Facebook
TwitterWe compiled macroinvertebrate assemblage data collected from 1995 to 2014 from the St. Louis River Area of Concern (AOC) of western Lake Superior. Our objective was to define depth-adjusted cutoff values for benthos condition classes (poor, fair, reference) to provide tool useful for assessing progress toward achieving removal targets for the degraded benthos beneficial use impairment in the AOC. The relationship between depth and benthos metrics was wedge-shaped. We therefore used quantile regression to model the limiting effect of depth on selected benthos metrics, including taxa richness, percent non-oligochaete individuals, combined percent Ephemeroptera, Trichoptera, and Odonata individuals, and density of ephemerid mayfly nymphs (Hexagenia). We created a scaled trimetric index from the first three metrics. Metric values at or above the 90th percentile quantile regression model prediction were defined as reference condition for that depth. We set the cutoff between poor and fair condition as the 50th percentile model prediction. We examined sampler type, exposure, geographic zone of the AOC, and substrate type for confounding effects. Based on these analyses we combined data across sampler type and exposure classes and created separate models for each geographic zone. We used the resulting condition class cutoff values to assess the relative benthic condition for three habitat restoration project areas. The depth-limited pattern of ephemerid abundance we observed in the St. Louis River AOC also occurred elsewhere in the Great Lakes. We provide tabulated model predictions for application of our depth-adjusted condition class cutoff values to new sample data. This dataset is associated with the following publication: Angradi, T., W. Bartsch, A. Trebitz, V. Brady, and J. Launspach. A depth-adjusted ambient distribution approach for setting numeric removal targets for a Great Lakes Area of Concern beneficial use impairment: Degraded benthos. JOURNAL OF GREAT LAKES RESEARCH. International Association for Great Lakes Research, Ann Arbor, MI, USA, 43(1): 108-120, (2017).
Facebook
TwitterForest First Colombia Sas Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterThis package contains two files designed to help read individual level DHS data into Stata. The first file addresses the problem that versions of Stata before Version 7/SE will read in only up to 2047 variables and most of the individual files have more variables than that. The file will read in the .do, .dct and .dat file and output new .do and .dct files with only a subset of the variables specified by the user. The second file deals with earlier DHS surveys in which .do and .dct file do not exist and only .sps and .sas files are provided. The file will read in the .sas and .sps files and output a .dct and .do file. If necessary the first file can then be run again to select a subset of variables.
Facebook
TwitterFirst Of Colombia Sas Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterView details of First Miracle Llc Buyer and Hillebrand Gori France Sas Supplier data to US (United States) with product description, price, date, quantity, major us ports, countries and more.
Facebook
TwitterThis SAS code extracts data from EU-SILC User Database (UDB) longitudinal files and edits it such that a file is produced that can be further used for differential mortality analyses. Information from the original D, R, H and P files is merged per person and possibly pooled over several longitudinal data releases. Vital status information is extracted from target variables DB110 and RB110, and time at risk between the first interview and either death or censoring is estimated based on quarterly date information. Apart from path specifications, the SAS code consists of several SAS macros. Two of them require parameter specification from the user. The other ones are just executed. The code was written in Base SAS, Version 9.4. By default, the output file contains several variables which are necessary for differential mortality analyses, such as sex, age, country, year of first interview, and vital status information. In addition, the user may specify the analytical variables by which mortality risk should be compared later, for example educational level or occupational class. These analytical variables may be measured either at the first interview (the baseline) or at the last interview of a respondent. The output file is available in SAS format and by default also in csv format.
Facebook
TwitterSas First Fasfood Collectivite Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is associated with the paper ''SAS: A speaker verification spoofing database containing diverse attacks': presents the first version of a speaker verification spoofing and anti-spoofing database, named SAS corpus. The corpus includes nine spoofing techniques, two of which are speech synthesis, and seven are voice conversion. We design two protocols, one for standard speaker verification evaluation, and the other for producing spoofing materials. Hence, they allow the speech synthesis community to produce spoofing materials incrementally without knowledge of speaker verification spoofing and anti-spoofing. To provide a set of preliminary results, we conducted speaker verification experiments using two state-of-the-art systems. Without any anti-spoofing techniques, the two systems are extremely vulnerable to the spoofing attacks implemented in our SAS corpus'. N.B. the files in the following fileset should also be taken as part of the same dataset as those provided here: Wu et al. (2017). Key files for Spoofing and Anti-Spoofing (SAS) corpus v1.0, [dataset]. University of Edinburgh. The Centre for Speech Technology Research (CSTR). http://hdl.handle.net/10283/2741
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Semantic Artist Similarity dataset consists of two datasets of artists entities with their corresponding biography texts, and the list of top-10 most similar artists within the datasets used as ground truth. The dataset is composed by a corpus of 268 artists and a slightly larger one of 2,336 artists, both gathered from Last.fm in March 2015. The former is mapped to the MIREX Audio and Music Similarity evaluation dataset, so that its similarity judgments can be used as ground truth. For the latter corpus we use the similarity between artists as provided by the Last.fm API. For every artist there is a list with the top-10 most related artists. In the MIREX dataset there are 188 artists with at least 10 similar artists, the other 80 artists have less than 10 similar artists. In the Last.fm API dataset all artists have a list of 10 similar artists. There are 4 files in the dataset.mirex_gold_top10.txt and lastfmapi_gold_top10.txt have the top-10 lists of artists for every artist of both datasets. Artists are identified by MusicBrainz ID. The format of the file is one line per artist, with the artist mbid separated by a tab with the list of top-10 related artists identified by their mbid separated by spaces.artist_mbid \t artist_mbid_top10_list_separated_by_spaces mb2uri_mirex and mb2uri_lastfmapi.txt have the list of artists. In each line there are three fields separated by tabs. First field is the MusicBrainz ID, second field is the last.fm name of the artist, and third field is the DBpedia uri.artist_mbid \t lastfm_name \t dbpedia_uri There are also 2 folders in the dataset with the biography texts of each dataset. Each .txt file in the biography folders is named with the MusicBrainz ID of the biographied artist. Biographies were gathered from the Last.fm wiki page of every artist.Using this datasetWe would highly appreciate if scientific publications of works partly based on the Semantic Artist Similarity dataset quote the following publication:Oramas, S., Sordo M., Espinosa-Anke L., & Serra X. (In Press). A Semantic-based Approach for Artist Similarity. 16th International Society for Music Information Retrieval Conference.We are interested in knowing if you find our datasets useful! If you use our dataset please email us at mtg-info@upf.edu and tell us about your research. https://www.upf.edu/web/mtg/semantic-similarity
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains all the materials needed to reproduce the results in "Which Panel Data Estimator Should I Use?: A Corrigendum and Extension". Please read the README document first. The results were obtained using SAS/IML software, and the files consist of SAS data sets and SAS programs.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This macro performs propensity score (PS) adjusted analysis using stratification for cohort studies from an analytic file containing information on patient identifiers, exposure, confounding variables or pre-computed PS, and binary outcomes/censoring time. In the first step, patients from non-overlapping regions of PS distributions are trimmed. Next, PS strata are created using either the distribution of PS in the exposed group only or the entire cohort as specified by the user. Next, this macro calculates weights targeting the ATT (Average Treatment effect among the Treated) or the ATE (Average Treatment Effect in the whole population) as specified by the user. Finally, weighted generalized linear models or weighted Cox-proportional hazards model provides adjusted effect estimates along with confidence intervals calculated using robust variance estimates to account for weighting.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Data Science Platform market is experiencing robust growth, projected to reach $10.15 billion in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 23.50% from 2025 to 2033. This expansion is driven by several key factors. The increasing availability and affordability of cloud computing resources are lowering the barrier to entry for organizations of all sizes seeking to leverage data science capabilities. Furthermore, the growing volume and complexity of data generated across various industries necessitates sophisticated platforms for efficient data processing, analysis, and model deployment. The rise of AI and machine learning further fuels demand, as organizations strive to gain competitive advantages through data-driven insights and automation. Strong demand from sectors like IT and Telecom, BFSI (Banking, Financial Services, and Insurance), and Retail & E-commerce are major contributors to market growth. The preference for cloud-based deployment models over on-premise solutions is also accelerating market expansion, driven by scalability, cost-effectiveness, and accessibility. Market segmentation reveals a diverse landscape. While large enterprises are currently major consumers, the increasing adoption of data science by small and medium-sized enterprises (SMEs) represents a significant growth opportunity. The platform offering segment is anticipated to maintain a substantial market share, driven by the need for comprehensive tools that integrate data ingestion, processing, modeling, and deployment capabilities. Geographically, North America and Europe are currently leading the market, but the Asia-Pacific region, particularly China and India, is poised for significant growth due to expanding digital economies and increasing investments in data science initiatives. Competitive intensity is high, with established players like IBM, SAS, and Microsoft competing alongside innovative startups like DataRobot and Databricks. This competitive landscape fosters innovation and further accelerates market expansion. Recent developments include: November 2023 - Stagwell announced a partnership with Google Cloud and SADA, a Google Cloud premier partner, to develop generative AI (gen AI) marketing solutions that support Stagwell agencies, client partners, and product development within the Stagwell Marketing Cloud (SMC). The partnership will help in harnessing data analytics and insights by developing and training a proprietary Stagwell large language model (LLM) purpose-built for Stagwell clients, productizing data assets via APIs to create new digital experiences for brands, and multiplying the value of their first-party data ecosystems to drive new revenue streams using Vertex AI and open source-based models., May 2023 - IBM launched a new AI and data platform, watsonx, it is aimed at allowing businesses to accelerate advanced AI usage with trusted data, speed and governance. IBM also introduced GPU-as-a-service, which is designed to support AI intensive workloads, with an AI dashboard to measure, track and help report on cloud carbon emissions. With watsonx, IBM offers an AI development studio with access to IBMcurated and trained foundation models and open-source models, access to a data store to gather and clean up training and tune data,. Key drivers for this market are: Rapid Increase in Big Data, Emerging Promising Use Cases of Data Science and Machine Learning; Shift of Organizations Toward Data-intensive Approach and Decisions. Potential restraints include: Lack of Skillset in Workforce, Data Security and Reliability Concerns. Notable trends are: Small and Medium Enterprises to Witness Major Growth.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The first block of codes calls PROC MIXED with the QTL effect being treated as a random effect. The second block of codes calls PROC MIXED with the QTL effect being treated as a fixed effect. (SAS)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Credit report of Taufik Morarbe Suratex First Trade Punto G Lingerie Sas contains unique and detailed export import market intelligence with it's phone, email, Linkedin and details of each import and export shipment like product, quantity, price, buyer, supplier names, country and date of shipment.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Credit report of Taufik First Trade Racketball Trayecto Intimo Sas contains unique and detailed export import market intelligence with it's phone, email, Linkedin and details of each import and export shipment like product, quantity, price, buyer, supplier names, country and date of shipment.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
SAS-Bench: A Fine-Grained Benchmark for Evaluating Short Answer Scoring with Large Language Models
Dataset | 中文 | Paper | Code
🔍 Overview
SAS-Bench represents the first specialized benchmark for evaluating Large Language Models (LLMs) on Short Answer Scoring (SAS) tasks. Utilizing authentic questions from China's National College Entrance Examination (Gaokao)… See the full description on the dataset page: https://huggingface.co/datasets/aleversn/SAS-Bench.
Facebook
TwitterThe main objective of the Seasonal Agricultural Survey is to provide timely, accurate, reliable and comprehensive agricultural statistics that describe the structure of agriculture in Rwanda mainly in terms of land use, crop area, yield and crop production to monitor current agricultural and food supply conditions and to facilitate evidence-based decision making for the development of the agricultural sector.
In this regard, the National Institute of Statistics of Rwanda conducted the Seasonal Agriculture Survey (SAS) from September 2018 to august 2019 to gather up-to-date information for monitoring progress on agriculture programs and policies. This 2019 SAS covered Main agricultural seasons are Season A (which starts from September to February of the following year) and Season B (which starts from March to June). Season C is the small agricultural season mainly for vegetables and sweet potato grown in swamps and Irish potato grown in volcanic agro-ecological zone and provides data on farm characteristics (area, yield and production), agricultural practices, agricultural inputs and use of crop production
National coverage allowing district-level estimation of key indicators
This seasonal agriculture survey focused on the following units of analysis: Small scale agricultural farms and large scale farms
The SAS 2019 targeted potential agricultural land and large scale farmers
Sample survey data [ssd]
Out of 10 strata, only 4 are considered to represent the country land potential for agriculture, and they cover the total area of 1,787,571.2 hectares (ha). Those strata are: 1.0 (tea plantations), 1.1 (intensive agriculture land on hillsides), 2.0 (intensive agriculture land in marshlands) and 3.0 (rangelands). The remainder of land use strata represents all the non-agricultural land in Rwanda. Stratum 1.0, which represents tea plantations, is assumed to be well monitored through administrative records by the National Agriculture Export Board (NAEB), an institution whose main mission is to promote the agriculture export commodities. Thus, SAS is conducted on 3 strata (1.1; 2.0 & 3.0) to cover other major crops. Within district, the agriculture strata (1.1, 2.0 & 3.0) were divided into larger sampling units called first-step or primary sampling units (PSUs) (as shown in Figure 2). Strata 1.1 and 2.0 were divided into PSUs of around 100 ha while stratum 3.0 was divided into PSUs of around 500 ha. After sample size determination, a sample of PSUs was done by systematic sampling method with probability proportional to size, then a given number of PSUs to be selected for each stratum, was assigned in every district. In 2019, the 2018 SAS sample of 780 segments has been kept the same for SAS 2019 in Season A and B.
At first stage, 780 PSUs sampled countrywide were proportionally allocated in different levels of stratification (Hill side, marshland and rangeland strata) for 30 districts of Rwanda, to allow publication of results at district level. Sampled PSUs in each stratum were systematically selected from the frame with probability of selection proportional to the size of the PSU.
At the second stage 780 sampled PSUs were divided into secondary sampling units (SSUs) also called segments. Each segment is estimated to be around 10 ha for strata 1.1 and 2.0 and 50 ha for stratum 3.0 (as shown in Figure 3). For each PSU, only one SSU is selected by random sampling method without replacement. This is why for 2019 5 SAS season A and B, the same number of 780 SSUs was selected. In addition to this, a list frame of large-scale farmers (LSF), with at least 10 hectares of agricultural holdings, was done to complement the area frame just to cover crops mostly grown by large scale farmers and that cannot be easily covered in area frame
At the last sampling stage, in strata 1.1 and 2.0 each segment of an average size of 10 ha (100,000 Square meters) has been divided into around 1,000 grids squares of 100 Sq. meters each, while for stratum 3.0 around 5,000 grids squares of 100 Sq. meters each have been divided. A point was placed at the center of every grid square and named a grid point (A grid point is a geographical location at the center of every grid square). A random sample of 5% of the total grid points were selected in each segment of strata 1.1 and 2.0 whereas a random sample of 2% of total grid points was selected in each segment of stratum 3.0. Grids points are reporting units within a segment, where enumerators go to every grid point, locate and delineate the plots in which the grid falls, and collect records of land use and related information. The recorded information represents the characteristics of the whole segment which are extrapolated to the stratum level and hence the combination of strata within each district provides district area related statistics.
Face-to-face [f2f]
There were two types of questionnaires used for this survey namely screening questionnaire and plot questionnaire. A Screening questionnaire was used to collect information that enabled identification of a plot and its land use using the plot questionnaire. For point-sampling, the plot questionnaire is concerned with the collection of data on characteristics of crop identification, crop production and use of production, inputs (seeds, fertilizers and pesticides), agricultural practices and land tenure. All the surveys questionnaires used were published in English
The CAPI method of data collection allows the enumerators in the field to collect and enter data with their tablets and then synchronize to the server at headquarters where data are received by NISR staff, checked for consistency at NISR and thereafter transmitted to analysts for tabulation using STATA software, and reporting using office Excel and word as well.
Data collection was done in 780 segments and 222 large scale farmers holdings for Season A, whereas in Season C data was collected in 232 segments, response rate was 100% of the sample
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: , , and are mean values (Mean ± SD) calculated for the first 2.5 cm of the model length. Max was also calculated for the first 2.5 cm of the model length.
Facebook
TwitterSas A U Gur First Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Local ordering of water in the first hydration shell around a solute is different from isotropic bulk water. This leads to effects that are captured by explicit solvation models and missed by continuum solvation models which replace the explicit waters with a continuous medium. In this paper, we introduce the First-Shell Hydration (FiSH) model as a first attempt to introduce first-shell effects within a continuum solvation framework. One such effect is charge asymmetry, which is captured by a modified electrostatic term within the FiSH model by introducing a nonlinear correction of atomic Born radii based on the induced surface charge density. A hybrid van der Waals formulation consisting of two continuum zones has been implemented. A shell of water restricted to and uniformly distributed over the solvent-accessible surface (SAS) represents the first solvation shell. A second region starting one solvent diameter away from the SAS is treated as bulk water with a uniform density function. Both the electrostatic and van der Waals terms of the FiSH model have been calibrated against linear interaction energy (LIE) data from molecular dynamics simulations. Extensive testing of the FiSH model was carried out on large hydration data sets including both simple compounds and drug-like molecules. The FiSH model accurately reproduces contributing terms, absolute predictions relative to experimental hydration free energies, and functional class trends of LIE MD simulations. Overall, the implementation of the FiSH model achieves a very acceptable performance and transferability improving over previously developed solvation models, while being complemented by a sound physical foundation.
Facebook
TwitterWe compiled macroinvertebrate assemblage data collected from 1995 to 2014 from the St. Louis River Area of Concern (AOC) of western Lake Superior. Our objective was to define depth-adjusted cutoff values for benthos condition classes (poor, fair, reference) to provide tool useful for assessing progress toward achieving removal targets for the degraded benthos beneficial use impairment in the AOC. The relationship between depth and benthos metrics was wedge-shaped. We therefore used quantile regression to model the limiting effect of depth on selected benthos metrics, including taxa richness, percent non-oligochaete individuals, combined percent Ephemeroptera, Trichoptera, and Odonata individuals, and density of ephemerid mayfly nymphs (Hexagenia). We created a scaled trimetric index from the first three metrics. Metric values at or above the 90th percentile quantile regression model prediction were defined as reference condition for that depth. We set the cutoff between poor and fair condition as the 50th percentile model prediction. We examined sampler type, exposure, geographic zone of the AOC, and substrate type for confounding effects. Based on these analyses we combined data across sampler type and exposure classes and created separate models for each geographic zone. We used the resulting condition class cutoff values to assess the relative benthic condition for three habitat restoration project areas. The depth-limited pattern of ephemerid abundance we observed in the St. Louis River AOC also occurred elsewhere in the Great Lakes. We provide tabulated model predictions for application of our depth-adjusted condition class cutoff values to new sample data. This dataset is associated with the following publication: Angradi, T., W. Bartsch, A. Trebitz, V. Brady, and J. Launspach. A depth-adjusted ambient distribution approach for setting numeric removal targets for a Great Lakes Area of Concern beneficial use impairment: Degraded benthos. JOURNAL OF GREAT LAKES RESEARCH. International Association for Great Lakes Research, Ann Arbor, MI, USA, 43(1): 108-120, (2017).