This dataset includes many different types of demographic groups. Filter the “demographic_group” column to explore a topic area. Then, the “demographic_subgroup” column shows each group or category within that topic area and the total count of doses administered to that population subgroup.
E. CHANGE LOG
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 1 cities in the San Francisco County, CA by Some Other Race (SOR) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Cases and Deaths Summarized by Geography’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d2e381bb-f395-4b40-979e-920a79a3db88 on 11 February 2022.
--- Dataset description provided by original source is as follows ---
Note: On January 22, 2022, system updates to improve the timeliness and accuracy of San Francisco COVID-19 cases and deaths data were implemented. You might see some fluctuations in historic data as a result of this change. Due to the changes, starting on January 22, 2022, the number of new cases reported daily will be higher than under the old system as cases that would have taken longer to process will be reported earlier.
Note: As of April 16, 2021, this dataset will update daily with a five-day data lag.
A. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by several different geographic areas and normalized by 2019 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents.
Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset.
Dataset is cumulative and covers cases going back to March 2nd, 2020 when testing began.
Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas
B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2019 ACS estimates for population provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents.
C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 7:30 Pacific Time.
D. HOW TO USE THIS DATASET Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Death counts greater than 0 and less than 10 are dropped - these will be null (blank) values 3. Cases and deaths dropped altogether for areas where acs_population < 1000
Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology.
A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website.
Row included for Citywide case counts, incidence rate, and deaths A single row is included that has the Citywide case counts and incidence rate. This can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongoing data quality efforts result in improved mapping on a rolling bases.
--- Original source retains full ownership of the source dataset ---
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2016-2020 American Community Survey (ACS) population estimates are included to calculate the cumulative rate per 10,000 residents.
Dataset covers cases going back to 3/2/2020 when testing began. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily.
Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas
B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date.
The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date).
COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated.
C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 05:00 Pacific Time.
D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
This dataset can be used to track the spread of COVID-19 throughout the city, in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date.
Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. Cases are dropped altogether for areas where acs_population < 1000 4. Deaths data are not included in this dataset for privacy reasons. The low COVID-19 death rate in San Francisco, along with other publicly available information on deaths, means that deaths data by geography and day is too granular and potentially risky. Read more in our privacy guidelines
Rate suppression in effect where counts lower than 20 Rates are not calculated unless the cumulative case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology.
A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website.
Rows included for Citywide case counts Rows are included for the Citywide case counts and incidence rate every day. These Citywide rows can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongoing data quality efforts result in improved mapping on a rolling bases.
Related dataset See the dataset of the most recent cumulative counts for all geographic areas here: https://data.sfgov.org/COVID-19/COVID-19-Cases-and-Deaths-Summarized-by-Geography/tpyr-dvnc
E. CHANGE LOG
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Cases by Population Characteristics Over Time’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/a3291d85-0076-43c5-a59c-df49480cdc6d on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Note: On January 22, 2022, system updates to improve the timeliness and accuracy of San Francisco COVID-19 cases and deaths data were implemented. You might see some fluctuations in historic data as a result of this change. Due to the changes, starting on January 22, 2022, the number of new cases reported daily will be higher than under the old system as cases that would have taken longer to process will be reported earlier.
A. SUMMARY This dataset shows San Francisco COVID-19 cases by population characteristics and by specimen collection date. Cases are included on the date the positive test was collected.
Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how cases have been distributed among different subgroups. This information can reveal trends and disparities among groups.
Data is lagged by five days, meaning the most recent specimen collection date included is 5 days prior to today. Tests take time to process and report, so more recent data is less reliable.
B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases and deaths are from: * Case interviews * Laboratories * Medical providers
These multiple streams of data are merged, deduplicated, and undergo data verification processes. This data may not be immediately available for recently reported cases because of the time needed to process tests and validate cases. Daily case totals on previous days may increase or decrease. Learn more.
Data are continually updated to maximize completeness of information and reporting on San Francisco residents with COVID-19.
Data notes on each population characteristic type is listed below.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.
Sexual orientation * Sexual orientation data is collected from individuals who are 18 years old or older. These individuals can choose whether to provide this information during case interviews. Learn more about our data collection guidelines. * The City began asking for this information on April 28, 2020.
Gender * The City collects information on gender identity using these guidelines.
Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.
Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.
Homelessness
Persons are identified as homeless based on several data sources:
* self-reported living situation
* the location at the time of testing
* Department of Public Health homelessness and health databases
* Residents in Single-Room Occupancy hotels are not included in these figures.
These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.
Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing
--- Original source retains full ownership of the source dataset ---
As of 9/12/2024, we have resumed reporting on COVID-19 hospitalization data using a San Francisco specific dataset. These new data differ slightly from previous hospitalization data sources but the overall patterns and trends in hospitalizations remain consistent. You can access the previous data here. A. SUMMARY This dataset includes information on COVID+ hospital admissions for San Francisco residents into San Francisco hospitals. Specifically, the dataset includes the count and rate of COVID+ hospital admissions per 100,000. The data are reported by week. B. HOW THE DATASET IS CREATED Hospital admission data is reported to the San Francisco Department of Public Health (SFDPH) via the COVID Hospital Data Repository (CHDR), a system created via health officer order C19-16. The data includes all San Francisco hospitals except for the San Francisco VA Medical Center. San Francisco population estimates are pulled from a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2018-2022 5-year American Community Survey (ACS). C. UPDATE PROCESS Data updates weekly on Wednesday with data for the past Wednesday-Tuesday (one week lag). Data may change as more current information becomes available. D. HOW TO USE THIS DATASET New admissions are the count of COVID+ hospital admissions among San Francisco residents to San Francisco hospitals by week. The admission rate per 100,000 is calculated by multiplying the count of admissions each week by 100,000 and dividing by the population estimate. E. CHANGE LOG
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the San Francisco metro area from 1950 to 2025.