100+ datasets found
  1. d

    Declassified Satellite Imagery 2 (2002)

    • catalog.data.gov
    • gimi9.com
    • +4more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOI/USGS/EROS (2025). Declassified Satellite Imagery 2 (2002) [Dataset]. https://catalog.data.gov/dataset/declassified-satellite-imagery-2-2002
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    DOI/USGS/EROS
    Description

    Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public. Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet. The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions. The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.

  2. d

    CORONA Satellite Photographs from the U.S. Geological Survey

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOI/USGS/EROS (2025). CORONA Satellite Photographs from the U.S. Geological Survey [Dataset]. https://catalog.data.gov/dataset/corona-satellite-photographs-from-the-u-s-geological-survey
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The first generation of U.S. photo intelligence satellites collected more than 860,000 images of the Earth’s surface between 1960 and 1972. The classified military satellite systems code-named CORONA, ARGON, and LANYARD acquired photographic images from space and returned the film to Earth for processing and analysis. The images were originally used for reconnaissance and to produce maps for U.S. intelligence agencies. In 1992, an Environmental Task Force evaluated the application of early satellite data for environmental studies. Since the CORONA, ARGON, and LANYARD data were no longer critical to national security and could be of historical value for global change research, the images were declassified by Executive Order 12951 in 1995. The first successful CORONA mission was launched from Vandenberg Air Force Base in 1960. The satellite acquired photographs with a telescopic camera system and loaded the exposed film into recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The intelligence community used Keyhole (KH) designators to describe system characteristics and accomplishments. The CORONA systems were designated KH-1, KH-2, KH-3, KH-4, KH-4A, and KH-4B. The ARGON systems used the designator KH-5 and the LANYARD systems used KH-6. Mission numbers were a means for indexing the imagery and associated collateral data. A variety of camera systems were used with the satellites. Early systems (KH-1, KH-2, KH-3, and KH-6) carried a single panoramic camera or a single frame camera (KH-5). The later systems (KH-4, KH-4A, and KH-4B) carried two panoramic cameras with a separation angle of 30° with one camera looking forward and the other looking aft. The original film and technical mission-related documents are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery. Mathematical calculations based on camera operation and satellite path were used to approximate image coordinates. Since the accuracy of the coordinates varies according to the precision of information used for the derivation, users should inspect the preview image to verify that the area of interest is contained in the selected frame. Users should also note that the images have not been georeferenced.

  3. d

    CORONA Satellite Photography

    • catalog.data.gov
    • gimi9.com
    • +5more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOI/USGS/EROS (2025). CORONA Satellite Photography [Dataset]. https://catalog.data.gov/dataset/corona-satellite-photography
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    DOI/USGS/EROS
    Description

    On February 24, 1995, President Clinton signed an Executive Order, directing the declassification of intelligence imagery acquired by the first generation of United States photo-reconnaissance satellites, including the systems code-named CORONA, ARGON, and LANYARD. More than 860,000 images of the Earth's surface, collected between 1960 and 1972, were declassified with the issuance of this Executive Order. Image collection was driven, in part, by the need to confirm purported developments in then-Soviet strategic missile capabilities. The images also were used to produce maps and charts for the Department of Defense and for other Federal Government mapping programs. In addition to the images, documents and reports (collateral information) are available, pertaining to frame ephemeris data, orbital ephemeris data, and mission performance. Document availability varies by mission; documentation was not produced for unsuccessful missions.

  4. Land Cover Classification, Snow Cover, and Fractional Snow-Covered Area Maps...

    • nsidc.org
    • search.dataone.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Snow and Ice Data Center, Land Cover Classification, Snow Cover, and Fractional Snow-Covered Area Maps from Maxar WorldView Satellite Images, Version 1 [Dataset]. http://doi.org/10.5067/USXB6X9CD4Q2
    Explore at:
    Dataset authored and provided by
    National Snow and Ice Data Center
    Area covered
    WGS 84 / UTM zone 10N EPSG:32610
    Description

    (2) binary snow maps derived from the land cover maps

  5. R

    Landscape Object Detection On Satellite Images With Ai Dataset

    • universe.roboflow.com
    zip
    Updated Jun 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Satellite Images (2023). Landscape Object Detection On Satellite Images With Ai Dataset [Dataset]. https://universe.roboflow.com/satellite-images-i8zj5/landscape-object-detection-on-satellite-images-with-ai
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 28, 2023
    Dataset authored and provided by
    Satellite Images
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Landscape Objects Bounding Boxes
    Description

    Detecting Landscape Objects on Satellite Images with Artificial Intelligence In recent years, there has been a significant increase in the use of artificial intelligence (AI) for image recognition and object detection. This technology has proven to be useful in a wide range of applications, from self-driving cars to facial recognition systems. In this project, the focus lies on using AI to detect landscape objects in satellite images (aerial photography angle) with the goal to create an annotated map of The Netherlands with all the coordinates of the given landscape objects.

    Background Information

    Problem Statement One of the things that Naturalis does is conducting research into the distribution of wild bees (Naturalis, n.d.). For their research they use a model that predicts whether or not a certain species can occur at a given location. Representing the real world in a digital form, there is at the moment not yet a way to generate an inventory of landscape features such as presence of trees, ponds and hedges, with their precise location on the digital map. The current models rely on species observation data and climate variables, but it is expected that adding detailed physical landscape information could increase the prediction accuracy. Common maps do not contain this level of detail, but high-resolution satellite images do.

    Possible opportunities Based on the problem statement, there is at the moment at Naturalis not a map that does contain the level of detail where detection of landscape elements could be made, according to their wishes. The idea emerged that it should be possible to use satellite images to find the locations of small landscape elements and produce an annotated map. Therefore, by refining the accuracy of the current prediction model, researchers can gain a profound understanding of wild bees in the Netherlands with the goal to take effective measurements to protect wild bees and their living environment.

    Goal of project The goal of the project is to develop an artificial intelligence model for landscape detection on satellite images to create an annotated map of The Netherlands that would therefore increase the accuracy prediction of the current model that is used at Naturalis. The project aims to address the problem of a lack of detailed maps of landscapes that could revolutionize the way Naturalis conduct their research on wild bees. Therefore, the ultimate aim of the project in the long term is to utilize the comprehensive knowledge to protect both the wild bees population and their natural habitats in the Netherlands.

    Data Collection Google Earth One of the main challenges of this project was the difficulty in obtaining a qualified dataset (with or without data annotation). Obtaining high-quality satellite images for the project presents challenges in terms of cost and time. The costs in obtaining high-quality satellite images of the Netherlands is 1,038,575 $ in total (for further details and information of the costs of satellite images. On top of that, the acquisition process for such images involves various steps, from the initial request to the actual delivery of the images, numerous protocols and processes need to be followed.

    After conducting further research, the best possible solution was to use Google Earth as the primary source of data. While Google Earth is not allowed to be used for commercial or promotional purposes, this project is for research purposes only for Naturalis on their research of wild bees, hence the regulation does not apply in this case.

  6. n

    Murchison House Aerial Photograph And Satellite Image Inventory

    • data-search.nerc.ac.uk
    • metadata.bgs.ac.uk
    Updated May 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Murchison House Aerial Photograph And Satellite Image Inventory [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/search?format=SATELLITE%20IMAGE
    Explore at:
    Dataset updated
    May 8, 2020
    Description

    This data set is an inventory of aerial photographs held at BGS, Murchison House office and consists of a MS Excel spreadsheet containing 11 worksheets. Each worksheet contains information pertaining to the different sub-collections within the collection (9 worksheets of aerial photographs, one for aerial photograph scans, one for satellite imagery). Quality and coverage of metadata varies from worksheet to worksheet, depending on the size of the sub-collection, its pre-existing organisation, and the way in which the sub-collection was brought together (if it was not a complete entity when the inventory was started). Areal extent ranges from Shetland in the N (1200000) to the southern Lake District in the S (480000) and from Barra in the W (65000) to Stockton-on-Tees in the E (450000). By late 2001 all photos (except those being worked on by cuurently by staff) were catalogued in the inventory spreadsheet. By late 2003, the inventory spreadsheet had been updated with newly purchased and newly discovered photos as well as modified to include details of digital holdings and satellite imagery.

  7. n

    High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska,...

    • cmr.earthdata.nasa.gov
    • datasets.ai
    • +4more
    not provided
    Updated May 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1386246127-NSIDCV0.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    May 23, 2023
    Time period covered
    Aug 1, 2002 - Aug 2, 2002
    Area covered
    Description

    This data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats.

    Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format).

    Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks.

    The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data. Contact NSIDC User Services at nsidc@nsidc.org to order the data, and include an NSF OPP award number in the email.

  8. a

    Earth Explorer

    • amerigeo.org
    • data.amerigeoss.org
    • +3more
    Updated Nov 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). Earth Explorer [Dataset]. https://www.amerigeo.org/datasets/21a227e6c315488492d8f0a924cd487e
    Explore at:
    Dataset updated
    Nov 10, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    EarthExplorerUse the USGS EarthExplorer (EE) to search, download, and order satellite images, aerial photographs, and cartographic products. In addition to data from the Landsat missions and a variety of other data providers, EE provides access to MODIS land data products from the NASA Terra and Aqua missions, and ASTER level-1B data products over the U.S. and Territories from the NASA ASTER mission. Registered users of EE have access to more features than guest users.Earth Explorer Distribution DownloadThe EarthExplorer user interface is an online search, discovery, and ordering tool developed by the United States Geological Survey (USGS). EarthExplorer supports the searching of satellite, aircraft, and other remote sensing inventories through interactive and textual-based query capabilities. Through the interface, users can identify search areas, datasets, and display metadata, browse and integrated visual services within the interface.The distributable version of EarthExplorer provides the basic software to provide this functionality. Users are responsible for verification of system recommendations for hosting the application on your own servers. By default, this version of our code is not hooked up to a data source so you will have to integrate the interface with your data. Integration options include service-based API's, databases, and anything else that stores data. To integrate with a data source simply replace the contents of the 'getDataset' and 'search' functions in the CWIC.php file.Distribution is being provided due to users requests for the codebase. The EarthExplorer source code is provided "As Is", without a warranty or support of any kind. The software is in the public domain; it is available to any government or private institution.The software code base is managed through the USGS Configuration Management Board. The software is managed through an automated configuration management tool that updates the code base when new major releases have been thoroughly reviewed and tested.Link: https://earthexplorer.usgs.gov/

  9. n

    USGS High Resolution Orthoimagery

    • cmr.earthdata.nasa.gov
    • catalog.data.gov
    Updated Jan 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). USGS High Resolution Orthoimagery [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220567548-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Earth
    Description

    High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.

    A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.

  10. g

    Remote Pixel - Satellite Imagery Search

    • data.geospatialhub.org
    • hub.arcgis.com
    • +1more
    Updated Aug 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WyomingGeoHub (2019). Remote Pixel - Satellite Imagery Search [Dataset]. https://data.geospatialhub.org/documents/c7ea007145ce48e18cbc386f306a5b8b
    Explore at:
    Dataset updated
    Aug 7, 2019
    Dataset authored and provided by
    WyomingGeoHub
    Description

    Web application that provides imagery from Landsat-8, Sentinel-2, and CBERS-4. Click on a tile to view the imagery and select the type of data you want in the upper right hand corner of the viewer screen.

  11. SnowEx Colorado 3M Snow Depth Time Series and DEMs from High-Resolution...

    • catalog.data.gov
    • search.dataone.org
    • +4more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA NSIDC DAAC (2025). SnowEx Colorado 3M Snow Depth Time Series and DEMs from High-Resolution Satellite Image Pairs V001 [Dataset]. https://catalog.data.gov/dataset/snowex-colorado-3m-snow-depth-time-series-and-dems-from-high-resolution-satellite-image-pa
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    Colorado
    Description

    This data set contains a time series of snow depth maps and related intermediary snow-on and snow-off DEMs for Grand Mesa and the Banded Peak Ranch areas of Colorado derived from very-high-resolution (VHR) satellite stereo images and lidar point cloud data. Two of the snow depth maps coincide temporally with the 2017 NASA SnowEx Grand Mesa field campaign, providing a comparison between the satellite derived snow depth and in-situ snow depth measurements. The VHR stereo images were acquired each year between 2016 and 2022 during the approximate timing of peak snow depth by the Maxar WorldView-2, WorldView-3, and CNES/Airbus Pléiades-HR 1A and 1B satellites, while lidar data was sourced from the USGS 3D Elevation Program.

  12. n

    Amanda Bay Satellite Image Map 1:100 000

    • cmr.earthdata.nasa.gov
    • data.aad.gov.au
    • +2more
    cfm
    Updated Apr 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Amanda Bay Satellite Image Map 1:100 000 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214311750-AU_AADC.html
    Explore at:
    cfmAvailable download formats
    Dataset updated
    Apr 19, 2018
    Time period covered
    Dec 1, 1991 - Dec 31, 1991
    Area covered
    Description

    Satellite image map of Amanda Bay, Antarctica. This map was produced for the Australian Antarctic Division by AUSLIG (now Geoscience Australia) Commercial, in Australia, in 1991. The map is at a scale of 1:100 000, and was produced from Landsat 4 TM imagery (124-108, 124-109). It is projected on a Transverse Mercator projection, and shows traverses/routes/foot track charts, glaciers/ice shelves, penguin colonies, stations/bases, runways/helipads, and gives some historical text information. The map has both geographical and UTM co-ordinates.

  13. n

    Fisher Massif Satellite Image Map 1:100 000

    • cmr.earthdata.nasa.gov
    • researchdata.edu.au
    • +1more
    cfm
    Updated May 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Fisher Massif Satellite Image Map 1:100 000 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214308554-AU_AADC
    Explore at:
    cfmAvailable download formats
    Dataset updated
    May 17, 2018
    Time period covered
    Jul 1, 1992 - Jul 31, 1992
    Area covered
    Description

    Satellite image map of Fisher Massif, Mac. Robertson Land, Antarctica. This map was produced for the Australian Antarctic Division by AUSLIG (now Geoscience Australia) Commercial, in Australia, in 1992. The map is at a scale of 1:100000, and was produced from Landsat TM scenes (WRS 128-111, 129-110). It is projected on a Transverse Mercator projection, and shows glaciers/ice shelves and gives some historical text information. The map has both geographical and UTM co-ordinates.

  14. Orthoimages of Canada, 1999-2003

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    geotif, gml, kmz, pdf +2
    Updated Aug 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2021). Orthoimages of Canada, 1999-2003 [Dataset]. https://open.canada.ca/data/en/dataset/560351c7-061f-442f-9539-e38bb453ccbf
    Explore at:
    geotif, wms, shp, pdf, gml, kmzAvailable download formats
    Dataset updated
    Aug 11, 2021
    Dataset provided by
    Ministry of Natural Resources of Canadahttps://www.nrcan.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1999 - Jan 1, 2003
    Area covered
    Canada
    Description

    This collection is a legacy product that is no longer supported. It may not meet current government standards. This inventory presents chronologically the satellite images acquired, orthorectified and published over time by Natural Resources Canada. It is composed of imagery from the Landsat7 (1999-2003) and RADARSAT-1 (2001-2002) satellites, as well as the CanImage by-product and the control points used to process the images. Landsat7 Orthorectified Imagery: The orthoimage dataset is a complete set of cloud-free (less than 10%) orthoimages covering the Canadian landmass and created with the most accurate control data available at the time of creation. RADARSAT-1 Orthorectified Imagery: The 5 RADARSAT-1 images (processed and distributed by RADARSAT International (RSI) complete the landsat 7 orthoimagery coverage. They are stored as raster data produced from SAR Standard 7 (S7) beam mode with a pixel size of 15 m. They have been produced in accordance with NAD83 (North American Datum of 1983) using the Universal Transverse Mercator (UTM) projection. RADARSAT-1 orthoimagery were produced with the 1:250 000 Canadian Digital Elevation Data (CDED) and photogrammetric control points generated from the Aerial Survey Data Base (ASDB). CanImage -Landsat7 Orthoimages of Canada,1:50 000: CanImage is a raster image containing information from Landsat7 orthoimages that have been resampled and based on the National Topographic System (NTS) at the 1:50 000 scale in the UTM projection. The product is distributed in datasets in GeoTIFF format. The resolution of this product is 15 metres. Landsat7 Imagery Control Points: the control points were used for the geometric correction of Landsat7 satellite imagery. They can also be used to correct vector data and for simultaneously displaying data from several sources prepared at different scales or resolutions.

  15. MSG: High resolution visible imagery over the UK

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Jun 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NERC EDS Centre for Environmental Data Analysis (2023). MSG: High resolution visible imagery over the UK [Dataset]. https://catalogue.ceda.ac.uk/uuid/d9935bb3ebc54939bd3cc4ee05d88892
    Explore at:
    Dataset updated
    Jun 19, 2023
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/msg.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/msg.pdf

    Area covered
    Variables measured
    Visible Imagery, http://vocab.ndg.nerc.ac.uk/term/P141/4/GVAR0925
    Description

    The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas.

    This dataset contains high resolution visible images from MSG satellites over the UK area. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old.

    The geographic extent for images within this datasets is available via the linked documentation 'MSG satellite imagery product geographic area details'. Each MSG imagery product area can be referenced from the third and fourth character of the image product name giving in the filename. E.g. for EEAO11 the corresponding geographic details can be found under the entry for area code 'AO' (i.e West Africa).

  16. Declassified Satellite Imagery Acquired Near Barrow Alaska

    • data.ucar.edu
    • arcticdata.io
    • +3more
    archive
    Updated Feb 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Craig E. Tweedie; Patrick J. Webber (2024). Declassified Satellite Imagery Acquired Near Barrow Alaska [Dataset]. https://data.ucar.edu/dataset/declassified-satellite-imagery-acquired-near-barrow-alaska
    Explore at:
    archiveAvailable download formats
    Dataset updated
    Feb 7, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Craig E. Tweedie; Patrick J. Webber
    Time period covered
    Aug 1, 1988 - Aug 31, 1995
    Area covered
    Description

    This dataset contains various declassified military satellite imagery acquired near Barrow Alaska during August, 1988, June 1989, and August 1995. Each scene is packaged into a .tar.gz file which includes metadata. Mosaics of the images are also included.

  17. n

    QuickBird full archive

    • cmr.earthdata.nasa.gov
    • fedeo.ceos.org
    • +1more
    not provided
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). QuickBird full archive [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1965336934-ESA.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Apr 24, 2025
    Time period covered
    Nov 1, 2001 - Mar 31, 2015
    Area covered
    Earth
    Description

    QuickBird high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4, and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section.

    In particular, QuickBird offers archive panchromatic products up to 0.60 m GSD resolution and 4-Bands Multispectral products up to 2.4 m GSD resolution.

    Band Combination Data Processing Level Resolution Panchromatic and 4-bands Standard(2A)/View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12,000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm

    4-Bands being an option from:

    4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1) Natural Colour / Coloured Infrared (3-Band pan-sharpened) Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products: the initial special resolution (GSD) is unchanged but the HD technique intelligently increases the number of pixels and improves the visual clarity achieving aesthetically refined imagery with precise edges and well reconstructed details.

  18. G

    Satellite image mosaics

    • open.canada.ca
    • catalogue.arctic-sdi.org
    csv, ecw, html, pdf
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). Satellite image mosaics [Dataset]. https://open.canada.ca/data/en/dataset/cad5639a-437e-4cc2-adaf-62e4fccbbc30
    Explore at:
    html, pdf, ecw, csvAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2011 - Dec 31, 2025
    Description

    The link: Access the data directory is available in the section*Dataset Description Sheets; Additional Information*. Satellite image mosaics are products designed by combining several adjacent tiles of satellite images from the Landsat or Sentinel sensor. The coverage of the mosaics varies according to the years of acquisition, ranging from southern Quebec to all of Quebec. These mosaics are designed to identify land use classes, including forest environments, agricultural environments, wetlands, and environments modified by humans. They also offer an overview of the various natural disturbances that occur on the territory. In the end, they offer easy monitoring of the evolution of forest cover and natural disturbances across territory and time. These mosaics are primarily used to support planning, monitoring, and land use planning. The mosaics have a spatial resolution of between 10 and 30 meters.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  19. r

    Regional high-resolution fast ice maps - Satellite synthetic aperture radar...

    • researchdata.edu.au
    • data.aad.gov.au
    • +2more
    Updated Nov 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HEIL, PETRA; MASSOM, ROB; HYLAND, GLENN; Hyland, G., Massom, R. and Heil, P.; MASSOM, ROB; MASSOM, ROB; HYLAND, GLENN; HYLAND, GLENN (2019). Regional high-resolution fast ice maps - Satellite synthetic aperture radar (SAR) data [Dataset]. https://researchdata.edu.au/regional-high-resolution-radar-sar/1440000
    Explore at:
    Dataset updated
    Nov 14, 2019
    Dataset provided by
    Australian Antarctic Division
    Australian Antarctic Data Centre
    Authors
    HEIL, PETRA; MASSOM, ROB; HYLAND, GLENN; Hyland, G., Massom, R. and Heil, P.; MASSOM, ROB; MASSOM, ROB; HYLAND, GLENN; HYLAND, GLENN
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2009 - Nov 30, 2009
    Area covered
    Description

    This dataset comprises high spatial- and temporal-resolution maps of coastal landfast sea ice (fast ice) distribution in the vicinity of the Cape Darnley Polynya in East Antarctica, in the June-November (winter-spring) periods of 2008 and 2009. The maps were derived from cross-correlation of pairs of spatially-overlapping Envisat Advanced Synthetic Aperture Radar (ASAR) images, using a modified version of the IMCORR algorithm to determine vectors of sea-ice motion (as described in Giles et al., 2011). Fast ice is then distinguished from moving pack ice by the fact that it is stationary. The raw ASAR WSM data (swath width 500 km) were processed using ENVI image processing software to produce geo-referenced images with a 75m pixel size. Use of SAR data ensures coverage uninterrupted by cloud cover or polar darkness.

    Image pairs were chosen with a time separation between 2 and 21 days. IMCORR processing of the image pairs for mapping fast ice follows Giles et al (2011) – using a reference tile size of 32x32 pixels and a search tile size of 64 x 64 pixels. A land mask was applied to avoid contamination from matches on stationary features over the continental ice sheet. The grid spacing was set to 16 x 16 pixels, so the images were over-sampled by a factor of 2 to provide a more dense set of results.

    Stationary fast ice vectors were chosen from the IMCORR results using a combination of the cluster search technique and a variation of the z-axis threshold technique as detailed in Giles et al (2011). The cluster search technique was applied to the IMCORR results from each image pair to derive the initial set of valid vectors – this set could contain both stationary fast ice vectors and non-stationary pack ice vectors. Due to registration errors in the image pairs, the stationary vectors will not necessarily be centred around zero, so using a simple window around the zero offset mark to differentiate the fast ice vectors was not possible. To select the stationary vectors, a 2D histogram was constructed from the X-Y vector displacements, and a 2D Gaussian was fitted to this histogram. The fast ice vectors will dominate because of the large image pair time separation and small search tile size, so the Gaussian peak should correspond to the centre of the stationary fast ice vectors. All vectors that are within 5 standard deviations of the Gaussian peak are tagged as valid fast ice vectors. This is a minor modification to the method of Giles et al (2011), who used a simple threshold cut on the z-axis of the 2D histogram to define the fast ice vectors.

    Data format – one fully annotated (self-describing) netCDF file per image pair containing latitude/longitude coordinates of the stationary fast ice vectors.

    This technique and dataset complement a lower resolution but longer-term dataset (2000-2014) derived from satellite MODIS visible and thermal infrared data. (AAS_4116_Fraser_fastice_mawson_capedarnley).

  20. n

    Mount Ruker and Mount Rymill Satellite Image Maps 1:100 000

    • cmr.earthdata.nasa.gov
    • researchdata.edu.au
    • +1more
    cfm
    Updated Jun 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Mount Ruker and Mount Rymill Satellite Image Maps 1:100 000 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214311244-AU_AADC.html
    Explore at:
    cfmAvailable download formats
    Dataset updated
    Jun 20, 2019
    Time period covered
    Mar 18, 1989 - Nov 29, 1989
    Area covered
    Description

    Two satellite images maps of Mt Ruker and Mt Rymill in the Australian Antarctic Territory were produced by the Australian Antarctic Division in 1998. Both maps are at a scale of 1:100 000 using Landsat TM imagery.

    Data source: Mount Ruker - Landsat TM imagery, scenes 128/112, acquired 29 November 1989. Mount Rymill - Landsat TM imagery, scenes 128/111 and 128/112, acquired 18 March 1989 and 29 November 1989 respectively.

    Nomenclature: Names have been approved by the Antarctic Names Committee of Australia. Please see the URL link for details on the images and processes used to produce these maps.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
DOI/USGS/EROS (2025). Declassified Satellite Imagery 2 (2002) [Dataset]. https://catalog.data.gov/dataset/declassified-satellite-imagery-2-2002

Declassified Satellite Imagery 2 (2002)

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 10, 2025
Dataset provided by
DOI/USGS/EROS
Description

Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public. Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet. The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions. The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.

Search
Clear search
Close search
Google apps
Main menu