Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
data file in SAS format
The Fiscal Intermediary maintains the Provider Specific File (PSF). The file contains information about the facts specific to the provider that affects computations for the Prospective Payment System. The Provider Specific files in SAS format are located in the Download section below for the following provider-types, Inpatient, Skilled Nursing Facility, Home Health Agency, Hospice, Inpatient Rehab, Long Term Care, Inpatient Psychiatric Facility
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This formatted dataset (AnalysisDatabaseGBD) originates from raw data files from the Institute of Health Metrics and Evaluation (IHME) Global Burden of Disease Study (GBD2017) affiliated with the University of Washington. We are volunteer collaborators with IHME and not employed by IHME or the University of Washington.
The population weighted GBD2017 data are on male and female cohorts ages 15-69 years including noncommunicable diseases (NCDs), body mass index (BMI), cardiovascular disease (CVD), and other health outcomes and associated dietary, metabolic, and other risk factors. The purpose of creating this population-weighted, formatted database is to explore the univariate and multiple regression correlations of health outcomes with risk factors. Our research hypothesis is that we can successfully model NCDs, BMI, CVD, and other health outcomes with their attributable risks.
These Global Burden of disease data relate to the preprint: The EAT-Lancet Commission Planetary Health Diet compared with Institute of Health Metrics and Evaluation Global Burden of Disease Ecological Data Analysis.
The data include the following:
1. Analysis database of population weighted GBD2017 data that includes over 40 health risk factors, noncommunicable disease deaths/100k/year of male and female cohorts ages 15-69 years from 195 countries (the primary outcome variable that includes over 100 types of noncommunicable diseases) and over 20 individual noncommunicable diseases (e.g., ischemic heart disease, colon cancer, etc).
2. A text file to import the analysis database into SAS
3. The SAS code to format the analysis database to be used for analytics
4. SAS code for deriving Tables 1, 2, 3 and Supplementary Tables 5 and 6
5. SAS code for deriving the multiple regression formula in Table 4.
6. SAS code for deriving the multiple regression formula in Table 5
7. SAS code for deriving the multiple regression formula in Supplementary Table 7
8. SAS code for deriving the multiple regression formula in Supplementary Table 8
9. The Excel files that accompanied the above SAS code to produce the tables
For questions, please email davidkcundiff@gmail.com. Thanks.
The simulated synthetic aperture sonar (SAS) data presented here was generated using PoSSM [Johnson and Brown 2018]. The data is suitable for bistatic, coherent signal processing and will form acoustic seafloor imagery. Included in this data package is simulated sonar data in Generic Data Format (GDF) files, a description of the GDF file contents, example SAS imagery, and supporting information about the simulated scenes. In total, there are eleven 60 m x 90 m scenes, labeled scene00 through scene10, with scene00 provided with the scatterers in isolation, i.e. no seafloor texture. This is provided for beamformer testing purposes and should result in an image similar to the one labeled "PoSSM-scene00-scene00-starboard-0.tif" in the Related Data Sets tab. The ten other scenes have varying degrees of model variation as described in "Description_of_Simulated_SAS_Data_Package.pdf". A description of the data and the model is found in the associated document called "Description_of_Simulated_SAS_Data_Package.pdf" and a description of the format in which the raw binary data is stored is found in the related document "PSU_GDF_Format_20240612.pdf". The format description also includes MATLAB code that will effectively parse the data to aid in signal processing and image reconstruction. It is left to the researcher to develop a beamforming algorithm suitable for coherent signal and image processing. Each 60 m x 90 m scene is represented by 4 raw (not beamformed) GDF files, labeled sceneXX-STARBOARD-000000 through 000003. It is possible to beamform smaller scenes from any one of these 4 files, i.e. the four files are combined sequentially to form a 60 m x 90 m image. Also included are comma separated value spreadsheets describing the locations of scatterers and objects of interest within each scene. In addition to the binary GDF data, a beamformed GeoTIFF image and a single-look complex (SLC, science file) data of each scene is provided. The SLC data (science) is stored in the Hierarchical Data Format 5 (https://www.hdfgroup.org/), and appended with ".hdf5" to indicate the HDF5 format. The data are stored as 32-bit real and 32-bit complex values. A viewer is available that provides basic graphing, image display, and directory navigation functions (https://www.hdfgroup.org/downloads/hdfview/). The HDF file contains all the information necessary to reconstruct a synthetic aperture sonar image. All major and contemporary programming languages have library support for encoding/decoding the HDF5 format. Supporting documentation that outlines positions of the seafloor scatterers is included in "Scatterer_Locations_Scene00.csv", while the locations of the objects of interest for scene01-scene10 are included in "Object_Locations_All_Scenes.csv". Portable Network Graphic (PNG) images that plot the location of objects of all the objects of interest in each scene in Along-Track and Cross-Track notation are provided.
https://data.aussda.at/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11587/ZOOBKEhttps://data.aussda.at/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11587/ZOOBKE
This SAS code extracts data from EU-SILC User Database (UDB) longitudinal files and edits it such that a file is produced that can be further used for differential mortality analyses. Information from the original D, R, H and P files is merged per person and possibly pooled over several longitudinal data releases. Vital status information is extracted from target variables DB110 and RB110, and time at risk between the first interview and either death or censoring is estimated based on quarterly date information. Apart from path specifications, the SAS code consists of several SAS macros. Two of them require parameter specification from the user. The other ones are just executed. The code was written in Base SAS, Version 9.4. By default, the output file contains several variables which are necessary for differential mortality analyses, such as sex, age, country, year of first interview, and vital status information. In addition, the user may specify the analytical variables by which mortality risk should be compared later, for example educational level or occupational class. These analytical variables may be measured either at the first interview (the baseline) or at the last interview of a respondent. The output file is available in SAS format and by default also in csv format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Semantic Artist Similarity dataset consists of two datasets of artists entities with their corresponding biography texts, and the list of top-10 most similar artists within the datasets used as ground truth. The dataset is composed by a corpus of 268 artists and a slightly larger one of 2,336 artists, both gathered from Last.fm in March 2015. The former is mapped to the MIREX Audio and Music Similarity evaluation dataset, so that its similarity judgments can be used as ground truth. For the latter corpus we use the similarity between artists as provided by the Last.fm API. For every artist there is a list with the top-10 most related artists. In the MIREX dataset there are 188 artists with at least 10 similar artists, the other 80 artists have less than 10 similar artists. In the Last.fm API dataset all artists have a list of 10 similar artists. There are 4 files in the dataset.mirex_gold_top10.txt and lastfmapi_gold_top10.txt have the top-10 lists of artists for every artist of both datasets. Artists are identified by MusicBrainz ID. The format of the file is one line per artist, with the artist mbid separated by a tab with the list of top-10 related artists identified by their mbid separated by spaces.artist_mbid \t artist_mbid_top10_list_separated_by_spaces mb2uri_mirex and mb2uri_lastfmapi.txt have the list of artists. In each line there are three fields separated by tabs. First field is the MusicBrainz ID, second field is the last.fm name of the artist, and third field is the DBpedia uri.artist_mbid \t lastfm_name \t dbpedia_uri There are also 2 folders in the dataset with the biography texts of each dataset. Each .txt file in the biography folders is named with the MusicBrainz ID of the biographied artist. Biographies were gathered from the Last.fm wiki page of every artist.Using this datasetWe would highly appreciate if scientific publications of works partly based on the Semantic Artist Similarity dataset quote the following publication:Oramas, S., Sordo M., Espinosa-Anke L., & Serra X. (In Press). A Semantic-based Approach for Artist Similarity. 16th International Society for Music Information Retrieval Conference.We are interested in knowing if you find our datasets useful! If you use our dataset please email us at mtg-info@upf.edu and tell us about your research. https://www.upf.edu/web/mtg/semantic-similarity
The SAS2RAW database is a log of the 28 SAS-2 observation intervals and contains target names, sky coordinates start times and other information for all 13056 photons detected by SAS-2. The original data came from 2 sources. The photon information was obtained from the Event Encyclopedia, and the exposures were derived from the original "Orbit Attitude Live Time" (OALT) tapes stored at NASA/GSFC. These data sets were combined into FITS format images at HEASARC. The images were formed by making the center pixel of a 512 x 512 pixel image correspond to the RA and DEC given in the event file. Each photon's RA and DEC was converted to a relative pixel in the image. This was done by using Aitoff projections. All the raw data from the original SAS-2 binary data files are now stored in 28 FITS files. These images can be accessed and plotted using XIMAGE and other columns of the FITS file extensions can be plotted with the FTOOL FPLOT. This is a service provided by NASA HEASARC .
These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed.This study sought to examine any major changes in schools in the past two years as an evaluation of the Safe and Civil Schools Initiative. Students, faculty, and administrators were asked questions on topics including school safety, climate, and the discipline process.This collection includes 6 SAS data files: "psja_schools.sas7bdat" with 66 variables and 15 cases, "psja_schools_v01.sas7bdat" with 104 variables and 15 cases, "psja_staff.sas7bdat" with 39 variables and 2,921 cases, "psja_staff_v01.sas7bdat" with 202 variables and 2,398 cases, "psja_students.sas7bdat" with 97 variables and 4,382 cases, and "psja_students_v01.sas7bdat" with 332 variables and 4,267 cases. Additionally, the collection includes 1 SAS formats catalog "formats.sas7bcat", and 10 SAS syntax files.
InfoGroup’s Historical Business Backfile consists of geo-coded records of millions of US businesses and other organizations that contain basic information on each entity, such as: contact information, industry description, annual revenues, number of employees, year established, and other data. Each annual file consists of a “snapshot” of InfoGroup’s data as of the last day of each year, creating a time series of data 1997-2019. Access is restricted to current Harvard University community members. Use of Infogroup US Historical Business Data is subject to the terms and conditions of a license agreement (effective March 16, 2016) between Harvard and Infogroup Inc. and subject to applicable laws. Most data files are available in either .csv or .sas format. All data files are compressed into an archive in .gz, or GZIP, format. Extraction software such as 7-Zip is required to unzip these archives.
This layer contains census tract level 2020 Decennial Census redistricting data as reported by the U.S. Census Bureau for all states plus DC and Puerto Rico. The attributes come from the 2020 Public Law 94-171 (P.L. 94-171) tables.Data download date: August 12, 2021Census tables: P1, P2, P3, P4, H1, P5, HeaderDownloaded from: Census FTP siteProcessing Notes:Data was downloaded from the U.S. Census Bureau FTP site, imported into SAS format and joined to the 2020 TIGER boundaries. Boundaries are sourced from the 2020 TIGER/Line Geodatabases. Boundaries have been projected into Web Mercator and each attribute has been given a clear descriptive alias name. No alterations have been made to the vertices of the data.Each attribute maintains it's specified name from Census, but also has a descriptive alias name and long description derived from the technical documentation provided by the Census. For a detailed list of the attributes contained in this layer, view the Data tab and select "Fields". The following alterations have been made to the tabular data:Joined all tables to create one wide attribute table:P1 - RaceP2 - Hispanic or Latino, and not Hispanic or Latino by RaceP3 - Race for the Population 18 Years and OverP4 - Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years and OverH1 - Occupancy Status (Housing)P5 - Group Quarters Population by Group Quarters Type (correctional institutions, juvenile facilities, nursing facilities/skilled nursing, college/university student housing, military quarters, etc.)HeaderAfter joining, dropped fields: FILEID, STUSAB, CHARITER, CIFSN, LOGRECNO, GEOVAR, GEOCOMP, LSADC, BLOCK, BLKGRP, and TBLKGRP.GEOCOMP was renamed to GEOID and moved be the first column in the table, the original GEOID was dropped.Placeholder fields for future legislative districts have been dropped: CD118, CD119, CD120, CD121, SLDU22, SLDU24, SLDU26, SLDU28, SLDL22, SLDL24 SLDL26, SLDL28.P0020001 was dropped, as it is duplicative of P0010001. Similarly, P0040001 was dropped, as it is duplicative of P0030001.In addition to calculated fields, County_Name and State_Name were added.The following calculated fields have been added (see long field descriptions in the Data tab for formulas used): PCT_P0030001: Percent of Population 18 Years and OverPCT_P0020002: Percent Hispanic or LatinoPCT_P0020005: Percent White alone, not Hispanic or LatinoPCT_P0020006: Percent Black or African American alone, not Hispanic or LatinoPCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or LatinoPCT_P0020008: Percent Asian alone, Not Hispanic or LatinoPCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or LatinoPCT_P0020010: Percent Some Other Race alone, not Hispanic or LatinoPCT_P0020011: Percent Population of Two or More Races, not Hispanic or LatinoPCT_H0010002: Percent of Housing Units that are OccupiedPCT_H0010003: Percent of Housing Units that are VacantPlease note these percentages might look strange at the individual tract level, since this data has been protected using differential privacy.**To protect the privacy and confidentiality of respondents, data has been protected using differential privacy techniques by the U.S. Census Bureau. This means that some individual tracts will have values that are inconsistent or improbable. However, when aggregated up, these issues become minimized. The pop-up on this layer uses Arcade to display aggregated values for the surrounding area rather than values for the tract itself.Download Census redistricting data in this layer as a file geodatabase.Additional links:U.S. Census BureauU.S. Census Bureau Decennial CensusAbout the 2020 Census2020 Census2020 Census data qualityDecennial Census P.L. 94-171 Redistricting Data Program
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This online supplement contains data files and computer code, enabling the public to reproduce the results of the analysis described in the report titled “Thrifty Food Plan Cost Estimates for Alaska and Hawaii” published by USDA FNS in July 2023. The report is available at: https://www.fns.usda.gov/cnpp/tfp-akhi. The online supplement contains a user guide, which describes the contents of the online supplement in detail, provides a data dictionary, and outlines the methodology used in the analysis; a data file in CSV format, which contains the most detailed information on food price differentials between the mainland U.S. and Alaska and Hawaii derived from Circana (formerly Information Resources Inc) retail scanner data as could be released without disclosing proprietary information; SAS and R code, which use the provided data file to reproduce the results of the report; and an excel spreadsheet containing the reproduced results from the SAS or R code. For technical inquiries, contact: FNS.FoodPlans@usda.gov. Resources in this dataset:
Resource title: Thrifty Food Plan Cost Estimates for Alaska and Hawaii Online Supplement User Guide File name: TFPCostEstimatesForAlaskaAndHawaii-UserGuide.pdf Resource description: The online supplement user guide describes the contents of the online supplement in detail, provides a data dictionary, and outlines the methodology used in the analysis.
Resource title: Thrifty Food Plan Cost Estimates for Alaska and Hawaii Online Supplement Data File File name: TFPCostEstimatesforAlaskaandHawaii-OnlineSupplementDataFile.csv Resource description: The online supplement data file contains food price differentials between the mainland United States and Anchorage and Honolulu derived from Circana (formerly Information Resources Inc) retail scanner data. The data was aggregated to prevent disclosing proprietary information.
Resource title: Thrifty Food Plan Cost Estimates for Alaska and Hawaii Online Supplement R Code File name: TFPCostEstimatesforAlaskaandHawaii-OnlineSupplementRCode.R Resource description: The online supplement R code enables users to read in the online supplement data file and reproduce the results of the analysis as described in the Thrifty Food Plan Cost Estimates for Alaska and Hawaii report using the R programming language.
Resource title: Thrifty Food Plan Cost Estimates for Alaska and Hawaii Online Supplement SAS Code (zipped) File name: TFPCostEstimatesforAlaskaandHawaii-OnlineSupplementSASCode.zip Resource description: The online supplement SAS code enables users to read in the online supplement data file and reproduce the results of the analysis as described in the Thrifty Food Plan Cost Estimates for Alaska and Hawaii report using the SAS programming language. This SAS file is provided in zip format for compatibility with Ag Data Commons; users will need to unzip the file prior to its use.
Resource title: Thrifty Food Plan Cost Estimates for Alaska and Hawaii Online Supplement Reproduced Results File name: TFPCostEstimatesforAlaskaandHawaii-ReproducedResults.xlsx Resource description: The online supplement reproduced results are output from either the online supplement R or SAS code and contain the results of the analysis described in the Thrifty Food Plan Cost Estimates for Alaska and Hawaii report.
This database is a collection of maps created from the 28 SAS-2 observation files. The original observation files can be accessed within BROWSE by changing to the SAS2RAW database. For each of the SAS-2 observation files, the analysis package FADMAP was run and the resulting maps, plus GIF images created from these maps, were collected into this database. Each map is a 60 x 60 pixel FITS format image with 1 degree pixels. The user may reconstruct any of these maps within the captive account by running FADMAP from the command line after extracting a file from within the SAS2RAW database. The parameters used for selecting data for these product map files are embedded keywords in the FITS maps themselves. These parameters are set in FADMAP, and for the maps in this database are set as 'wide open' as possible. That is, except for selecting on each of 3 energy ranges, all other FADMAP parameters were set using broad criteria. To find more information about how to run FADMAP on the raw event's file, the user can access help files within the SAS2RAW database or can use the 'fhelp' facility from the command line to gain information about FADMAP. This is a service provided by NASA HEASARC .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Table of dataset characteristics used for the benchmark.
This dataset contains health outcome (depressive symptoms defined by CES-D 10), neighborhood greenery (percent tree cover within 500m and 2000m from residences), historical HOLC grades, and sociodemographic factors (age, race/ethnicity, marital status, education, employment status, income, use of depression medication) for 3555 Sister Study participants. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Please submit data request through https://sisterstudy.niehs.nih.gov/English/coll-data.htm. Format: The Sister Study data are released in SAS format. This dataset is associated with the following publication: Tsai, W., M. Nash, D. Rosenbaum, S. Prince, A. D'Aloisio, M. Mehaffey, D. Sandler, T. Buckley, and A. Neale. Association of Redlining and Natural Environment with Depressive Symptoms in Women in the Sister Study. ENVIRONMENTAL HEALTH PERSPECTIVES. National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA, 131(10): 107009, (2022).
https://www.reportaziende.it/termini_e_condizioni_d_uso_del_serviziohttps://www.reportaziende.it/termini_e_condizioni_d_uso_del_servizio
Fatturato per gli ultimi anni, elenco utili/perdita, costo dipendenti, soci esponenti e contatti per FORMAT S.A.S. DI GIACALONE REMIGIO PER BREVITA INDICATA ANCHE CON LA SIGLA FORMAT S.A.S. in ASSISI (PG)
Output from programming code written to summarize fates of immature monarch butterflies collected and raised in captivity following SOP 4 (ServCat reference 103368). Collection and raising was conducted by crews from Neal Smith (IA), Necedah (WI) NWRs and near the town of Lamoni, Iowa. Results are given in tabular format in the excel file labeled as 2017 Metrics. Additional output from the SAS analysis code is given in the mht file.
SAS codes, R script(code provided in MS word documents) and ready-for-analysis data(csv and SAS format) used in the analysis published in the Final Report to 3ie for the project, " Impacts of community-led video education to increase vaccination coverage in Uttar Pradesh, India" (project code TW10.1039). This project was funded as part of the Innovations in Increasing Immunisation Evidence Programme.
These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed. Teenage adolescent females residing in Baltimore, Maryland who were involved in a relationship with a history of violence were sought after to participate in this research study. Respondents were interviewed and then followed through daily diary entries for several months. The aim of the research was to understand the context regarding teen dating violence (TDV). Prior research on relationship context has not focused on minority populations; therefore, the focus of this project was urban, predominantly African American females. The available data in this collection includes three SAS (.sas7bdat) files and a single SAS formats file that contains variable and value label information for all three data files. The three data files are: final_baseline.sas7bdat (157 cases / 252 variables) final_partnergrid.sas7bdat (156 cases / 76 variables) hart_final_sas7bdata (7004 cases / 23 variables)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Table illustrating the five different categories the application distinguishes and their calculated statistics and charts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
(SAS7BDAT)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
data file in SAS format