Satellite images are essentially the eyes in the sky. Some of the recent satellites, such as WorldView-3, provide images with a spatial resolution of 0.3 meters. This satellite with a revisit time of under 24 hours can scan a new image of the exact location with every revisit.
Spatial resolution explained Spatial resolution is the size of the physical dimension that can be represented on a pixel of the image. Or in other words, spatial resolution is a measure of the smallest object that the sensor can resolve measured in meters. Generally, spatial resolution can be divided into three categories:
– Low resolution: over 60m/pixel. (useful for regional perspectives such as monitoring larger forest areas)
– Medium resolution: 10‒30m/pixel. (Useful for monitoring crop fields or smaller forest patches)
– High to very high resolution: 0.30‒5m/pixel. (Useful for monitoring smaller objects like buildings, narrow streets, or vehicles)
Based on the application of the imagery for the final product, a choice can be made on the resolution, as labor intensity from person-hours to computing power required increases with the resolution of the imagery.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Geospatial Imagery Analytics Marketsize was valued at USD 11.88 USD Billion in 2023 and is projected to reach USD 83.39 USD Billion by 2032, exhibiting a CAGR of 32.1 % during the forecast period.Geospatial analytics gathers, manipulates, and displays geographic information system (GIS) data and imagery including GPS and satellite photographs. Geospatial data analytics rely on geographic coordinates and specific identifiers such as street address and zip code. geospatial visualization enables businesses to better understand complex information and make informed decisions. They can quickly see patterns and trends and assess the impact of different variables by visualizing data in a spatial context. The field encompasses several techniques and algorithms, such as spatial interpolation, spatial regression, spatial clustering, and spatial autocorrelation analysis, which help extract insights from various geospatial data sources. The growing adoption of location-based services in various industries, including agriculture, defense, and urban planning, is driving the demand for geospatial imagery analytics. Recent developments include: August 2023: onX, a digital navigation company, partnered with Planet Labs PBC, a satellite imagery provider, to introduce a new feature called ‘Recent Imagery’. This feature offers onX app users updated satellite imagery maps every two weeks, enhancing the user experience across onX Hunt, onX Offroad, and onX Backcountry apps. This frequent data update helps outdoor enthusiasts access real-time information for safer and more informed outdoor activities., August 2023: Quant Data & Analytics, a provider of data products and enterprise solutions for real estate and retail, partnered with Satellogic Inc. to utilize Satellogic’s high-resolution satellite imagery to enhance property technology in Saudi Arabia and the Gulf region., April 2023: Astraea, a spatiotemporal data and analytics platform, introduced a new ordering service that grants customers scalable access to top-tier commercial satellite imagery from providers such as Planet Labs PBC and others., May 2022: Satellogic Inc. established a partnership with UP42. This geospatial developer platform enables direct access to Satellogic’s satellite tasking capabilities, including high-resolution multispectral and wide-area hyperspectral imagery, through the UP42 API-based platform., April 2022: TomTom International BV, a geolocation tech company, broadened its partnership with Maxar Technologies, a space solution provider. This expansion involves integrating high-resolution global satellite imagery from Maxar’s Vivid imagery base maps into TomTom’s product lineup, enhancing their visualization solutions for customers.. Key drivers for this market are: Growing Demand for Location-based Insights across Diverse Industries to Fuel Market Growth. Potential restraints include: Complexity and Cost Associated with Data Acquisition and Processing May Hamper Market Growth. Notable trends are: Growing Implementation of Touch-based and Voice-based Infotainment Systems to Increase Adoption of Intelligent Cars.
Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public. Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet. The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions. The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.
The cost of acquiring a satellite data was highest for the images from the GeoEye-1 satellite at 25 U.S. dollars per square kilometer of the image. Most of the satellite data have a minimum order quantities based on the company and the cost depends mostly on the spatial resolution of the satellite image.
Most of the satellites are commercially owned and provide users with data as an end product based on the requirement. Processing smaller patches of the raw images obtained from a satellite to an end product are not profitable. Hence, there is a minimum order limit of 25 to 50 square kilometers based on the requested product.
World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources: Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global satellite imagery market is experiencing robust growth, driven by increasing demand across diverse sectors. The market's expansion is fueled by several key factors. Firstly, advancements in sensor technology are leading to higher-resolution imagery with improved accuracy and detail, enhancing applications in various fields. Secondly, the decreasing cost of satellite launches and data processing is making satellite imagery more accessible and cost-effective for a wider range of users. Thirdly, the rise of cloud computing and sophisticated analytical tools facilitates efficient data storage, processing, and analysis, unlocking valuable insights from vast datasets. Finally, increasing government investments in space exploration and national security are boosting demand for high-quality satellite imagery. We estimate the market size in 2025 to be approximately $2.5 billion, considering average growth rates within the geospatial intelligence sector. The market is projected to maintain a healthy Compound Annual Growth Rate (CAGR) of around 8% through 2033, driven by continued technological innovation and expanding applications in areas such as precision agriculture, urban planning, environmental monitoring, and disaster response. However, the market faces some restraints. Data security and privacy concerns surrounding the use of satellite imagery need to be addressed through robust regulatory frameworks and ethical guidelines. Competition among numerous established players and new entrants is also intense, putting pressure on pricing and margins. Furthermore, potential disruptions from weather events and technological failures can affect data acquisition and availability. Despite these challenges, the long-term outlook for the satellite imagery market remains positive, with significant potential for growth and innovation. The emergence of new technologies like smallsat constellations and AI-powered analytics is poised to further accelerate market expansion in the coming years. Key players like Maxar Technologies, Airbus, and Planet Labs are strategically positioning themselves to capitalize on these trends through technological advancements, strategic partnerships, and acquisitions.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the UAE Satellite Imagery Services market was valued at USD XXX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 10.51% during the forecast period.Satellite imagery services can be considered the capture of images of the Earth's surface by those orbiting in space. Images taken for such services have since been processed and analyzed into very useful applications. Data from satellite imagery find use in virtually all industries-from agriculture to urban planning, environmental monitoring, disaster management, and defense.The market for satellite imagery services is humongous and is growing very fast in UAE, considering the focused interest of space technology and demand from the nation for cutting edge geospatial solutions. High-resolution images taken from the satellites coupled with robust analytics tools can be used for monitoring changes in land use, natural resource management, and infrastructure development. A strategic location of the UAE in the Middle East, along with a strong economy, makes any location an attractive destination for a satellite imagery provider in the market.Investments in the space program and digital infrastructure would further boost the satellite imagery services of the UAE. The country's thrust towards sustainable development and innovation would increase the adoption of satellite-based solutions across various industries, which further ups the growth opportunities for the UAE's satellite imagery services market. Recent developments include: May 2023: A comprehensive space program to build national satellite remote sensing and Earth Observation (EO) capabilities within the UAE was announced by Bayanat, a prominent AI-powered geospatial solutions supplier, and Al Yah Satellite Communications Company PJSC (Yahsat), the UAE's prominent satellite solutions provider. The program aims to address local and global EO market business opportunities commercially., May 2023: EGA's CelestiAL solar aluminum will be sent into space owing to a partnership between Gulf Extrusions and the Mohammed Bin Rashid Space Centre (MBRSC), according to Emirates Global Aluminium (EGA), a UAE-based industrial firm outside of oil and gas. In Jebel Ali, the metal from EGA was turned into components for MBZ-SAT, the region's high-resolution satellite imaging system.. Key drivers for this market are: Strategic Government Initiatives and Substantial Investments to Drive the Market Growth, Infrastructure Development and Smart Cities. Potential restraints include: Data Processing and Analytics Capabilities, Data Privacy and Security Concerns. Notable trends are: Strategic Government Initiatives and Substantial Investments to Drive the Market Growth.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains satellite imagery of 4,454 power plants within the United States. The imagery is provided at two resolutions: 1m (4-band NAIP iamgery with near-infrared) and 30m (Landsat 8, pansharpened to 15m). The NAIP imagery is available for the U.S. and Landsat 8 is available globally. This dataset may be of value for computer vision work, machine learning, as well as energy and environmental analyses.Additionally, annotations of the specific locations of the spatial extent of the power plants in each image is provided. These annotations were collected via the crowdsourcing platform, Amazon Mechanical Turk, using multiple annotators for each image to ensure quality. Links to the sources of the imagery data, the annotation tool, and the team that created the dataset are included in the "References" section.To read more on these data, please refer to the "Power Plant Satellite Imagery Dataset Overview.pdf" file. To download a sample of the data without downloading the entire dataset, download "sample.zip" which includes two sample powerplants and the NAIP, Landsat 8, and binary annotations for each.Note: the NAIP imagery may appear "washed out" when viewed in standard image viewing software because it includes a near-infrared band in addition to the standard RGB data.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Middle East Satellite Imagery Services Market report segments the industry into Application (Geospatial Data Acquisition and Mapping, Natural Resource Management, Surveillance and Security, Conservation and Research, Disaster Management, Intelligence), End-User (Government, Construction, Transportation and Logistics, Military and Defense, Forestry and Agriculture, Other End-Users), and Geography (UAE, Saudi Arabia).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains remote sensing data for every village in the state of Bihar, India. For most of these villages, the data contains the corresponding electrification rate as reported by the Garv data platform from the Indian government as of July 2017. This dataset contains satellite imagery, political boundaries, lights at night imagery, rainfall measurements, and vegetation indices data for 45,220 villages and the electrification rate data for 32,817 of those villages. This dataset may be of particular interest to those investigating how electricity access maps to infrastructure and agricultural production. This dataset was compiled as part of the Summer 2017 Duke University Data+ team, titled "Electricity Access in Developing Countries from Aerial Imagery."
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The KSA Satellite Imagery Services Market report segments the industry into By Application (Geospatial Data Acquisition and Mapping, Natural Resource Management, Surveillance and Security, Conservation and Research, Disaster Management, Intelligence) and By End-User (Government, Construction, Transportation and Logistics, Military and Defense, Forestry and Agriculture, Others).
This REST Service provides cached satellite imagery for the City of Tempe. Imagery was flown in late 2022 and early 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
validation
Satellite sensor artifacts can negatively impact the interpretation of satellite data. One such artifact is linear features in imagery which can be caused by a variety of sensor issues and can present as either wide, consistent features called banding, or as narrow, inconsistent features called striping. This study used high-resolution data from DigitalGlobe's WorldView-3 satellite collected at Lake Okeechobee, Florida, on 30 August 2017. Primarily designed as a land sensor, this study investigated the impact of vertical artifacts on both at-sensor radiance and a spectral index for an aquatic target. This dataset is not publicly accessible because: NGA Nextview license agreements prohibit the distribution of original data files from WorldView due to copyright. It can be accessed through the following means: National Geospatial Intelligence Agency contract details prevent distribution of Maxar data. Questions regarding Nextvew can be sent so NGANextView_License@nga.mil. Questions regarding the NASA Commercial Data Buy can be sent to yvonne.ivey@nasa.gov. Format: high-resolution data from DigitalGlobe's WorldView-3 satellite. This dataset is associated with the following publication: Coffer, M., P. Whitman, B. Schaeffer, V. Hill, R. Zimmerman, W. Salls, M. Lebrasse, and D. Graybill. Vertical artifacts in high-resolution WorldView-2 and WorldView-3 satellite imagery of aquatic systems. INTERNATIONAL JOURNAL OF REMOTE SENSING. Taylor & Francis, Inc., Philadelphia, PA, USA, 43(4): 1199-1225, (2022).
The WorldView-2 Level 2A Multispectral 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-2 satellite using the WorldView-110 camera across the global land surface from October 2009 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the coastal, blue, green, yellow, red, red edge, and near-infrared (2 bands) wavelengths. It has a spatial resolution of 1.85m at nadir and a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. These level 2A data have been processed and undergone radiometric correction, sensor correction, projected to a plane using a map projection and datum, and has a coarse DEM applied. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.
The WorldView-4 Multispectral 4-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the DigitalGlobe WorldView-4 satellite using the SpaceView-110 camera across the global land surface from December 2016 to January 2019. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The multispectral imagery has a spatial resolution of 1.24m at nadir and has a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a Maxar End User License Agreement for Worldview 4 imagery and investigators must be approved by the CSDA Program.
The WorldView-4 Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the DigitalGlobe WorldView-4 satellite using the WorldView-110 camera across the global land surface from December 2016 to January 2019. This data product includes panchromatic imagery with a spatial resolution of 0.31m at nadir and a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a Maxar End User License Agreement for Worldview 4 imagery and investigators must be approved by the CSDA Program.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The satellite image of Canada is a composite of several individual satellite images form the Advanced Very High Resolution Radiometre (AVHRR) sensor on board various NOAA Satellites. The colours reflect differences in the density of vegetation cover: bright green for dense vegetation in humid southern regions; yellow for semi-arid and for mountainous regions; brown for the north where vegetation cover is very sparse; and white for snow and ice. An inset map shows a satellite image mosaic of North America with 35 land cover classes, based on data from the SPOT satellite VGT (vegetation) sensor.
The GeoEye-1 Level 1B Multispectral 4-Band L1B Satellite Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the GeoEye-1 satellite using the GeoEye-1 Imaging System across the global land surface from September 2008 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The imagery has a spatial resolution of 1.84m at nadir (1.65m before summer 2013) and has a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.
Multispectral satellite image data from the upper Sacramento River in northern California were acquired on October 18, 2017, to support research on remote sensing of rivers, particularly retrieval of water depth, and to facilitate efforts to characterize salmon habitat conditions and geomorphic change along the upper Sacramento River. These data were collected by the WorldView-3 (WV3) satellite, operated by DigitalGlobe and obtained through the EnhancedView license program administered by the National Geospatial-Intelligence Agency (NGA); the image data remain copyright of DigitalGlobe (2018). DigitalGlobe performed initial radiometric and geometric processing of the image. The data were acquired from the WorldView-3 satellite from an orbit with an altitude of 617 km and have a spatial resolution (pixel size) of 1.36 m. The data set consists of 8 spectral bands spanning the visible and near infrared wavelength range from 400-954 nanometers. The image pixel values represent raw digital counts and conversion to radiance, atmospheric correction, and reflectance retrieval have not been performed for the image included in this data release. The image is in a GeoTIFF format with pixel values stored as 16-bit unsigned integers. The image provided in this data release is a subset focused on the reach of the Sacramento River where it is joined by its tributary Cottonwood Creek. Supporting field data from this reach were collected in coordination with the acquisition of the remotely sensed data.
Satellite images are essentially the eyes in the sky. Some of the recent satellites, such as WorldView-3, provide images with a spatial resolution of 0.3 meters. This satellite with a revisit time of under 24 hours can scan a new image of the exact location with every revisit.
Spatial resolution explained Spatial resolution is the size of the physical dimension that can be represented on a pixel of the image. Or in other words, spatial resolution is a measure of the smallest object that the sensor can resolve measured in meters. Generally, spatial resolution can be divided into three categories:
– Low resolution: over 60m/pixel. (useful for regional perspectives such as monitoring larger forest areas)
– Medium resolution: 10‒30m/pixel. (Useful for monitoring crop fields or smaller forest patches)
– High to very high resolution: 0.30‒5m/pixel. (Useful for monitoring smaller objects like buildings, narrow streets, or vehicles)
Based on the application of the imagery for the final product, a choice can be made on the resolution, as labor intensity from person-hours to computing power required increases with the resolution of the imagery.