14 datasets found
  1. P

    GTA-UAV Dataset

    • paperswithcode.com
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuxiang Ji; Boyong He; Zhuoyue Tan; Liaoni Wu (2024). GTA-UAV Dataset [Dataset]. https://paperswithcode.com/dataset/gta-uav
    Explore at:
    Dataset updated
    Sep 24, 2024
    Authors
    Yuxiang Ji; Boyong He; Zhuoyue Tan; Liaoni Wu
    Description

    GTA-UAV dataset provides a large continuous area dataset (covering 81.3km2) for UAV visual geo-localization, expanding the previously aligned drone-satellite pairs to arbitrary drone-satellite pairs to better align with real-world application scenarios. Our dataset contains:

    33,763 simulated drone-view images, from multiple altitudes (80-650m), multiple attitudes, multiple scenes (urban, mountain, coast, forest, etc.).

    14,640 tiled satellite-view images from 4 zoom levels for arbitrarily pairing.

    Overlap (in IoU) of FoV for each drone-satellite pair.

    Drone (camera) 6-DoF labels for each drone image.

  2. n

    LandCoverNet Asia

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). LandCoverNet Asia [Dataset]. http://doi.org/10.34911/rdnt.63fxe5
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    LandCoverNet is a global annual land cover classification training dataset with labels for the multi-spectral satellite imagery from Sentinel-1, Sentinel-2 and Landsat-8 missions in 2018. LandCoverNet Asia contains data across Asia, which accounts for ~31% of the global dataset. Each pixel is identified as one of the seven land cover classes based on its annual time series. These classes are water, natural bare ground, artificial bare ground, woody vegetation, cultivated vegetation, (semi) natural vegetation, and permanent snow/ice.
    There are a total of 2753 image chips of 256 x 256 pixels in LandCoverNet South America V1.0 spanning 92 tiles. Each image chip contains temporal observations from the following satellite products with an annual class label, all stored in raster format (GeoTIFF files):
    * Sentinel-1 ground range distance (GRD) with radiometric calibration and orthorectification at 10m spatial resolution
    * Sentinel-2 surface reflectance product (L2A) at 10m spatial resolution
    * Landsat-8 surface reflectance product from Collection 2 Level-2

    Radiant Earth Foundation designed and generated this dataset with a grant from Schmidt Futures with additional support from NASA ACCESS, Microsoft AI for Earth and in kind technology support from Sinergise.

  3. n

    LandCoverNet North America

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). LandCoverNet North America [Dataset]. http://doi.org/10.34911/rdnt.jx15e8
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    LandCoverNet is a global annual land cover classification training dataset with labels for the multi-spectral satellite imagery from Sentinel-1, Sentinel-2 and Landsat-8 missions in 2018. LandCoverNet North America contains data across North America, which accounts for ~13% of the global dataset. Each pixel is identified as one of the seven land cover classes based on its annual time series. These classes are water, natural bare ground, artificial bare ground, woody vegetation, cultivated vegetation, (semi) natural vegetation, and permanent snow/ice.

    There are a total of 1561 image chips of 256 x 256 pixels in LandCoverNet North America V1.0 spanning 40 tiles. Each image chip contains temporal observations from the following satellite products with an annual class label, all stored in raster format (GeoTIFF files):
    * Sentinel-1 ground range distance (GRD) with radiometric calibration and orthorectification at 10m spatial resolution
    * Sentinel-2 surface reflectance product (L2A) at 10m spatial resolution
    * Landsat-8 surface reflectance product from Collection 2 Level-2

    Radiant Earth Foundation designed and generated this dataset with a grant from Schmidt Futures with additional support from NASA ACCESS, Microsoft AI for Earth and in kind technology support from Sinergise.

  4. v

    SpaceDrones Labeled Training Images and Results

    • data.lib.vt.edu
    bin
    Updated Mar 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marco Peterson; Minzhen Du; Bryant Springle; Nadhir Cherfaoui (2022). SpaceDrones Labeled Training Images and Results [Dataset]. http://doi.org/10.7294/19241844.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 1, 2022
    Dataset provided by
    University Libraries, Virginia Tech
    Authors
    Marco Peterson; Minzhen Du; Bryant Springle; Nadhir Cherfaoui
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Labeled RGB image data of both real world and synthetic environments of orbital;/space platforms for the purposes of supervised machine learning training to enable autonomous robotic tasking.

  5. n

    Semantic Segmentation of Crop Type in Ghana

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Semantic Segmentation of Crop Type in Ghana [Dataset]. http://doi.org/10.34911/rdnt.ry138p
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    Automatic, accurate crop type maps can provide unprecedented information for understanding food systems, especially in developing countries where ground surveys are infrequent. However, little work has applied existing methods to these data scarce environments, which also have unique challenges of irregularly shaped fields, frequent cloud coverage, small plots, and a severe lack of training data. To address this gap in the literature, we provide the first crop type semantic segmentation dataset of small holder farms, specifically in Ghana and South Sudan. We are also the first to utilize high resolution, high frequency satellite data in segmenting small holder farms.

    The dataset includes time series of satellite imagery from Sentinel-1, Sentinel-2, and PlanetScope satellites throughout 2016 and 2017. For each tile/chip in the dataset, there are time series of imagery from each of the satellites, as well as a corresponding label that defines the crop type at each pixel. The label has only one value at each pixel location, and assumes that the crop type remains the same across the full time span of the satellite image time series. In many cases where ground truth was not available, pixels have no label and are set to a value of 0.

  6. n

    ramp Building Footprint Dataset - N'Djamena, Chad

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - N'Djamena, Chad [Dataset]. http://doi.org/10.34911/rdnt.b0noju
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over N'Djamena and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 2 dataset, meaning it has NOT been thoroughly reviewed and improved. This dataset was produced for the ramp project and contains 3,044 tiles and 124,208 individual buildings. The satellite imagery resolution is 45 cm and was sourced from Maxar ODP (10300100AA405C00). Dataset keywords: Urban, Peri-urban, Rural

  7. n

    ramp Building Footprint Dataset - Manjama, Sierra Leone

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Manjama, Sierra Leone [Dataset]. http://doi.org/10.34911/rdnt.fp33ih
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Manjama and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 4,671 tiles and 60,379 individual buildings. The satellite imagery resolution is 30 cm and was sourced from Maxar ODP (1040010056B6FA00). Dataset keywords: Urban, Peri-Urban.

  8. n

    ramp Building Footprint Dataset - Mesopotamia, St. Vincent

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Mesopotamia, St. Vincent [Dataset]. http://doi.org/10.34911/rdnt.yhk0md
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Mesopotamia and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 3,013 tiles and 33,139 individual buildings. The satellite imagery resolution is 40 cm and was sourced from Maxar ODP (10500100236CC900). Dataset keywords: Coastal, Urban, Peri-urban.

  9. n

    ramp Building Footprint Dataset - Hpa-an, Myanmar

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Hpa-an, Myanmar [Dataset]. http://doi.org/10.34911/rdnt.rhevr7
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Hpa-an and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 3,667 tiles and 44,765 individual buildings. The satellite imagery resolution is 35 cm and was sourced from Maxar ODP (1040010033320500). Dataset keywords: Urban, Peri-Urban, River.

  10. n

    ramp Building Footprint Dataset - Wa, Ghana

    • access.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Wa, Ghana [Dataset]. http://doi.org/10.34911/rdnt.6l9q5d
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Wa and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 7,615 tiles and 68,072 individual buildings. The satellite imagery resolution is 32 cm and was sourced from Maxar ODP (1040010056B6FA00). Dataset keywords: Urban, Peri-urban

  11. n

    ramp Building Footprint Dataset - Mzuzu, Malawi

    • access.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Mzuzu, Malawi [Dataset]. http://doi.org/10.34911/rdnt.824213
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Mzuzu and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 3,357 tiles and 91,391 individual buildings. The satellite imagery resolution is 45 cm and was sourced from Maxar ODP (10500100195A6700). Dataset keywords: Urban, Peri-Urban, Dense.

  12. n

    ramp Building Footprint Dataset - Sylhet, Bangladesh

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Sylhet, Bangladesh [Dataset]. http://doi.org/10.34911/rdnt.fnv87x
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Sylhet and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 2 dataset, meaning it has NOT been thoroughly reviewed and improved. This dataset was produced for the ramp project and contains 16,217 tiles and 135,375 individual buildings. The satellite imagery resolution is 30 cm and was sourced from Maxar ODP 2022 imagery release for a Bangladesh flood event. Dataset keywords: Peri-urban, Rural, River, Agricultural

  13. n

    ramp Building Footprint Dataset - Nairobi, Kenya

    • access.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Nairobi, Kenya [Dataset]. http://doi.org/10.34911/rdnt.ldarow
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Nairobi and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 2 dataset, meaning it has NOT been thoroughly reviewed and improved. This dataset was produced for the ramp project and contains 1,195 tiles and 24,707 individual buildings. The satellite imagery resolution is 30 cm and was sourced from Maxar ODP (KE_Nairobi_19Q2_V0_R3C2). Dataset keywords: Urban, Peri-urban, Rural

  14. n

    ramp Building Footprint Dataset - Chittagong, Bangladesh

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Chittagong, Bangladesh [Dataset]. http://doi.org/10.34911/rdnt.zp22dh
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Chittagong and parts of the Kutupalong Refugee Camp and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in the development and testing of a localized ramp model and contains 5,229 tiles and 38,096 individual buildings. The satellite imagery resolution is 40 cm and was sourced from Maxar ODP (105001001AC98900). Dataset keywords: Agricultural, Peri-urban, Refugee Camp, Rural

  15. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Yuxiang Ji; Boyong He; Zhuoyue Tan; Liaoni Wu (2024). GTA-UAV Dataset [Dataset]. https://paperswithcode.com/dataset/gta-uav

GTA-UAV Dataset

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Sep 24, 2024
Authors
Yuxiang Ji; Boyong He; Zhuoyue Tan; Liaoni Wu
Description

GTA-UAV dataset provides a large continuous area dataset (covering 81.3km2) for UAV visual geo-localization, expanding the previously aligned drone-satellite pairs to arbitrary drone-satellite pairs to better align with real-world application scenarios. Our dataset contains:

33,763 simulated drone-view images, from multiple altitudes (80-650m), multiple attitudes, multiple scenes (urban, mountain, coast, forest, etc.).

14,640 tiled satellite-view images from 4 zoom levels for arbitrarily pairing.

Overlap (in IoU) of FoV for each drone-satellite pair.

Drone (camera) 6-DoF labels for each drone image.

Search
Clear search
Close search
Google apps
Main menu