Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
data file in SAS format
The Fiscal Intermediary maintains the Provider Specific File (PSF). The file contains information about the facts specific to the provider that affects computations for the Prospective Payment System. The Provider Specific files in SAS format are located in the Download section below for the following provider-types, Inpatient, Skilled Nursing Facility, Home Health Agency, Hospice, Inpatient Rehab, Long Term Care, Inpatient Psychiatric Facility
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This formatted dataset (AnalysisDatabaseGBD) originates from raw data files from the Institute of Health Metrics and Evaluation (IHME) Global Burden of Disease Study (GBD2017) affiliated with the University of Washington. We are volunteer collaborators with IHME and not employed by IHME or the University of Washington.
The population weighted GBD2017 data are on male and female cohorts ages 15-69 years including noncommunicable diseases (NCDs), body mass index (BMI), cardiovascular disease (CVD), and other health outcomes and associated dietary, metabolic, and other risk factors. The purpose of creating this population-weighted, formatted database is to explore the univariate and multiple regression correlations of health outcomes with risk factors. Our research hypothesis is that we can successfully model NCDs, BMI, CVD, and other health outcomes with their attributable risks.
These Global Burden of disease data relate to the preprint: The EAT-Lancet Commission Planetary Health Diet compared with Institute of Health Metrics and Evaluation Global Burden of Disease Ecological Data Analysis.
The data include the following:
1. Analysis database of population weighted GBD2017 data that includes over 40 health risk factors, noncommunicable disease deaths/100k/year of male and female cohorts ages 15-69 years from 195 countries (the primary outcome variable that includes over 100 types of noncommunicable diseases) and over 20 individual noncommunicable diseases (e.g., ischemic heart disease, colon cancer, etc).
2. A text file to import the analysis database into SAS
3. The SAS code to format the analysis database to be used for analytics
4. SAS code for deriving Tables 1, 2, 3 and Supplementary Tables 5 and 6
5. SAS code for deriving the multiple regression formula in Table 4.
6. SAS code for deriving the multiple regression formula in Table 5
7. SAS code for deriving the multiple regression formula in Supplementary Table 7
8. SAS code for deriving the multiple regression formula in Supplementary Table 8
9. The Excel files that accompanied the above SAS code to produce the tables
For questions, please email davidkcundiff@gmail.com. Thanks.
The simulated synthetic aperture sonar (SAS) data presented here was generated using PoSSM [Johnson and Brown 2018]. The data is suitable for bistatic, coherent signal processing and will form acoustic seafloor imagery. Included in this data package is simulated sonar data in Generic Data Format (GDF) files, a description of the GDF file contents, example SAS imagery, and supporting information about the simulated scenes. In total, there are eleven 60 m x 90 m scenes, labeled scene00 through scene10, with scene00 provided with the scatterers in isolation, i.e. no seafloor texture. This is provided for beamformer testing purposes and should result in an image similar to the one labeled "PoSSM-scene00-scene00-starboard-0.tif" in the Related Data Sets tab. The ten other scenes have varying degrees of model variation as described in "Description_of_Simulated_SAS_Data_Package.pdf". A description of the data and the model is found in the associated document called "Description_of_Simulated_SAS_Data_Package.pdf" and a description of the format in which the raw binary data is stored is found in the related document "PSU_GDF_Format_20240612.pdf". The format description also includes MATLAB code that will effectively parse the data to aid in signal processing and image reconstruction. It is left to the researcher to develop a beamforming algorithm suitable for coherent signal and image processing. Each 60 m x 90 m scene is represented by 4 raw (not beamformed) GDF files, labeled sceneXX-STARBOARD-000000 through 000003. It is possible to beamform smaller scenes from any one of these 4 files, i.e. the four files are combined sequentially to form a 60 m x 90 m image. Also included are comma separated value spreadsheets describing the locations of scatterers and objects of interest within each scene. In addition to the binary GDF data, a beamformed GeoTIFF image and a single-look complex (SLC, science file) data of each scene is provided. The SLC data (science) is stored in the Hierarchical Data Format 5 (https://www.hdfgroup.org/), and appended with ".hdf5" to indicate the HDF5 format. The data are stored as 32-bit real and 32-bit complex values. A viewer is available that provides basic graphing, image display, and directory navigation functions (https://www.hdfgroup.org/downloads/hdfview/). The HDF file contains all the information necessary to reconstruct a synthetic aperture sonar image. All major and contemporary programming languages have library support for encoding/decoding the HDF5 format. Supporting documentation that outlines positions of the seafloor scatterers is included in "Scatterer_Locations_Scene00.csv", while the locations of the objects of interest for scene01-scene10 are included in "Object_Locations_All_Scenes.csv". Portable Network Graphic (PNG) images that plot the location of objects of all the objects of interest in each scene in Along-Track and Cross-Track notation are provided.
The simulated synthetic aperture sonar (SAS) data presented here was generated using PoSSM [Johnson and Brown 2018]. The data is suitable for bistatic, coherent signal processing and will form acoustic seafloor imagery. Included in this data package is simulated sonar data in Generic Data Format (GDF) files, a description of the GDF file contents, example SAS imagery, and supporting information about the simulated scenes. In total, there are eleven 60 m x 90 m scenes, labeled scene00 through scene10, with scene00 provided with the scatterers in isolation, i.e. no seafloor texture. This is provided for beamformer testing purposes and should result in an image similar to the one labeled "PoSSM-scene00-scene00-starboard-0.tif" in the Related Data Sets tab. The ten other scenes have varying degrees of model variation as described in "Description_of_Simulated_SAS_Data_Package.pdf". A description of the data and the model is found in the associated document called "Description_of_Simulated_SAS_Data_Package.pdf" and a description of the format in which the raw binary data is stored is found in the related document "PSU_GDF_Format_20240612.pdf". The format description also includes MATLAB code that will effectively parse the data to aid in signal processing and image reconstruction. It is left to the researcher to develop a beamforming algorithm suitable for coherent signal and image processing. Each 60 m x 90 m scene is represented by 4 raw (not beamformed) GDF files, labeled sceneXX-STARBOARD-000000 through 000003. It is possible to beamform smaller scenes from any one of these 4 files, i.e. the four files are combined sequentially to form a 60 m x 90 m image. Also included are comma separated value spreadsheets describing the locations of scatterers and objects of interest within each scene. In addition to the binary GDF data, a beamformed GeoTIFF image and a single-look complex (SLC, science file) data of each scene is provided. The SLC data (science) is stored in the Hierarchical Data Format 5 (https://www.hdfgroup.org/), and appended with ".hdf5" to indicate the HDF5 format. The data are stored as 32-bit real and 32-bit complex values. A viewer is available that provides basic graphing, image display, and directory navigation functions (https://www.hdfgroup.org/downloads/hdfview/). The HDF file contains all the information necessary to reconstruct a synthetic aperture sonar image. All major and contemporary programming languages have library support for encoding/decoding the HDF5 format. Supporting documentation that outlines positions of the seafloor scatterers is included in "Scatterer_Locations_Scene00.csv", while the locations of the objects of interest for scene01-scene10 are included in "Object_Locations_All_Scenes.csv". Portable Network Graphic (PNG) images that plot the location of objects of all the objects of interest in each scene in Along-Track and Cross-Track notation are provided.
https://data.aussda.at/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11587/ZOOBKEhttps://data.aussda.at/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11587/ZOOBKE
This SAS code extracts data from EU-SILC User Database (UDB) longitudinal files and edits it such that a file is produced that can be further used for differential mortality analyses. Information from the original D, R, H and P files is merged per person and possibly pooled over several longitudinal data releases. Vital status information is extracted from target variables DB110 and RB110, and time at risk between the first interview and either death or censoring is estimated based on quarterly date information. Apart from path specifications, the SAS code consists of several SAS macros. Two of them require parameter specification from the user. The other ones are just executed. The code was written in Base SAS, Version 9.4. By default, the output file contains several variables which are necessary for differential mortality analyses, such as sex, age, country, year of first interview, and vital status information. In addition, the user may specify the analytical variables by which mortality risk should be compared later, for example educational level or occupational class. These analytical variables may be measured either at the first interview (the baseline) or at the last interview of a respondent. The output file is available in SAS format and by default also in csv format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Semantic Artist Similarity dataset consists of two datasets of artists entities with their corresponding biography texts, and the list of top-10 most similar artists within the datasets used as ground truth. The dataset is composed by a corpus of 268 artists and a slightly larger one of 2,336 artists, both gathered from Last.fm in March 2015. The former is mapped to the MIREX Audio and Music Similarity evaluation dataset, so that its similarity judgments can be used as ground truth. For the latter corpus we use the similarity between artists as provided by the Last.fm API. For every artist there is a list with the top-10 most related artists. In the MIREX dataset there are 188 artists with at least 10 similar artists, the other 80 artists have less than 10 similar artists. In the Last.fm API dataset all artists have a list of 10 similar artists. There are 4 files in the dataset.mirex_gold_top10.txt and lastfmapi_gold_top10.txt have the top-10 lists of artists for every artist of both datasets. Artists are identified by MusicBrainz ID. The format of the file is one line per artist, with the artist mbid separated by a tab with the list of top-10 related artists identified by their mbid separated by spaces.artist_mbid \t artist_mbid_top10_list_separated_by_spaces mb2uri_mirex and mb2uri_lastfmapi.txt have the list of artists. In each line there are three fields separated by tabs. First field is the MusicBrainz ID, second field is the last.fm name of the artist, and third field is the DBpedia uri.artist_mbid \t lastfm_name \t dbpedia_uri There are also 2 folders in the dataset with the biography texts of each dataset. Each .txt file in the biography folders is named with the MusicBrainz ID of the biographied artist. Biographies were gathered from the Last.fm wiki page of every artist.Using this datasetWe would highly appreciate if scientific publications of works partly based on the Semantic Artist Similarity dataset quote the following publication:Oramas, S., Sordo M., Espinosa-Anke L., & Serra X. (In Press). A Semantic-based Approach for Artist Similarity. 16th International Society for Music Information Retrieval Conference.We are interested in knowing if you find our datasets useful! If you use our dataset please email us at mtg-info@upf.edu and tell us about your research. https://www.upf.edu/web/mtg/semantic-similarity
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data zip file consists of three different data sets using SAS format 1) Data of 105+ thousand adopters - 2 million and 795 thousand records 2) Data of 7+ thousand video game profiles 3) Data of 93+ thousand posts about video games Please unzip the file before using data. The data sets require at least 4 GB.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Description of the experiment setting: location, influential climatic conditions, controlled conditions (e.g. temperature, light cycle) In 1986, the Congress enacted Public Laws 99-500 and 99-591, requiring a biennial report on the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). In response to these requirements, FNS developed a prototype system that allowed for the routine acquisition of information on WIC participants from WIC State Agencies. Since 1992, State Agencies have provided electronic copies of these data to FNS on a biennial basis. FNS and the National WIC Association (formerly National Association of WIC Directors) agreed on a set of data elements for the transfer of information. In addition, FNS established a minimum standard dataset for reporting participation data. For each biennial reporting cycle, each State Agency is required to submit a participant-level dataset containing standardized information on persons enrolled at local agencies for the reference month of April. The 2016 Participant and Program Characteristics (PC2016) is the thirteenth data submission to be completed using the WIC PC reporting system. In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Processing methods and equipment used Specifications on formats (“Guidance for States Providing Participant Data”) were provided to all State agencies in January 2016. This guide specified 20 minimum dataset (MDS) elements and 11 supplemental dataset (SDS) elements to be reported on each WIC participant. Each State Agency was required to submit all 20 MDS items and any SDS items collected by the State agency. Study date(s) and duration The information for each participant was from the participants’ most current WIC certification as of April 2016. Due to management information constraints, Connecticut provided data for a month other than April 2016, specifically August 16 – September 15, 2016. Study spatial scale (size of replicates and spatial scale of study area) In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Level of true replication Unknown Sampling precision (within-replicate sampling or pseudoreplication) State Agency Data Submissions. PC2016 is a participant dataset consisting of 8,815,472 active records. The records, submitted to USDA by the State Agencies, comprise a census of all WIC enrollees, so there is no sampling involved in the collection of this data. PII Analytic Datasets. State agency files were combined to create a national census participant file of approximately 8.8 million records. The census dataset contains potentially personally identifiable information (PII) and is therefore not made available to the public. National Sample Dataset. The public use SAS analytic dataset made available to the public has been constructed from a nationally representative sample drawn from the census of WIC participants, selected by participant category. The nationally representative sample is composed of 60,003 records. The distribution by category is 5,449 pregnant women, 4,661 breastfeeding women, 3,904 postpartum women, 13,999 infants, and 31,990 children. Level of subsampling (number and repeat or within-replicate sampling) The proportionate (or self-weighting) sample was drawn by WIC participant category: pregnant women, breastfeeding women, postpartum women, infants, and children. In this type of sample design, each WIC participant has the same probability of selection across all strata. Sampling weights are not needed when the data are analyzed. In a proportionate stratified sample, the largest stratum accounts for the highest percentage of the analytic sample. Study design (before–after, control–impacts, time series, before–after-control–impacts) None – Non-experimental Description of any data manipulation, modeling, or statistical analysis undertaken Each entry in the dataset contains all MDS and SDS information submitted by the State agency on the sampled WIC participant. In addition, the file contains constructed variables used for analytic purposes. To protect individual privacy, the public use file does not include State agency, local agency, or case identification numbers. Description of any gaps in the data or other limiting factors Due to management information constraints, Connecticut provided data for a month other than April 2016, specifically August 16 – September 15, 2016. Outcome measurement methods and equipment used None Resources in this dataset:Resource Title: WIC Participant and Program Characteristics 2016. File Name: wicpc_2016_public.csvResource Description: The 2016 Participant and Program Characteristics (PC2016) is the thirteenth data submission to be completed using the WIC PC reporting system. In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations.Resource Software Recommended: SAS, version 9.4,url: https://www.sas.com/en_us/software/sas9.html Resource Title: WIC Participant and Program Characteristics 2016 Codebook. File Name: WICPC2016_PUBLIC_CODEBOOK.xlsxResource Software Recommended: SAS, version 9.4,url: https://www.sas.com/en_us/software/sas9.html Resource Title: WIC Participant and Program Characteristics 2016 - Zip File with SAS, SPSS and STATA data. File Name: WIC_PC_2016_SAS_SPSS_STATA_Files.zipResource Description: WIC Participant and Program Characteristics 2016 - Zip File with SAS, SPSS and STATA data
These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed.This study sought to examine any major changes in schools in the past two years as an evaluation of the Safe and Civil Schools Initiative. Students, faculty, and administrators were asked questions on topics including school safety, climate, and the discipline process.This collection includes 6 SAS data files: "psja_schools.sas7bdat" with 66 variables and 15 cases, "psja_schools_v01.sas7bdat" with 104 variables and 15 cases, "psja_staff.sas7bdat" with 39 variables and 2,921 cases, "psja_staff_v01.sas7bdat" with 202 variables and 2,398 cases, "psja_students.sas7bdat" with 97 variables and 4,382 cases, and "psja_students_v01.sas7bdat" with 332 variables and 4,267 cases. Additionally, the collection includes 1 SAS formats catalog "formats.sas7bcat", and 10 SAS syntax files.
The SAS2RAW database is a log of the 28 SAS-2 observation intervals and contains target names, sky coordinates start times and other information for all 13056 photons detected by SAS-2. The original data came from 2 sources. The photon information was obtained from the Event Encyclopedia, and the exposures were derived from the original "Orbit Attitude Live Time" (OALT) tapes stored at NASA/GSFC. These data sets were combined into FITS format images at HEASARC. The images were formed by making the center pixel of a 512 x 512 pixel image correspond to the RA and DEC given in the event file. Each photon's RA and DEC was converted to a relative pixel in the image. This was done by using Aitoff projections. All the raw data from the original SAS-2 binary data files are now stored in 28 FITS files. These images can be accessed and plotted using XIMAGE and other columns of the FITS file extensions can be plotted with the FTOOL FPLOT. This is a service provided by NASA HEASARC .
InfoGroup’s Historical Business Backfile consists of geo-coded records of millions of US businesses and other organizations that contain basic information on each entity, such as: contact information, industry description, annual revenues, number of employees, year established, and other data. Each annual file consists of a “snapshot” of InfoGroup’s data as of the last day of each year, creating a time series of data 1997-2019. Access is restricted to current Harvard University community members. Use of Infogroup US Historical Business Data is subject to the terms and conditions of a license agreement (effective March 16, 2016) between Harvard and Infogroup Inc. and subject to applicable laws. Most data files are available in either .csv or .sas format. All data files are compressed into an archive in .gz, or GZIP, format. Extraction software such as 7-Zip is required to unzip these archives.
This database is a collection of maps created from the 28 SAS-2 observation files. The original observation files can be accessed within BROWSE by changing to the SAS2RAW database. For each of the SAS-2 observation files, the analysis package FADMAP was run and the resulting maps, plus GIF images created from these maps, were collected into this database. Each map is a 60 x 60 pixel FITS format image with 1 degree pixels. The user may reconstruct any of these maps within the captive account by running FADMAP from the command line after extracting a file from within the SAS2RAW database. The parameters used for selecting data for these product map files are embedded keywords in the FITS maps themselves. These parameters are set in FADMAP, and for the maps in this database are set as 'wide open' as possible. That is, except for selecting on each of 3 energy ranges, all other FADMAP parameters were set using broad criteria. To find more information about how to run FADMAP on the raw event's file, the user can access help files within the SAS2RAW database or can use the 'fhelp' facility from the command line to gain information about FADMAP. This is a service provided by NASA HEASARC .
Community-Based Survey of Supports for Healthy Eating and Active Living (CBS HEAL) is a CDC survey of a nationally representative sample of U.S. municipalities to better understand existing community-level policies and practices that support healthy eating and active living. The survey collects information about policies such as nutrition standards, incentives for healthy food retail, bike/pedestrian-friendly design, and Complete Streets. About 2,000 municipalities respond to the survey. Participating municipalities receive a report that allows them to compare their policies and practices with other municipalities of similar geography, population size, and urban status. The CBS HEAL survey was first administered in 2014 and was administered again in 2021. Data is provided in multiple formats for download including as a SAS file. A methods report and a SAS program for formatting the data are also provided.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Integrated Postsecondary Education Data System (IPEDS) Complete Data Files from 1980 to 2023. Includes data file, STATA data file, SPSS program, SAS program, STATA program, and dictionary. All years compressed into one .zip file due to storage limitations.From IPEDS Complete Data File Help Page (https://nces.ed.gov/Ipeds/help/complete-data-files):Choose the file to download by reading the description in the available titles. Then, click on the link in that row corresponding to the column header of the type of file/information desired to download.To download and view the survey files in basic CSV format use the main download link in the Data File column.For files compatible with the Stata statistical software package, use the alternate download link in the Stata Data File column.To download files with the SPSS, SAS, or STATA (.do) file extension for use with statistical software packages, use the download link in the Programs column.To download the data Dictionary for the selected file, click on the corresponding link in the far right column of the screen. The data dictionary serves as a reference for using and interpreting the data within a particular survey file. This includes the names, definitions, and formatting conventions for each table, field, and data element within the file, important business rules, and information on any relationships to other IPEDS data.For statistical read programs to work properly, both the data file and the corresponding read program file must be downloaded to the same subdirectory on the computer’s hard drive. Download the data file first; then click on the corresponding link in the Programs column to download the desired read program file to the same subdirectory.When viewing downloaded survey files, categorical variables are identified using codes instead of labels. Labels for these variables are available in both the data read program files and data dictionary for each file; however, for files that automatically incorporate this information you will need to select the Custom Data Files option.
This layer contains census tract level 2020 Decennial Census redistricting data as reported by the U.S. Census Bureau for all states plus DC and Puerto Rico. The attributes come from the 2020 Public Law 94-171 (P.L. 94-171) tables.Data download date: August 12, 2021Census tables: P1, P2, P3, P4, H1, P5, HeaderDownloaded from: Census FTP siteProcessing Notes:Data was downloaded from the U.S. Census Bureau FTP site, imported into SAS format and joined to the 2020 TIGER boundaries. Boundaries are sourced from the 2020 TIGER/Line Geodatabases. Boundaries have been projected into Web Mercator and each attribute has been given a clear descriptive alias name. No alterations have been made to the vertices of the data.Each attribute maintains it's specified name from Census, but also has a descriptive alias name and long description derived from the technical documentation provided by the Census. For a detailed list of the attributes contained in this layer, view the Data tab and select "Fields". The following alterations have been made to the tabular data:Joined all tables to create one wide attribute table:P1 - RaceP2 - Hispanic or Latino, and not Hispanic or Latino by RaceP3 - Race for the Population 18 Years and OverP4 - Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years and OverH1 - Occupancy Status (Housing)P5 - Group Quarters Population by Group Quarters Type (correctional institutions, juvenile facilities, nursing facilities/skilled nursing, college/university student housing, military quarters, etc.)HeaderAfter joining, dropped fields: FILEID, STUSAB, CHARITER, CIFSN, LOGRECNO, GEOVAR, GEOCOMP, LSADC, BLOCK, BLKGRP, and TBLKGRP.GEOCOMP was renamed to GEOID and moved be the first column in the table, the original GEOID was dropped.Placeholder fields for future legislative districts have been dropped: CD118, CD119, CD120, CD121, SLDU22, SLDU24, SLDU26, SLDU28, SLDL22, SLDL24 SLDL26, SLDL28.P0020001 was dropped, as it is duplicative of P0010001. Similarly, P0040001 was dropped, as it is duplicative of P0030001.In addition to calculated fields, County_Name and State_Name were added.The following calculated fields have been added (see long field descriptions in the Data tab for formulas used): PCT_P0030001: Percent of Population 18 Years and OverPCT_P0020002: Percent Hispanic or LatinoPCT_P0020005: Percent White alone, not Hispanic or LatinoPCT_P0020006: Percent Black or African American alone, not Hispanic or LatinoPCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or LatinoPCT_P0020008: Percent Asian alone, Not Hispanic or LatinoPCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or LatinoPCT_P0020010: Percent Some Other Race alone, not Hispanic or LatinoPCT_P0020011: Percent Population of Two or More Races, not Hispanic or LatinoPCT_H0010002: Percent of Housing Units that are OccupiedPCT_H0010003: Percent of Housing Units that are VacantPlease note these percentages might look strange at the individual tract level, since this data has been protected using differential privacy.**To protect the privacy and confidentiality of respondents, data has been protected using differential privacy techniques by the U.S. Census Bureau. This means that some individual tracts will have values that are inconsistent or improbable. However, when aggregated up, these issues become minimized. The pop-up on this layer uses Arcade to display aggregated values for the surrounding area rather than values for the tract itself.Download Census redistricting data in this layer as a file geodatabase.Additional links:U.S. Census BureauU.S. Census Bureau Decennial CensusAbout the 2020 Census2020 Census2020 Census data qualityDecennial Census P.L. 94-171 Redistricting Data Program
Data is NC birth registry data linked to brownfield sites. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Birth registry data can be requested through the NCDHHS. Information on brownfields can be accessed through EPA and Clean Up In My Community (CIMC) websites. Format: Datasets are in csv, R, and SAS formats. This dataset is associated with the following publication: Slawsky, E., A. Weaver, T. Luben, and K. Rappazzo. Lead brownfields and birth defects in North Carolina 2003–2015: A cross-sectional case–control study. Birth Defects Research. John Wiley & Sons, Inc., Hoboken, NJ, USA, 116(8): E2367, (2024).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This formatted dataset originates from raw data files from the Institute of Health Metrics and Evaluation Global Burden of Disease (GBD2017). It is population weighted worldwide data on male and female cohorts ages 15-69 years including cardiovascular disease early death and associated dietary, metabolic and other risk factors. The purpose of creating this formatted database is to explore the univariate and multiple regression correlations of cardiovascular early deaths and other health outcomes with risk factors. Our research hypothesis is that we can successfully apply artificial intelligence to model cardiovascular disease outcomes with risk factors. We found that fat-soluble vitamin containing foods (animal products) and added fats are negatively correlated with CVD early deaths worldwide but positively correlated with CVD early deaths in high fat-soluble vitamin cohorts. We interpret this as showing that optimal cardiovascular outcomes come with moderate (not low and not high) intakes of animal foods and added fats. You are invited to download the dataset, the associated SAS code to access the dataset, and the tables that have resulted from the analysis. Please comment on the article by indicating what you found by exploring the dataset with the provided SAS codes. Please say whether or not you found the outputs from the SAS codes accurately reflected the tables provided and the tables in the published article. If you use our data to reproduce our findings and comment on your findings on the MedRxIV website (https://www.medrxiv.org/content/10.1101/2021.04.17.21255675v4) and would like to be recognized, we will be happy to list you as a contributor when the article is summited to JAMA. For questions, please email davidkcundiff@gmail.com. Thanks.
The SAS2RAW database is a log of the 28 SAS-2 observation intervals and contains target names, sky coordinates start times and other information for all 13056 photons detected by SAS-2. The original data came from 2 sources. The photon information was obtained from the Event Encyclopedia, and the exposures were derived from the original "Orbit Attitude Live Time" (OALT) tapes stored at NASA/GSFC. These data sets were combined into FITS format images at HEASARC. The images were formed by making the center pixel of a 512 x 512 pixel image correspond to the RA and DEC given in the event file. Each photon's RA and DEC was converted to a relative pixel in the image. This was done by using Aitoff projections. All the raw data from the original SAS-2 binary data files are now stored in 28 FITS files. These images can be accessed and plotted using XIMAGE and other columns of the FITS file extensions can be plotted with the FTOOL FPLOT. This is a service provided by NASA HEASARC .
ViC dataset is a collection for implementing a Dynamic Spectrum Access(DSA) system testbed in the CBRS band in the USA. This data is a DSA system which consists of a 2-tier user : Incident user: generating a chirp signal with a Radar system, Primary user: LTE-TDD signal with a CBSD base station system, and corresponds to signal waveforms in the band 3.55-3.56 GHz (Ch1), 3.56-3.57 GHz (Ch2) respectively. There are a total of 12 classes, excluding the assumption that two of the 16 cases are used by CBSD base stations, depending on the presence or absence of two users in two channels. The labels of each data have the following meanings :
0000 (0) : All off 0001 (1) : Ch2 - Radar on 0010 (2) : Ch2 - LTE on 0011 (3) : Ch2 – LTE, Radar on 0100 (4) : Ch1 – Radar on 0101 (5) : Ch1 – Radar on / Ch2 – Radar on 0110 (6) : Ch1 – Radar on /Ch2 – LTE on 0111 (7) : Ch1 – Radar on / Ch2 – LTE, Radar on 1000 (8) : Ch1 – LTE on 1001 (9) : Ch1 – LTE on / Ch2 – Radar on (X) 1010 (10) : Ch1 – LTE on / Ch2 – LTE on (X) 1011 (11) : Ch1 – LTE on / Ch2 – LTE, Radar on 1100 (12) : Ch1 – LTE, Radar on 1101 (13) : Ch1 – LTE, Radar on / Ch2 – Radar on (X) 1110 (14) : Ch1 – LTE, Radar on / Ch2 – LTE on (X) 1111 (15) : Ch1 – LTE, Radar on / Ch2 – LTE, Radar on
This dataset has a total of 7 types consisting of one raw dataset expressed in two extensions, 4 processed datasets processed in different ways, and a label. Except for one of the datasets, all are Python version of numpy files, and the other is a csv file.
(Raw) The raw data is a IQ data generated from testbeds created by imitating the SAS system of CBRS in the United States. In the testbeds, the primary user was made using the LabView communication tool and the USRP antenna (Radar), and the secondary user was made by manufacturing the CBSD base station. This has both csv format and numpy format exist.
(Processed) All of these data except one are normalized to values between 0 and 255 and consist of spectrogram, scalogram, and IQ data. The other one is a spectrogram dataset which is not normalized. They are measured between 250us. In the case of spectrograms and scalograms, the figure formed at 3.56 GHz to 3.57 GHz corresponds to channel 1, and at 3.55 GHz to 3.56 GHz corresponds to channel 2. Among them, signals transmitted from the CBSD base station are output in the form of LTE-TDD signals, and signals transmitted from the Radar system are output in the form of Chirp signals.
(Label) All of the above five data share one label. This label has a numpy format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
data file in SAS format