Summary data for the studies used in the meta-analysis of local adaptation (Table 1 from the publication)This table contains the data used in this published meta-analysis. The data were originally extracted from the publications listed in the table. The file corresponds to Table 1 in the original publication.tb1.xlsSAS script used to perform meta-analysesThis file contains the essential elements of the SAS script used to perform meta-analyses published in Hoeksema & Forde 2008. Multi-factor models were fit to the data using weighted maximum likelihood estimation of parameters in a mixed model framework, using SAS PROC MIXED, in which the species traits and experimental design factors were considered fixed effects, and a random between-studies variance component was estimated. Significance (at alpha = 0.05) of individual factors in these models was determined using randomization procedures with 10,000 iterations (performed with a combination of macros in SAS), in which effect sizes a...
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
The Delta Neighborhood Physical Activity Study was an observational study designed to assess characteristics of neighborhood built environments associated with physical activity. It was an ancillary study to the Delta Healthy Sprouts Project and therefore included towns and neighborhoods in which Delta Healthy Sprouts participants resided. The 12 towns were located in the Lower Mississippi Delta region of Mississippi. Data were collected via electronic surveys between August 2016 and September 2017 using the Rural Active Living Assessment (RALA) tools and the Community Park Audit Tool (CPAT). Scale scores for the RALA Programs and Policies Assessment and the Town-Wide Assessment were computed using the scoring algorithms provided for these tools via SAS software programming. The Street Segment Assessment and CPAT do not have associated scoring algorithms and therefore no scores are provided for them. Because the towns were not randomly selected and the sample size is small, the data may not be generalizable to all rural towns in the Lower Mississippi Delta region of Mississippi. Dataset one contains data collected with the RALA Programs and Policies Assessment (PPA) tool. Dataset two contains data collected with the RALA Town-Wide Assessment (TWA) tool. Dataset three contains data collected with the RALA Street Segment Assessment (SSA) tool. Dataset four contains data collected with the Community Park Audit Tool (CPAT). [Note : title changed 9/4/2020 to reflect study name] Resources in this dataset:Resource Title: Dataset One RALA PPA Data Dictionary. File Name: RALA PPA Data Dictionary.csvResource Description: Data dictionary for dataset one collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA Data Dictionary. File Name: RALA TWA Data Dictionary.csvResource Description: Data dictionary for dataset two collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA Data Dictionary. File Name: RALA SSA Data Dictionary.csvResource Description: Data dictionary for dataset three collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT Data Dictionary. File Name: CPAT Data Dictionary.csvResource Description: Data dictionary for dataset four collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset One RALA PPA. File Name: RALA PPA Data.csvResource Description: Data collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA. File Name: RALA TWA Data.csvResource Description: Data collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA. File Name: RALA SSA Data.csvResource Description: Data collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT. File Name: CPAT Data.csvResource Description: Data collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Data Dictionary. File Name: DataDictionary_RALA_PPA_SSA_TWA_CPAT.csvResource Description: This is a combined data dictionary from each of the 4 dataset files in this set.
description: The 1980 SAS Transport Files portion of the Archive of Census Related Products (ACRP) contains housing and population demographics from the 1980 Summary Tape File (STF3A) database and are organized by state. The population data includes education levels, ethnicity, income distribution, nativity, labor force status, means of transportation and family structure while the housing data embodies size, state and structure of housing unit, value of the unit, tenure and occupancy status in housing unit, source of water, sewage disposal, availability of telephone, heating and air conditioning, kitchen facilities, rent, mortgage status and monthly owner costs. This portion of the ACRP is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).; abstract: The 1980 SAS Transport Files portion of the Archive of Census Related Products (ACRP) contains housing and population demographics from the 1980 Summary Tape File (STF3A) database and are organized by state. The population data includes education levels, ethnicity, income distribution, nativity, labor force status, means of transportation and family structure while the housing data embodies size, state and structure of housing unit, value of the unit, tenure and occupancy status in housing unit, source of water, sewage disposal, availability of telephone, heating and air conditioning, kitchen facilities, rent, mortgage status and monthly owner costs. This portion of the ACRP is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).
Community-Based Survey of Supports for Healthy Eating and Active Living (CBS HEAL) is a CDC survey of a nationally representative sample of U.S. municipalities to better understand existing community-level policies and practices that support healthy eating and active living. The survey collects information about policies such as nutrition standards, incentives for healthy food retail, bike/pedestrian-friendly design, and Complete Streets. About 2,000 municipalities respond to the survey. Participating municipalities receive a report that allows them to compare their policies and practices with other municipalities of similar geography, population size, and urban status.
The CBS HEAL survey was first administered in 2014 and was administered again in 2021. Data is provided in multiple formats for download including as a SAS file. A methods report and a SAS program for formatting the data are also provided.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SAS Macro to compute sample sizes from marginal probabilities for small, medium and large odds ratios. (SAS)
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Description of the experiment setting Data collection for the Study of Nutrition and Activity in Childcare Settings (SNACS) started in January 2017 and continued through September 2017. The complex study included web-based surveys, pre-interview surveys, on-site interviews, environmental observations, and telephone interviews of childcare sponsors and providers, as well as interviews of parents of some of the children from the sampled providers. The data were collected from a nationally representative sample of programs, children, and meals. The data cover a range of subjects including the provider’s characteristics, the nutritional quality of meals and snacks served, the dietary intake of children in childcare, the activities of children over the course of the childcare day, and the financial conditions of the childcare operations. Processing methods and equipment used SNACS data were collected via web-based surveys, pre-interview surveys, on-site interviews, environmental observations, and telephone interviews of childcare sponsors and providers, as well as interviews of parents of some of the children from the sampled providers. The study team cleaned the raw data to ensure the data were as correct, complete, and consistent as possible. They used many different methods to check the data depending on the data type. The details are described in the study document called “Appendix A: Methods” (https://fns-prod.azureedge.us/sites/default/files/resource-files/SNACS-AppendixA.pdf) available at the study website. Study date(s) and duration Data collection for the Study of Nutrition and Activity in Childcare Settings (SNACS) started in January 2017 and continued through September 2017. The final public data set was produced in 2021. Study spatial scale (size of replicates and spatial scale of study area) The study is nationally representative and the sample design reflects the complexity of the sample needed to answer the research questions. The primary sampling units were 20 states randomly selected with six states selected with certainty due to their size. Secondary sampling units were selected from a random sample of metropolitan areas and clusters of non-metropolitan counties from the 20 States. Further details about the sample design are described in the “Appendix A: Methods” document available at the study website. Level of true replication See the document, “Appendix A: Methods,” available at the study website. Sampling precision (within-replicate sampling or pseudoreplication) See the document, “Appendix A: Methods,” available at the study website. Level of subsampling (number and repeat or within-replicate sampling) See the document, “Appendix A: Methods,” available at the study website. Study design (before–after, control–impacts, time series, before–after-control–impacts) Non-experimental Description of any data manipulation, modeling, or statistical analysis undertaken The public use data files contain constructed variables used for analytic purposes. The files do include weights created to produce national estimates for the Study of Nutrition and Activity in Childcare Settings final reports available at the study website. The data files do not include any identifying information about childcare sponsors, providers, or individuals who completed the questionnaires or participated in the study in other ways. Description of any gaps in the data or other limiting factors See the document, “Appendix A: Methods,” available at the study website for a detailed explanation of the study’s limitations. Outcome measurement methods and equipment used The height and weight of sampled children were measured with scales provided by data collectors. See the document, “Appendix A: Methods,” available at the study website for details on other outcomes measured through statistical analysis of the survey responses about outcomes such as food insecurity. Resources in this dataset:
Resource Title: Study of Nutrition and Activity in Childcare Settings (SNACS) - SAS Data Sets, Data Codebooks and Documentation Guides File Name: SNACS-I Public Use Files.zip Description: The zip file contains 19 Data Codebooks, 7 Data Documentation Guides, 19 SAS Datasets and one SAS Formats File.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
It is an SAS file with all the syntax used for statistical analysis of socio-economic characteristics of donkey farmers’ data. (SAS)
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Summary data for the studies used in the meta-analysis of local adaptation (Table 1 from the publication)This table contains the data used in this published meta-analysis. The data were originally extracted from the publications listed in the table. The file corresponds to Table 1 in the original publication.tb1.xlsSAS script used to perform meta-analysesThis file contains the essential elements of the SAS script used to perform meta-analyses published in Hoeksema & Forde 2008. Multi-factor models were fit to the data using weighted maximum likelihood estimation of parameters in a mixed model framework, using SAS PROC MIXED, in which the species traits and experimental design factors were considered fixed effects, and a random between-studies variance component was estimated. Significance (at alpha = 0.05) of individual factors in these models was determined using randomization procedures with 10,000 iterations (performed with a combination of macros in SAS), in which effect sizes a...