Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public. Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet. The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions. The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia has been receiving Earth Observations from Space (EOS) for over 50 years. Meteorological imagery dates from 1960 and Earth observation imagery from 1979. Australia has developed world-class scientific, environmental and emergency management EOS applications.
However, in the top fifty economies of the world, Australia is one of only three nations which does not have a space program. The satellites on which Australia depends are supplied by other countries which is a potential problem due to Australia having limited control over data continuity and data access.
The National Remote Sensing Technical Reference Group (NRSTRG) was established by Geoscience Australia as an advisory panel in 2004. It represents a cross-section of the remote sensing community and is made up of representatives from government, universities and private companies. Through the NRSTRG these parties provide Geoscience Australia with advice on technical and policy matters related to remote sensing.
In February 2009 the NRSTRG met for a day specifically to discuss Australia's reliance on EOS, with a view to informing the development of space policy. This report is the outcome of that meeting. Australia has some 92 programs dependent on EOS data. These programs are concerned with environmental issues, natural resource management, water, agriculture, meteorology, forestry, emergency management, border security, mapping and planning. Approximately half these programs have a high dependency on EOS data. While these programs are quite diverse there is considerable overlap in the technology and data.
Of Australia's EOS dependent programs 71 (77%) are valued between $100,000 and $10 million and 82 (89%) of all these programs have a medium or high dependency on EOS data demonstrating Australia's dependency on space based imaging.
Earth observation dependencies within currently active Federal and state government programs are calculated to be worth just over $949 million, calculated by weighting the level of dependency on EOS for each program. This includes two programs greater than $100 million in scale and one program greater than a billion dollars in scale.
This document is intended as a summary of Australia's current space and Earth observation dependencies, compiled by the NRSTRG, to be presented to the Federal Government's Space Policy Unit, a section of the Department of Innovation, Industry, Science and Research, as an aid to space policy formation.
On February 24, 1995, President Clinton signed an Executive Order, directing the declassification of intelligence imagery acquired by the first generation of United States photo-reconnaissance satellites, including the systems code-named CORONA, ARGON, and LANYARD. More than 860,000 images of the Earth's surface, collected between 1960 and 1972, were declassified with the issuance of this Executive Order. Image collection was driven, in part, by the need to confirm purported developments in then-Soviet strategic missile capabilities. The images also were used to produce maps and charts for the Department of Defense and for other Federal Government mapping programs. In addition to the images, documents and reports (collateral information) are available, pertaining to frame ephemeris data, orbital ephemeris data, and mission performance. Document availability varies by mission; documentation was not produced for unsuccessful missions.
The WorldView-2 Level 1B Multispectral 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-2 satellite using the WorldView-110 camera across the global land surface from October 2009 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the coastal, blue, green, yellow, red, red edge, and near-infrared (2 bands) wavelengths. It has a spatial resolution of 1.85m at nadir and a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.
World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Since 1972, the joint NASA/ U.S. Geological Survey Landsat series of Earth Observation satellites have continuously acquired images of the Earth’s land surface, providing uninterrupted data to help land managers and policymakers make informed decisions about natural resources and the environment.
Landsat is a part of the USGS National Land Imaging (NLI) Program. To support analysis of the Landsat long-term data record that began in 1972, the USGS. Landsat data archive was reorganized into a formal tiered data collection structure. This structure ensures all Landsat Level 1 products provide a consistent archive of known data quality to support time-series analysis and data “stacking”, while controlling continuous improvement of the archive, and access to all data as they are acquired. Collection 1 Level 1 processing began in August 2016 and continued until all archived data was processed, completing May 2018. Newly-acquired Landsat 8 and Landsat 7 data continue to be processed into Collection 1 shortly after data is downlinked to USGS EROS.
Acknowledgement or credit of the USGS as data source should be provided by including a line of text citation such as the example shown below. (Product, Image, Photograph, or Dataset Name) courtesy of the U.S. Geological Survey Example: Landsat-8 image courtesy of the U.S. Geological Survey
The IKONOS Level 1B Multispectral 4-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The spatial resolution is 3.2m at nadir and the temporal resolution is approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The commercial satellite imaging market is experiencing robust growth, projected to reach $5.04 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 11.84% from 2025 to 2033. This expansion is driven by several key factors. Increased demand for high-resolution imagery across various sectors, including agriculture, urban planning, defense, and environmental monitoring, fuels market growth. Advancements in sensor technology, leading to improved image quality and resolution, are another significant driver. Furthermore, the decreasing cost of launching and operating satellites makes this technology more accessible to a broader range of users, fostering market expansion. The rise of cloud-based platforms for data processing and analysis further enhances accessibility and usability, empowering more organizations to leverage satellite imagery for informed decision-making. Competition among established players and emerging companies is intensifying, fostering innovation and driving down costs. However, market growth is not without its challenges. Data security and privacy concerns are critical considerations, particularly concerning sensitive geographic areas. Regulatory hurdles and international agreements governing satellite operations can also pose significant constraints. Maintaining consistent data quality and ensuring timely data delivery are operational challenges that companies must navigate effectively. Despite these restraints, the overall outlook for the commercial satellite imaging market remains highly positive, driven by the increasing value proposition of satellite imagery across a wide array of applications and the continuous technological advancements in the industry. The market is expected to witness significant expansion across various regions, with North America and Europe likely maintaining substantial shares due to existing infrastructure and technological advancements. Recent developments include: February 2024 - The National Geospatial-Intelligence Agency is supercharging its use of commercial satellite imagery and analytics with a procurement program, “Luno.” The Luno program seeks to leverage commercial satellite imagery and data analytics to enhance NGA’s global monitoring capabilities.. Key drivers for this market are: Increasing Requirement for Efficient Monitoring of Vast Land Areas, Rising Smart City Initiatives; Big Data and Imagery Analytics. Potential restraints include: Increasing Requirement for Efficient Monitoring of Vast Land Areas, Rising Smart City Initiatives; Big Data and Imagery Analytics. Notable trends are: Military and Defense is Expected to Hold Significant Market Share.
The WorldView-3 Level 1B Multispectral 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-3 satellite using the WorldView-110 camera across the global land surface from August 2014 to the present. This satellite imagery is in a range of wavebands with data in the coastal, blue, green, yellow, red, red edge, and near-infrared (2 bands) wavelengths. The imagery has a spatial resolution of 1.24m at nadir and a temporal resolution of less than one day. The data are provided in National Imagery Transmission Format (NITF). This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Nordics satellite imagery services market is projected to grow from $0.22 million in 2025 to $0.96 million by 2033, exhibiting a CAGR of 13.62% during the forecast period. The increasing adoption of satellite imagery for various applications, such as geospatial data acquisition and mapping, natural resource management, and surveillance and security, is driving the market growth. Moreover, the expanding construction and transportation & logistics sectors in the region are further boosting the demand for satellite imagery services. Key trends shaping the Nordics satellite imagery services market include:
Growing adoption of cloud-based platforms and services for satellite imagery processing and analysis: This trend is enabling end-users to access satellite imagery data and services without the need for significant upfront investments in infrastructure. Increasing availability of high-resolution satellite imagery: The launch of new satellites and the development of new image processing technologies are making it possible to obtain high-resolution satellite imagery, which is essential for a variety of applications, such as mapping and land use planning. Emergence of new applications for satellite imagery: Satellite imagery is increasingly being used for a variety of new applications, such as environmental monitoring, disaster management, and precision agriculture. These new applications are creating new opportunities for growth in the Nordics satellite imagery services market. Recent developments include: May 2023 - Business Finland granted EUR 30 million (USD 32.75 million) loan funding for ICEYE's product development project based on innovative new sensor and space technology that will provide real-time and reliable information to support decision-making worldwide. The project aims to create a unique information and software platform, design and develop technology for next-generation satellites, and apply the high-accuracy information from satellites globally for natural catastrophe analysis, modeling, and decision-making., March 2023 - Norway's International Climate and Forest Initiative (NICFI) announced that NICFI's satellite data program is extended until September 2023. Norway's International Climate and Forest Initiative (NICFI) grant free access to high-resolution satellite imagery of the tropics to anyone, anywhere, to monitor tropical deforestation. Through Norway's International Climate & Forests Initiative, users can access the planet's high-resolution, analysis-ready satellite images of the world's tropics to help reduce and combat climate change and reverse the loss of tropical forests.. Key drivers for this market are: Increasing Demand among Various End-user Industries, notablly in Forestry Sector, Adoption of Big Data and Imagery Analytics. Potential restraints include: High Cost of Satellite Imaging Data Acquisition and Processing. Notable trends are: Forestry and Agriculture is Analyzed to Hold Significant Market Share.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lebanon has traditionally been a major potato producer with 451,860 tons produced in 2014. Generally, potatoes make up 30% of the total Lebanese agricultural exports where approximately 60% of the potato production is exported to the Arab region, the UK and Brazil. The purpose of this study is to promote precision agriculture techniques in Lebanon that will help local farmers in the central Bekaa Valley with land management decisions. The European Space Agency’s satellite missions Sentinel-2A, launched June 23rd 2015, and the Sentinel-2B, recently launched on March 7th 2017, are multispectral high resolution imaging systems that provide global coverage every 5 days. The Sentinel program is a land monitoring program that includes an aim to improve agricultural practices. The imagery is 13 band data in the visible, near infrared and short wave infrared parts of the electromagnetic spectrum and ranges from 10-20 m including three 60 m bands pixel resolution. Sentinel is freely available data that has the potential to empower farmers with information to respond quickly to maximize crop health. Due to the political and security conflicts in the region, utilizing satellite imagery for Lebanon is more reasonable and realistic than operating Unmanned Aircraft Systems (UAS) for high resolution remote sensing. During the 2017 growing season, local farmers provided detailed information in designated fields on their farming practices, crop health, and pest threats. In parallel, Sentinel-2 imagery was processed to study crop health using the following vegetation indices: Normalized Difference Vegetation Index, Green Normalized Difference Vegetation Index, Soil Adjusted Vegetation Index and Modified Soil Adjusted Vegetation Index 2. Most Lebanese farmers inherit their land from their parents over generations, and as a result most still use traditional farming techniques for irrigation, where decisions are based on prior generations’ practices. However, with the changes in climate conditions within the region, these practices are no longer as efficient as they used to be. Normalized Difference Water Indices are calculated from satellite bands in the near-infrared and short-wave infrared to provide a better understanding about the water stress status of crops within the field. Preliminary results demonstrate that Sentinel-2 data can provide detailed and timely data for farmers to effectively manage fields. Despite the fact that most Lebanese farmers rely on traditional farming methods, providing them with crop health information on their mobile phones and allowing them to test its efficiency has the potential to be a catalyst to help them improve their farming practices.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This image service is available through CTECO, a partnership between UConn CLEAR and CT DEEP. It is a virtual mosaic of GeoTIFF tiles covering the state of Connecticut. Dataset Information Extent: Connecticut Dates: 2021: September 4 - November 6Bands: 4 (red, green, blue, near-infrared) Pixel resolution: 0.6mImage Tile Projection: NAD83 UTM Zone 18N and 19NService Projection: WGS 1984 Web Mercator Auxiliary Sphere (EPSG 3857)Tide Coordinated: No More Information - 2021 CT NAIP Image Dates (the eastern part of the state was captured in September and the western in November. The differences in seasonality and leaf cover cause the imagery to look significantly different depending on the date of capture). - National Agriculture Imagery Program (NAIP) GeoHub- All about Aerial Imagery on CT ECO- Metadata Credit and FundingNational Agriculture Imagery Program (NAIP), United States Department of Agriculture’s Farm Service Agency (USDA FSA)
The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental U.S. NAIP projects are contracted each year based upon available funding and the imagery acquisition cycle. Beginning in 2003, NAIP was acquired on a 5-year cycle. 2008 was a transition year, and a …
The WorldView-3 Level 1B Shortwave Infrared 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-3 satellite using the WorldView-110 camera across the global land surface from August 2014 to the present. This data product includes 8 shortwave infrared bands. The spatial resolution is 3.7m at nadir and the temporal resolution is less than one day. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.
Inventory of satellite images from DigitalGlobe’s WorldView-2 satellite purchased by the NOAA Coral Reef Ecosystem Program for Timor-leste from Jan 26, 2010 to August 10, 2014. Images were acquired for purposes of deriving seafloor depths and benthic habitat classes for the nearshore waters (< 20m depths) of Timor-leste. In addition to the inventory, the dataset includes the regions of interest (ROI) defined by NOAA used to define the geographic areas to acquire the satellite images from DigitalGlobe, the boundary extent of the available images within each ROI, and the footprint (extent) of each image. The data within each satellite image is clipped to the ROI. The ROI, boundary, and footprint files are provided in shapefile format, and the inventory is provided as a text file, which corresponds to the footprints shapefile.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
[EN] The WMS-service contains true color imagery produced using high resolution satellites for the area covering Finland and nearby coastal waters. The dataset is processed by SYKE and contains data from ESA Copernicus Sentinel Program and USGS/NASA Landsat Program. The license for SYKE's open datasets is Creative Commons Attribution 4.0 International. [FI] Rajapintapalvelussa on tarkan resoluution satelliitti-instrumenttien avulla tuotettuja tosivärikuvia Suomesta ja lähialueelta. Aineisto on Suomen ympäristökeskuksen prosessoimaa ESA Copernicus Sentinel ja USGS/NASA Landsat -aineistoa. Aineisto kuuluu SYKEn avoimiin aineistoihin (CC BY 4.0).
The GeoEye-1 Level 1B Multispectral 4-Band L1B Satellite Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the GeoEye-1 satellite using the GeoEye-1 Imaging System across the global land surface from September 2008 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The imagery has a spatial resolution of 1.84m at nadir (1.65m before summer 2013) and has a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.
The WorldView-3 Level 2A Multispectral 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-3 satellite using the WorldView-110 camera across the global land surface from August 2014 to the present. This satellite imagery is in a range of wavebands with data in the coastal, blue, green, yellow, red, red edge, and near-infrared (2 bands) wavelengths. The imagery has a spatial resolution of 1.24m at nadir and a temporal resolution of less than one day. The data are provided in National Imagery Transmission Format (NITF). These level 2A data have been processed and undergone radiometric correction, sensor correction, projected to a plane using a map projection and datum, and has a coarse DEM applied. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.
The WorldView-3 Level 1B Multispectral 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-3 satellite using the WorldView-110 camera across the global land surface from August 2014 to the present. This satellite imagery is in a range of wavebands with data in the coastal, blue, green, yellow, red, red edge, and near-infrared (2 bands) wavelengths. The imagery has a spatial resolution of 1.24m at nadir and a temporal resolution of less than one day. The data are provided in National Imagery Transmission Format (NITF). This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.
The WorldView-2 Level 2A Multispectral 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-2 satellite using the WorldView-110 camera across the global land surface from October 2009 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the coastal, blue, green, yellow, red, red edge, and near-infrared (2 bands) wavelengths. It has a spatial resolution of 1.85m at nadir and a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. These level 2A data have been processed and undergone radiometric correction, sensor correction, projected to a plane using a map projection and datum, and has a coarse DEM applied. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.
Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public. Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet. The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions. The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.