This data release serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery from Delaware Bay, New Jersey (NJ) to Shinnecock Bay, New York (NY). A total of 119 images acquired between 2008 and 2022 were analyzed to produce 143 thematic land-cover raster datasets. Water, bare earth (sand), and vegetated land-cover classes were mapped using successive thresholding and masking of the modified normalized difference water index (mNDWI), the normalized difference bare land index (NBLI), and the normalized difference vegetation index (NDVI) and applying a rule-based classification modified from the workflow described by Bernier and others (2021). Vector shoreline and sand feature extents were extracted for each image by contouring the spectral indices using the calculated threshold values. These data support the National Fish and Wildlife Foundation (NFWF)-funded Monitoring Hurricane Sandy Beach and Marsh Resilience in New York and New Jersey project (NFWF project ID 2300.16.055110), for which the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) is using remotely-sensed data and targeted in-situ observations to monitor the post-restoration evolution of beaches, dunes, vegetative cover, and sediment budgets at seven post-Hurricane Sandy beach and marsh restoration sites in New York and New Jersey. The geographic information system (GIS) data files with accompanying formal Federal Geographic Data Committee (FGDC) metadata can be downloaded from this release.
This study combined a radar-based time series of Hurricane Sandy surge and estimated persistence with optical sensor-based marsh condition change to assess potential causal linkages of surge persistence and marsh condition change along the New Jersey Atlantic Ocean coast. Results based on processed TerraSAR-X and COSMO-SkyMed synthetic aperture radar (SAR) images indicated that surge flooding persisted for 12 h past landfall in marshes from Great Bay to Great Egg Harbor Bay and up to 59 h after landfall in many back-barrier lagoon marshes. Marsh condition change (i.e. loss of green marsh vegetation) was assessed from optical satellite images (Satellite Pour l’Observation de la Terre and Moderate Resolution Imaging Spectroradiometer) collected before and after Hurricane Sandy. High change in condition often showed spatial correspondence, with high surge persistence in marsh surrounding the lagoon portion of Great Bay, while in contrast, low change and high persistence spatial correspondence dominated the interior marshes of the Great Bay and Great Egg Harbor Bay estuaries. Salinity measurements suggest that these areas were influenced by freshwater discharges after landfall possibly mitigating damage. Back-barrier marshes outside these regions exhibited mixed correspondences. In some cases, topographic features supporting longer surge persistence suggested that non-correspondence between radar and optical data-based results may be due to differential resilience; however, in many cases, reference information was lacking to determine a reason for non-correspondence.
Assessing the physical change to shorelines and wetlands is critical in determining the resiliency of wetland systems that protect adjacent habitat and communities. The wetland and back-barrier shorelines of New Jersey changed as a result of wave action and storm surge that occurred during Hurricane Sandy, which made landfall on October 29, 2012. The impact of Hurricane Sandy will be assessed and placed in its historical context to understand the future vulnerability of wetland systems. Making these assessments will rely on data extracted from current and historical resources such as maps, aerial photographs, satellite imagery, and lidar elevation data, which document physical changes over time. This USGS Data Series publication includes several open-ocean shorelines, back-island shorelines, back-island shoreline points, sand area polygons, and sand lines for the undeveloped areas of New Jersey that were extracted from orthoimagery (ortho aerial photography) dated from March 9, 1991 to July 30, 2013. This data-set consists of lines that comprise the inland extent of the main body of sand (beach/dune/overwash area) found in the orthoimagery taken on the date specified in the filename and in the "Date_" field in the feature attribute table. They are based on the sand area polygons, nj_sandpo_.shp, that are included in this Data Series publication and can be accessed via the Data Download page. Orthoimagery of New Jersey were acquired in digital format from U.S. Department of Agriculture (USDA), U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), and New Jersey Geographic Information Network (NJGIN). The following list provides additional details about the orthoimagery used. The sand lines are organized by area with all dates for each area compiled into one data-set (shapefile) named nj_sandln_
Assessing the physical change to shorelines and wetlands is critical in determining the resiliency of wetland systems that protect adjacent habitat and communities. The wetland and back-barrier shorelines of New Jersey changed as a result of wave action and storm surge that occurred during Hurricane Sandy, which made landfall on October 29, 2012. The impact of Hurricane Sandy will be assessed and placed in its historical context to understand the future vulnerability of wetland systems. Making these assessments will rely on data extracted from current and historical resources such as maps, aerial photographs, satellite imagery, and lidar elevation data, which document physical changes over time. This USGS Data Series publication includes several open-ocean shorelines, back-island shorelines, back-island shoreline points, sand area polygons, and sand lines the undeveloped areas of New Jersey that were extracted from ortho imagery (ortho aerial photography) dated from March 9, 1991 to July 30, 2013.
Assessing the physical change to shorelines and wetlands is critical in determining the resiliency of wetland systems that protect adjacent habitat and communities. The wetland and back-barrier shorelines of New Jersey changed as a result of wave action and storm surge that occurred during Hurricane Sandy, which made landfall on October 29, 2012. The impact of Hurricane Sandy will be assessed and placed in its historical context to understand the future vulnerability of wetland systems. Making these assessments will rely on data extracted from current and historical resources such as maps, aerial photographs, satellite imagery, and lidar elevation data, which document physical changes over time. This USGS Data Series publication includes several open-ocean shorelines, back-island shorelines, back-island shoreline points, sand area polygons, and sand lines for the undeveloped areas of New Jersey's barrier islands that were extracted from orthoimagery (ortho aerial photography) dated from March 9, 1991 to July 30, 2013. This data-set consists of lines that were hand-digitized at the approximate open-ocean water line at a scale of approximately 1:2,000. The lines were visually generalized through waves and swash zones by the photointerpreter. Orthoimagery of New Jersey were acquired in digital format from U.S. Department of Agriculture (USDA), U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), and New Jersey Geographic Information Network (NJGIN). The following list provides additional details about the orthoimagery used. The open-ocean shorelines are organized by area with all dates for each area compiled into one data-set (shapefile) named nj_sshrln_
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This data release serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery from Delaware Bay, New Jersey (NJ) to Shinnecock Bay, New York (NY). A total of 119 images acquired between 2008 and 2022 were analyzed to produce 143 thematic land-cover raster datasets. Water, bare earth (sand), and vegetated land-cover classes were mapped using successive thresholding and masking of the modified normalized difference water index (mNDWI), the normalized difference bare land index (NBLI), and the normalized difference vegetation index (NDVI) and applying a rule-based classification modified from the workflow described by Bernier and others (2021). Vector shoreline and sand feature extents were extracted for each image by contouring the spectral indices using the calculated threshold values. These data support the National Fish and Wildlife Foundation (NFWF)-funded Monitoring Hurricane Sandy Beach and Marsh Resilience in New York and New Jersey project (NFWF project ID 2300.16.055110), for which the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) is using remotely-sensed data and targeted in-situ observations to monitor the post-restoration evolution of beaches, dunes, vegetative cover, and sediment budgets at seven post-Hurricane Sandy beach and marsh restoration sites in New York and New Jersey. The geographic information system (GIS) data files with accompanying formal Federal Geographic Data Committee (FGDC) metadata can be downloaded from this release.