2 datasets found
  1. d

    Developing Large-Scale Bayesian Networks by Composition

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Dec 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2023). Developing Large-Scale Bayesian Networks by Composition [Dataset]. https://catalog.data.gov/dataset/developing-large-scale-bayesian-networks-by-composition
    Explore at:
    Dataset updated
    Dec 6, 2023
    Dataset provided by
    Dashlink
    Description

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. Reference: O. J. Mengshoel, S. Poll, and T. Kurtoglu. "Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft." Proc. of the IJCAI-09 Workshop on Self-* and Autonomous Systems (SAS): Reasoning and Integration Challenges, 2009 BibTex Reference: @inproceedings{mengshoel09developing, title = {Developing Large-Scale {Bayesian} Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft}, author = {Mengshoel, O. J. and Poll, S. and Kurtoglu, T.}, booktitle = {Proc. of the IJCAI-09 Workshop on Self-$\star$ and Autonomous Systems (SAS): Reasoning and Integration Challenges}, year={2009} }

  2. f

    The hierarchical structure of SAs.

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thang Quyet Nguyen; Lan Thi Tuyet Ngo; Nguyen Tan Huynh; Thanh Le Quoc; Long Van Hoang (2023). The hierarchical structure of SAs. [Dataset]. http://doi.org/10.1371/journal.pone.0264590.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Thang Quyet Nguyen; Lan Thi Tuyet Ngo; Nguyen Tan Huynh; Thanh Le Quoc; Long Van Hoang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The hierarchical structure of SAs.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dashlink (2023). Developing Large-Scale Bayesian Networks by Composition [Dataset]. https://catalog.data.gov/dataset/developing-large-scale-bayesian-networks-by-composition

Developing Large-Scale Bayesian Networks by Composition

Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 6, 2023
Dataset provided by
Dashlink
Description

In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. Reference: O. J. Mengshoel, S. Poll, and T. Kurtoglu. "Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft." Proc. of the IJCAI-09 Workshop on Self-* and Autonomous Systems (SAS): Reasoning and Integration Challenges, 2009 BibTex Reference: @inproceedings{mengshoel09developing, title = {Developing Large-Scale {Bayesian} Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft}, author = {Mengshoel, O. J. and Poll, S. and Kurtoglu, T.}, booktitle = {Proc. of the IJCAI-09 Workshop on Self-$\star$ and Autonomous Systems (SAS): Reasoning and Integration Challenges}, year={2009} }

Search
Clear search
Close search
Google apps
Main menu