98 datasets found
  1. A

    Provider Specific Data for Public Use in SAS Format

    • data.amerigeoss.org
    html
    Updated Jul 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Provider Specific Data for Public Use in SAS Format [Dataset]. https://data.amerigeoss.org/de/dataset/provider-specific-data-for-public-use-in-sas-format-0d063
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 29, 2019
    Dataset provided by
    United States[old]
    Description

    The Fiscal Intermediary maintains the Provider Specific File (PSF). The file contains information about the facts specific to the provider that affects computations for the Prospective Payment System. The Provider Specific files in SAS format are located in the Download section below for the following provider-types, Inpatient, Skilled Nursing Facility, Home Health Agency, Hospice, Inpatient Rehab, Long Term Care, Inpatient Psychiatric Facility

  2. f

    SAS script and input files

    • figshare.com
    bin
    Updated Feb 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Björn Andersson (2022). SAS script and input files [Dataset]. http://doi.org/10.6084/m9.figshare.19203398.v3
    Explore at:
    binAvailable download formats
    Dataset updated
    Feb 19, 2022
    Dataset provided by
    figshare
    Authors
    Björn Andersson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SAS script and input files for calculations of sensitivity and specificity based on different model settings and weather data in the weather data file supplied here.

  3. f

    Sample SAS code for the Monte Carlo Study

    • figshare.com
    Updated May 12, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Milica Miocevic (2016). Sample SAS code for the Monte Carlo Study [Dataset]. http://doi.org/10.6084/m9.figshare.3376093.v1
    Explore at:
    Dataset updated
    May 12, 2016
    Dataset provided by
    figshare
    Authors
    Milica Miocevic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These SAS files are sample code used for the Monte Carlo studies in a manuscript on statistical properties of four effect size measures for the mediated effect.Citation:Miočević, M., O’Rourke, H. P., MacKinnon, D. P., & Brown, H. C. (2016). The bias and efficiency of five effect size measures for mediation models. Under review at Behavior Research Methods.

  4. d

    DHS data extractors for Stata

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emily Oster (2023). DHS data extractors for Stata [Dataset]. http://doi.org/10.7910/DVN/RRX3QD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Emily Oster
    Description

    This package contains two files designed to help read individual level DHS data into Stata. The first file addresses the problem that versions of Stata before Version 7/SE will read in only up to 2047 variables and most of the individual files have more variables than that. The file will read in the .do, .dct and .dat file and output new .do and .dct files with only a subset of the variables specified by the user. The second file deals with earlier DHS surveys in which .do and .dct file do not exist and only .sps and .sas files are provided. The file will read in the .sas and .sps files and output a .dct and .do file. If necessary the first file can then be run again to select a subset of variables.

  5. n

    Archive of Census Related Products (ACRP): 1980 SAS Transport Files

    • earthdata.nasa.gov
    • catalog.data.gov
    • +1more
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (2025). Archive of Census Related Products (ACRP): 1980 SAS Transport Files [Dataset]. http://doi.org/10.7927/H4G44N6R
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    ESDIS
    Description

    The 1980 SAS Transport Files portion of the Archive of Census Related Products (ACRP) contains housing and population demographics from the 1980 Summary Tape File (STF3A) database and are organized by state. The population data includes education levels, ethnicity, income distribution, nativity, labor force status, means of transportation and family structure while the housing data embodies size, state and structure of housing Unit, value of the Unit, tenure and occupancy status in housing Unit, source of water, sewage disposal, availability of telephone, heating and air conditioning, kitchen facilities, rent, mortgage status and monthly owner costs. This portion of the ACRP is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).

  6. m

    Model-derived synthetic aperture sonar (SAS) data in Generic Data Format...

    • marine-geo.org
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Model-derived synthetic aperture sonar (SAS) data in Generic Data Format (GDF) [Dataset]. https://www.marine-geo.org/tools/files/31898
    Explore at:
    Dataset updated
    Sep 24, 2024
    Description

    The simulated synthetic aperture sonar (SAS) data presented here was generated using PoSSM [Johnson and Brown 2018]. The data is suitable for bistatic, coherent signal processing and will form acoustic seafloor imagery. Included in this data package is simulated sonar data in Generic Data Format (GDF) files, a description of the GDF file contents, example SAS imagery, and supporting information about the simulated scenes. In total, there are eleven 60 m x 90 m scenes, labeled scene00 through scene10, with scene00 provided with the scatterers in isolation, i.e. no seafloor texture. This is provided for beamformer testing purposes and should result in an image similar to the one labeled "PoSSM-scene00-scene00-starboard-0.tif" in the Related Data Sets tab. The ten other scenes have varying degrees of model variation as described in "Description_of_Simulated_SAS_Data_Package.pdf". A description of the data and the model is found in the associated document called "Description_of_Simulated_SAS_Data_Package.pdf" and a description of the format in which the raw binary data is stored is found in the related document "PSU_GDF_Format_20240612.pdf". The format description also includes MATLAB code that will effectively parse the data to aid in signal processing and image reconstruction. It is left to the researcher to develop a beamforming algorithm suitable for coherent signal and image processing. Each 60 m x 90 m scene is represented by 4 raw (not beamformed) GDF files, labeled sceneXX-STARBOARD-000000 through 000003. It is possible to beamform smaller scenes from any one of these 4 files, i.e. the four files are combined sequentially to form a 60 m x 90 m image. Also included are comma separated value spreadsheets describing the locations of scatterers and objects of interest within each scene. In addition to the binary GDF data, a beamformed GeoTIFF image and a single-look complex (SLC, science file) data of each scene is provided. The SLC data (science) is stored in the Hierarchical Data Format 5 (https://www.hdfgroup.org/), and appended with ".hdf5" to indicate the HDF5 format. The data are stored as 32-bit real and 32-bit complex values. A viewer is available that provides basic graphing, image display, and directory navigation functions (https://www.hdfgroup.org/downloads/hdfview/). The HDF file contains all the information necessary to reconstruct a synthetic aperture sonar image. All major and contemporary programming languages have library support for encoding/decoding the HDF5 format. Supporting documentation that outlines positions of the seafloor scatterers is included in "Scatterer_Locations_Scene00.csv", while the locations of the objects of interest for scene01-scene10 are included in "Object_Locations_All_Scenes.csv". Portable Network Graphic (PNG) images that plot the location of objects of all the objects of interest in each scene in Along-Track and Cross-Track notation are provided.

  7. d

    Archive of Census Related Products (ACRP): 1990 SAS Transport Files

    • catalog.data.gov
    • earthdata.nasa.gov
    • +1more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Archive of Census Related Products (ACRP): 1990 SAS Transport Files [Dataset]. https://catalog.data.gov/dataset/archive-of-census-related-products-acrp-1990-sas-transport-files
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The 1990 SAS Transport Files portion of the Archive of Census Related Products (ACRP) contains housing and population data from the U.S. Census Bureau's 1990 Summary tape File (STF3A) database. The data are available by state and county, county subdivision/mcd, blockgroup, and places, as well as Indian reservations, tribal districts and congressional districts. This portion of the ACRP is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).

  8. m

    Global Burden of Disease analysis dataset of noncommunicable disease...

    • data.mendeley.com
    Updated Apr 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Cundiff (2023). Global Burden of Disease analysis dataset of noncommunicable disease outcomes, risk factors, and SAS codes [Dataset]. http://doi.org/10.17632/g6b39zxck4.10
    Explore at:
    Dataset updated
    Apr 6, 2023
    Authors
    David Cundiff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This formatted dataset (AnalysisDatabaseGBD) originates from raw data files from the Institute of Health Metrics and Evaluation (IHME) Global Burden of Disease Study (GBD2017) affiliated with the University of Washington. We are volunteer collaborators with IHME and not employed by IHME or the University of Washington.

    The population weighted GBD2017 data are on male and female cohorts ages 15-69 years including noncommunicable diseases (NCDs), body mass index (BMI), cardiovascular disease (CVD), and other health outcomes and associated dietary, metabolic, and other risk factors. The purpose of creating this population-weighted, formatted database is to explore the univariate and multiple regression correlations of health outcomes with risk factors. Our research hypothesis is that we can successfully model NCDs, BMI, CVD, and other health outcomes with their attributable risks.

    These Global Burden of disease data relate to the preprint: The EAT-Lancet Commission Planetary Health Diet compared with Institute of Health Metrics and Evaluation Global Burden of Disease Ecological Data Analysis. The data include the following: 1. Analysis database of population weighted GBD2017 data that includes over 40 health risk factors, noncommunicable disease deaths/100k/year of male and female cohorts ages 15-69 years from 195 countries (the primary outcome variable that includes over 100 types of noncommunicable diseases) and over 20 individual noncommunicable diseases (e.g., ischemic heart disease, colon cancer, etc). 2. A text file to import the analysis database into SAS 3. The SAS code to format the analysis database to be used for analytics 4. SAS code for deriving Tables 1, 2, 3 and Supplementary Tables 5 and 6 5. SAS code for deriving the multiple regression formula in Table 4. 6. SAS code for deriving the multiple regression formula in Table 5 7. SAS code for deriving the multiple regression formula in Supplementary Table 7
    8. SAS code for deriving the multiple regression formula in Supplementary Table 8 9. The Excel files that accompanied the above SAS code to produce the tables

    For questions, please email davidkcundiff@gmail.com. Thanks.

  9. u

    WIC Participant and Program Characteristics 2016

    • agdatacommons.nal.usda.gov
    txt
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Food and Nutrition Service, Office of Policy Support (2025). WIC Participant and Program Characteristics 2016 [Dataset]. http://doi.org/10.15482/USDA.ADC/1518495
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    Ag Data Commons
    Authors
    USDA Food and Nutrition Service, Office of Policy Support
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Description of the experiment setting: location, influential climatic conditions, controlled conditions (e.g. temperature, light cycle) In 1986, the Congress enacted Public Laws 99-500 and 99-591, requiring a biennial report on the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). In response to these requirements, FNS developed a prototype system that allowed for the routine acquisition of information on WIC participants from WIC State Agencies. Since 1992, State Agencies have provided electronic copies of these data to FNS on a biennial basis. FNS and the National WIC Association (formerly National Association of WIC Directors) agreed on a set of data elements for the transfer of information. In addition, FNS established a minimum standard dataset for reporting participation data. For each biennial reporting cycle, each State Agency is required to submit a participant-level dataset containing standardized information on persons enrolled at local agencies for the reference month of April. The 2016 Participant and Program Characteristics (PC2016) is the thirteenth data submission to be completed using the WIC PC reporting system. In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Processing methods and equipment used Specifications on formats (“Guidance for States Providing Participant Data”) were provided to all State agencies in January 2016. This guide specified 20 minimum dataset (MDS) elements and 11 supplemental dataset (SDS) elements to be reported on each WIC participant. Each State Agency was required to submit all 20 MDS items and any SDS items collected by the State agency.   Study date(s) and duration The information for each participant was from the participants’ most current WIC certification as of April 2016. Due to management information constraints, Connecticut provided data for a month other than April 2016, specifically August 16 – September 15, 2016. Study spatial scale (size of replicates and spatial scale of study area) In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Level of true replication Unknown Sampling precision (within-replicate sampling or pseudoreplication) State Agency Data Submissions. PC2016 is a participant dataset consisting of 8,815,472 active records. The records, submitted to USDA by the State Agencies, comprise a census of all WIC enrollees, so there is no sampling involved in the collection of this data. PII Analytic Datasets. State agency files were combined to create a national census participant file of approximately 8.8 million records. The census dataset contains potentially personally identifiable information (PII) and is therefore not made available to the public. National Sample Dataset. The public use SAS analytic dataset made available to the public has been constructed from a nationally representative sample drawn from the census of WIC participants, selected by participant category. The nationally representative sample is composed of 60,003 records. The distribution by category is 5,449 pregnant women, 4,661 breastfeeding women, 3,904 postpartum women, 13,999 infants, and 31,990 children. Level of subsampling (number and repeat or within-replicate sampling) The proportionate (or self-weighting) sample was drawn by WIC participant category: pregnant women, breastfeeding women, postpartum women, infants, and children. In this type of sample design, each WIC participant has the same probability of selection across all strata. Sampling weights are not needed when the data are analyzed. In a proportionate stratified sample, the largest stratum accounts for the highest percentage of the analytic sample. Study design (before–after, control–impacts, time series, before–after-control–impacts) None – Non-experimental Description of any data manipulation, modeling, or statistical analysis undertaken Each entry in the dataset contains all MDS and SDS information submitted by the State agency on the sampled WIC participant. In addition, the file contains constructed variables used for analytic purposes. To protect individual privacy, the public use file does not include State agency, local agency, or case identification numbers. Description of any gaps in the data or other limiting factors Due to management information constraints, Connecticut provided data for a month other than April 2016, specifically August 16 – September 15, 2016.   Outcome measurement methods and equipment used None Resources in this dataset:Resource Title: WIC Participant and Program Characteristics 2016. File Name: wicpc_2016_public.csvResource Description: The 2016 Participant and Program Characteristics (PC2016) is the thirteenth data submission to be completed using the WIC PC reporting system. In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations.Resource Software Recommended: SAS, version 9.4,url: https://www.sas.com/en_us/software/sas9.html Resource Title: WIC Participant and Program Characteristics 2016 Codebook. File Name: WICPC2016_PUBLIC_CODEBOOK.xlsxResource Software Recommended: SAS, version 9.4,url: https://www.sas.com/en_us/software/sas9.html Resource Title: WIC Participant and Program Characteristics 2016 - Zip File with SAS, SPSS and STATA data. File Name: WIC_PC_2016_SAS_SPSS_STATA_Files.zipResource Description: WIC Participant and Program Characteristics 2016 - Zip File with SAS, SPSS and STATA data

  10. f

    Sas Datasets

    • figshare.com
    zip
    Updated May 8, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pepijn Vemer (2016). Sas Datasets [Dataset]. http://doi.org/10.6084/m9.figshare.3362518.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 8, 2016
    Dataset provided by
    figshare
    Authors
    Pepijn Vemer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Datasets produced by SAS as outcomes of the simulation study. Each zip-file contains the outcomes for a scenario. The "Pathist" dataset is the dataset containing the "Reference Disease Progression" of the superpopulation in the simulation study (N=50,000).

  11. The Pedestrian Crash Data Study (PCDS) - SAS File

    • catalog.data.gov
    Updated May 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Highway Traffic Safety Administration (2024). The Pedestrian Crash Data Study (PCDS) - SAS File [Dataset]. https://catalog.data.gov/dataset/the-pedestrian-crash-data-study-pcds-sas-file
    Explore at:
    Dataset updated
    May 1, 2024
    Description

    The Pedestrian Crash Data Study (PCDS) collected detailed data on motor vehicle vs pedestrian crashes.

  12. Data file in SAS format

    • figshare.com
    txt
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guillaume Béraud (2016). Data file in SAS format [Dataset]. http://doi.org/10.6084/m9.figshare.1466915.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Guillaume Béraud
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    data file in SAS format

  13. d

    SAS Programs - Claims-Based Frailty Index

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kim, Dae Hyun; Gautam, Nileesa (2024). SAS Programs - Claims-Based Frailty Index [Dataset]. http://doi.org/10.7910/DVN/HM8DOI
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Kim, Dae Hyun; Gautam, Nileesa
    Description

    This SAS program calculates CFI for each patient from analytic data files containing information on patient identifiers, ICD-9-CM diagnosis codes (version 32), ICD-10-CM Diagnosis Codes (version 2020), CPT codes, and HCPCS codes. NOTE: When downloading, store "CFI_ICD9CM_V32.tab", "CFI_ICD10CM_V2020.tab", and "PX_CODES.tab" as csv files (these files are originally stored as csv files, but Dataverse automatically converts them to tab files). Please read "Frailty-Index-SAS-code-Guide" before proceeding. Interpretation, validation data, and annotated references are provided in "Research Background - Claims-Based Frailty Index".

  14. E

    SAS: Semantic Artist Similarity Dataset

    • live.european-language-grid.eu
    • zenodo.org
    txt
    Updated Oct 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). SAS: Semantic Artist Similarity Dataset [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/7418
    Explore at:
    txtAvailable download formats
    Dataset updated
    Oct 28, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Semantic Artist Similarity dataset consists of two datasets of artists entities with their corresponding biography texts, and the list of top-10 most similar artists within the datasets used as ground truth. The dataset is composed by a corpus of 268 artists and a slightly larger one of 2,336 artists, both gathered from Last.fm in March 2015. The former is mapped to the MIREX Audio and Music Similarity evaluation dataset, so that its similarity judgments can be used as ground truth. For the latter corpus we use the similarity between artists as provided by the Last.fm API. For every artist there is a list with the top-10 most related artists. In the MIREX dataset there are 188 artists with at least 10 similar artists, the other 80 artists have less than 10 similar artists. In the Last.fm API dataset all artists have a list of 10 similar artists. There are 4 files in the dataset.mirex_gold_top10.txt and lastfmapi_gold_top10.txt have the top-10 lists of artists for every artist of both datasets. Artists are identified by MusicBrainz ID. The format of the file is one line per artist, with the artist mbid separated by a tab with the list of top-10 related artists identified by their mbid separated by spaces.artist_mbid \t artist_mbid_top10_list_separated_by_spaces mb2uri_mirex and mb2uri_lastfmapi.txt have the list of artists. In each line there are three fields separated by tabs. First field is the MusicBrainz ID, second field is the last.fm name of the artist, and third field is the DBpedia uri.artist_mbid \t lastfm_name \t dbpedia_uri There are also 2 folders in the dataset with the biography texts of each dataset. Each .txt file in the biography folders is named with the MusicBrainz ID of the biographied artist. Biographies were gathered from the Last.fm wiki page of every artist.Using this datasetWe would highly appreciate if scientific publications of works partly based on the Semantic Artist Similarity dataset quote the following publication:Oramas, S., Sordo M., Espinosa-Anke L., & Serra X. (In Press). A Semantic-based Approach for Artist Similarity. 16th International Society for Music Information Retrieval Conference.We are interested in knowing if you find our datasets useful! If you use our dataset please email us at mtg-info@upf.edu and tell us about your research. https://www.upf.edu/web/mtg/semantic-similarity

  15. SAS-2 Map Product Catalog - Dataset - NASA Open Data Portal

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). SAS-2 Map Product Catalog - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/sas-2-map-product-catalog
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This database is a collection of maps created from the 28 SAS-2 observation files. The original observation files can be accessed within BROWSE by changing to the SAS2RAW database. For each of the SAS-2 observation files, the analysis package FADMAP was run and the resulting maps, plus GIF images created from these maps, were collected into this database. Each map is a 60 x 60 pixel FITS format image with 1 degree pixels. The user may reconstruct any of these maps within the captive account by running FADMAP from the command line after extracting a file from within the SAS2RAW database. The parameters used for selecting data for these product map files are embedded keywords in the FITS maps themselves. These parameters are set in FADMAP, and for the maps in this database are set as 'wide open' as possible. That is, except for selecting on each of 3 energy ranges, all other FADMAP parameters were set using broad criteria. To find more information about how to run FADMAP on the raw event's file, the user can access help files within the SAS2RAW database or can use the 'fhelp' facility from the command line to gain information about FADMAP. This is a service provided by NASA HEASARC .

  16. Data from: Longitudinal Post-Coital DNA Recovery 2010-2014 [UNITED STATES]

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Longitudinal Post-Coital DNA Recovery 2010-2014 [UNITED STATES] [Dataset]. https://catalog.data.gov/dataset/longitudinal-post-coital-dna-recovery-2010-2014-united-states-a14dd
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    United States
    Description

    These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed. This study sought to apply current and advanced Y-STR DNA technology in forensic laboratories to a large in vivo population of proxy-couples, to provide groundwork for future inquiry about the conditions affecting DNA recovery in the living patient, to determine timing for evidence collection, and to attempt to identify variables influencing DNA recovery. The objective of this research was to create the evidence base supporting or limiting the expansion of the 72-hour period for evidence collection. Another objective was to identify conditions that might influence the recovery of DNA, and therefore influence policies related to sample collection from the complex post-coital environment. The collection includes 6 SPSS data files: AlleleRecovery Jun 2014 Allrec.sav (n=70; 34 variables) AlleleRecovery Jun 2014 Used for descriptve analysis.sav (n=66; 58 variables) Condom_collections-baseline-d9-Jun2014 Allrec without open-ended-ICPSR.sav (n=70; 66 variables) DNADemogFemalesJun2014- without open-ended AllRec-ICPSR.sav (n=73; 67 variables) DNADemogFemalesJun2014- without open-ended -For analysis with group variables-ICPSR.sav (n=66; 73 variables) DNADemogMalesJun2014- without open-ended AllRec-ICPSR.sav (n=73; 46 variables) and 1 SAS data file (dnalong.sas7bdat (n=264; 7 variables)). Data from a focus group of subject matter experts which convened to identify themes from their practice are not included with this collection.

  17. d

    SAS-2 Map Product Catalog

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    High Energy Astrophysics Science Archive Research Center (2025). SAS-2 Map Product Catalog [Dataset]. https://catalog.data.gov/dataset/sas-2-map-product-catalog
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    High Energy Astrophysics Science Archive Research Center
    Description

    This database is a collection of maps created from the 28 SAS-2 observation files. The original observation files can be accessed within BROWSE by changing to the SAS2RAW database. For each of the SAS-2 observation files, the analysis package FADMAP was run and the resulting maps, plus GIF images created from these maps, were collected into this database. Each map is a 60 x 60 pixel FITS format image with 1 degree pixels. The user may reconstruct any of these maps within the captive account by running FADMAP from the command line after extracting a file from within the SAS2RAW database. The parameters used for selecting data for these product map files are embedded keywords in the FITS maps themselves. These parameters are set in FADMAP, and for the maps in this database are set as 'wide open' as possible. That is, except for selecting on each of 3 energy ranges, all other FADMAP parameters were set using broad criteria. To find more information about how to run FADMAP on the raw event's file, the user can access help files within the SAS2RAW database or can use the 'fhelp' facility from the command line to gain information about FADMAP. This is a service provided by NASA HEASARC .

  18. m

    Object locations (PNG image format) used for synthetic aperture sonar (SAS)...

    • marine-geo.org
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Object locations (PNG image format) used for synthetic aperture sonar (SAS) data [Dataset]. https://www.marine-geo.org/tools/files/31901
    Explore at:
    Dataset updated
    Sep 24, 2024
    Description

    The simulated synthetic aperture sonar (SAS) data presented here was generated using PoSSM [Johnson and Brown 2018]. The data is suitable for bistatic, coherent signal processing and will form acoustic seafloor imagery. Included in this data package is simulated sonar data in Generic Data Format (GDF) files, a description of the GDF file contents, example SAS imagery, and supporting information about the simulated scenes. In total, there are eleven 60 m x 90 m scenes, labeled scene00 through scene10, with scene00 provided with the scatterers in isolation, i.e. no seafloor texture. This is provided for beamformer testing purposes and should result in an image similar to the one labeled "PoSSM-scene00-scene00-starboard-0.tif" in the Related Data Sets tab. The ten other scenes have varying degrees of model variation as described in "Description_of_Simulated_SAS_Data_Package.pdf". A description of the data and the model is found in the associated document called "Description_of_Simulated_SAS_Data_Package.pdf" and a description of the format in which the raw binary data is stored is found in the related document "PSU_GDF_Format_20240612.pdf". The format description also includes MATLAB code that will effectively parse the data to aid in signal processing and image reconstruction. It is left to the researcher to develop a beamforming algorithm suitable for coherent signal and image processing. Each 60 m x 90 m scene is represented by 4 raw (not beamformed) GDF files, labeled sceneXX-STARBOARD-000000 through 000003. It is possible to beamform smaller scenes from any one of these 4 files, i.e. the four files are combined sequentially to form a 60 m x 90 m image. Also included are comma separated value spreadsheets describing the locations of scatterers and objects of interest within each scene. In addition to the binary GDF data, a beamformed GeoTIFF image and a single-look complex (SLC, science file) data of each scene is provided. The SLC data (science) is stored in the Hierarchical Data Format 5 (https://www.hdfgroup.org/), and appended with ".hdf5" to indicate the HDF5 format. The data are stored as 32-bit real and 32-bit complex values. A viewer is available that provides basic graphing, image display, and directory navigation functions (https://www.hdfgroup.org/downloads/hdfview/). The HDF file contains all the information necessary to reconstruct a synthetic aperture sonar image. All major and contemporary programming languages have library support for encoding/decoding the HDF5 format. Supporting documentation that outlines positions of the seafloor scatterers is included in "Scatterer_Locations_Scene00.csv", while the locations of the objects of interest for scene01-scene10 are included in "Object_Locations_All_Scenes.csv". Portable Network Graphic (PNG) images that plot the location of objects of all the objects of interest in each scene in Along-Track and Cross-Track notation are provided.

  19. d

    Data from: Sensitivity and specificity of point-of-care rapid combination...

    • datadryad.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Oct 9, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen L. Hess; Dennis G. Fisher; Grace L. Reynolds (2015). Sensitivity and specificity of point-of-care rapid combination syphilis-HIV-HCV tests [Dataset]. http://doi.org/10.5061/dryad.nh7f4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 9, 2015
    Dataset provided by
    Dryad
    Authors
    Kristen L. Hess; Dennis G. Fisher; Grace L. Reynolds
    Time period covered
    2015
    Area covered
    California USA
    Description

    PLOSsyphThis is an ASCII file that is space delimited that was created in SAS. It has the variables that were used in the published paper. The readme.sas file is a .sas file that reads the data. You will need to change the infile statement to reflect the path to where you put the data.

  20. E

    Key files for Spoofing and Anti-Spoofing (SAS) corpus v1.0

    • finddatagovscot.dtechtive.com
    • dtechtive.com
    • +1more
    txt, zip
    Updated Jun 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Edinburgh. The Centre for Speech Technology Research (CSTR) (2017). Key files for Spoofing and Anti-Spoofing (SAS) corpus v1.0 [Dataset]. http://doi.org/10.7488/ds/2072
    Explore at:
    txt(0.0019 MB), txt(0.0166 MB), zip(110.2 MB)Available download formats
    Dataset updated
    Jun 22, 2017
    Dataset provided by
    University of Edinburgh. The Centre for Speech Technology Research (CSTR)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These files are complementary to the fileset: Wu et al. (2015). Spoofing and Anti-Spoofing (SAS) corpus v1.0, [dataset]. University of Edinburgh. The Centre for Speech Technology Research (CSTR). https://doi.org/10.7488/ds/252. These two filesets should be considered two complementary parts of a single dataset.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
United States[old] (2019). Provider Specific Data for Public Use in SAS Format [Dataset]. https://data.amerigeoss.org/de/dataset/provider-specific-data-for-public-use-in-sas-format-0d063

Provider Specific Data for Public Use in SAS Format

Explore at:
htmlAvailable download formats
Dataset updated
Jul 29, 2019
Dataset provided by
United States[old]
Description

The Fiscal Intermediary maintains the Provider Specific File (PSF). The file contains information about the facts specific to the provider that affects computations for the Prospective Payment System. The Provider Specific files in SAS format are located in the Download section below for the following provider-types, Inpatient, Skilled Nursing Facility, Home Health Agency, Hospice, Inpatient Rehab, Long Term Care, Inpatient Psychiatric Facility

Search
Clear search
Close search
Google apps
Main menu