Map Index Sheets from Block and Lot Grid of Property Assessment and based on aerial photography, showing 1983 datum with solid line and NAD 27 with 5 second grid tics and italicized grid coordinate markers and outlines of map sheet boundaries. Each grid square is 3500 x 4500 feet. Each Index Sheet contains 16 lot/block sheets, labeled from left to right, top to bottom (4 across, 4 down): A, B, C, D, E, F, G, H, J, K, L, M, N, P, R, S. The first (4) numeric characters in a parcelID indicate the Index sheet in which the parcel can be found, the alpha character identifies the block in which most (or all) of the property lies.
To access parcel information:Enter an address or zoom in by using the +/- tools or your mouse scroll wheel. Parcels will draw when zoomed in.Click on a parcel to display a popup with information about that parcel.Click the "Basemap" button to display background aerial imagery.From the "Layers" button you can turn map features on and off.Complete Help (PDF)Parcel Legend:Full Map LegendAbout this ViewerThis viewer displays land property boundaries from assessor parcel maps across Massachusetts. Each parcel is linked to selected descriptive information from assessor databases. Data for all 351 cities and towns are the standardized "Level 3" tax parcels served by MassGIS. More details ...Read about and download parcel dataUpdatesV 1.1: Added 'Layers' tab. (2018)V 1.2: Reformatted popup to use HTML table for columns and made address larger. (Jan 2019)V 1.3: Added 'Download Parcel Data by City/Town' option to list of layers. This box is checked off by default but when activated a user can identify anywhere and download data for that entire city/town, except Boston. (March 14, 2019)V 1.4: Data for Boston is included in the "Level 3" standardized parcels layer. (August 10, 2020)V 1.4 MassGIS, EOTSS 2021
This map was created to be used in the CBF website map gallery as updated satellite imagery content for the Chesapeake Bay watershed.This map includes the Chesapeake Bay watershed boundary, state boundaries that intersect the watershed boundary, and NLCD 2019 Land Cover data as well as a imagery background. This will be shared as a web application on the CBF website within the map gallery subpage.
This data set includes: (1) fine-scale snow and land cover maps from two mountainous study sites in the Western U.S., produced using machine-learning models trained to extract land cover data from WorldView-2 and WorldView-3 stereo panchromatic and multispectral images; (2) binary snow maps derived from the land cover maps; and (3) 30 m and 465 m fractional snow-covered area (fSCA) maps, produced via downsampling of the binary snow maps. The land cover classification maps feature between three and six classes common to mountainous regions and integral for accurate stereo snow depth mapping: illuminated snow, shaded snow, vegetation, exposed surfaces, surface water, and clouds. Also included are Landsat and MODSCAG fSCA map products. The source imagery for these data are the Maxar WorldView-2 and Maxar WorldView-3 Level-1B 8-band multispectral images, orthorectified and converted to top-of-atmosphere reflectance. These Level-1B images are available under the NGA NextView/EnhancedView license.
Land Cover Map 2021 (LCM2021) is a suite of geospatial land cover datasets (raster and polygon) describing the UK land surface in 2021. These were produced at the UK Centre for Ecology & Hydrology by classifying satellite images from 2021. Land cover maps describe the physical material on the surface of the country. For example grassland, woodland, rivers & lakes or man-made structures such as roads and buildingsThis is a 10 m Classified Pixel dataset, classified to create a single mosaic of national cover. Provenance and quality:UKCEH’s automated land cover classification algorithms generated the 10m classified pixels. Training data were automatically selected from stable land covers over the interval of 2017 to 2019. A Random Forest classifier used these to classify four composite images representing per season median surface reflectance. Seasonal images were integrated with context layers (e.g., height, aspect, slope, coastal proximity, urban proximity and so forth) to reduce confusion among classes with similar spectra.Land cover was validated by organising the pixel classification into a land parcel framework (the LCM2021 Classified Land Parcels product). The classified land parcels were compared to known land cover producing confusion matrix to determine overall and per class accuracy.View full metadata information and download the data at catalogue.ceh.ac.uk
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
This dataset provides global maps describing the land surface into 22 classes, which have been defined using the United Nations Food and Agriculture Organization’s (UN FAO) Land Cover Classification System (LCCS). In addition to the land cover (LC) maps, four quality flags are produced to document the reliability of the classification and change detection. In order to ensure continuity, these land cover maps are consistent with the series of global annual LC maps from the 1990s to 2015 produced by the European Space Agency (ESA) Climate Change Initiative (CCI), which are also available on the ESA CCI LC viewer. To produce this dataset, the entire Medium Resolution Imaging Spectrometer (MERIS) Full and Reduced Resolution archive from 2003 to 2012 was first classified into a unique 10-year baseline LC map. This is then back- and up-dated using change detected from (i) Advanced Very-High-Resolution Radiometer (AVHRR) time series from 1992 to 1999, (ii) SPOT-Vegetation (SPOT-VGT) time series from 1998 to 2012 and (iii) PROBA-Vegetation (PROBA-V), Sentinel-3 OLCI (S3 OLCI) and Sentinel-3 SLSTR (S3 SLSTR) time series from 2013. Beyond the climate-modelling communities, this dataset’s long-term consistency, yearly updates, and high thematic detail on a global scale have made it attractive for a multitude of applications such as land accounting, forest monitoring and desertification, in addition to scientific research.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Approximate boundaries for all land parcels in New Brunswick. The boundaries are structured as Polygons. The Property Identifier number or PID is included for each parcel.
The U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) collaborated on the creation of the global land datasets using Landsat data from 1972 through 2008. NASA and the USGS have again partnered to develop the Global Land Survey 2010 (GLS2010), a new global land data set with core acquisition dates of 2008-2011. This dataset consists of both Landsat TM and ETM+ images that meet quality and cloud cover standards established by the earlier GLS collections. Data acquired in 2011 were used to fill areas of low image quality or excessive cloud cover.
DCGIS is an interactive map that provides increased functionality for advanced users as well as access to about 150 layers of GIS data, including parcel information, contour lines, aerial photography, county park amenities, park trails, bikeways, county road construction, roundabouts, floodplains and more. It allows you to create a map at any scale you wish.
The Interactive GIS Map is intended for use on any device - mobile or desktop - with high speed access.
These maps show for the first time an accurate georeferenced mosaic of the Marshall Islands, the Federated States of Micronesia, the Republic of Palau and their respective corresponding shallow water areas. Shallow-water (generally, less than 30 meters) bank and land areas in these areas were identified through analysis of Landsat 7 ETM+ satellite imagery. The mosaics are laid over ETOPO2 Bathymetric Data to provide an enhanced understanding of how the Atolls and Islands fit together. In addition selected islands and atolls are shown next to the mosaic. This project was conducted in support of the U.S. Coral Reef Task Force. Data in this accession are best used with appropriate Geographic Information System (GIS) software.
This is the land parcels (polygon) dataset for the UKCEH Land Cover Map of 2019 (LCM2019) representing Great Britain. It describes Great Britain's land cover in 2019 using UKCEH Land Cover Classes, which are based on UK Biodiversity Action Plan broad habitats. This dataset was derived from the corresponding LCM2019 20m classified pixels dataset. All further LCM2019 datasets for Great Britain are derived from this land parcel product. A range of land parcel attributes are provided. These include the dominant UKCEH Land Cover Class given as an integer value, and a range of per-parcel pixel statistics to help to assess classification confidence and accuracy; for a full explanation please refer to the dataset documentation. LCM2019 represents a suite of geospatial land cover datasets (raster and polygon) describing the UK land surface in 2019. These were produced at the UK Centre for Ecology & Hydrology by classifying satellite images from 2019. LCM2019 was simultaneously released with LCM2017 and LCM2018. These are the latest in a series of UKCEH land cover maps, which began with the 1990 Land Cover Map of Great Britain (now usually referred to as LCM1990) followed by UK-wide land cover maps LCM2000, LCM2007 and LCM2015. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.
City of Austin Open Data Terms of Use https://data.austintexas.gov/stories/s/ranj-cccq This dataset was created to depict approximate tree canopy cover for all land within the City of Austin's "full watershed regulation area." Intended for planning purposes and measuring citywide percent canopy. Definition: Tree canopy is defined as the layer of leaves, branches, and stems of trees that cover the ground when viewed from above. Methods: The 2022 tree canopy layer was derived from satellite imagery (Maxar) and aerial imagery (NAIP). Images were used to extract tree canopy into GIS vector features. First, a “visual recognition engine” generated the vector features. The engine used machine learning algorithms to detect and label image pixels as tree canopy. Then using prior knowledge of feature geometries, more modeling algorithms were used to predict and transform probability maps of labeled pixels into finished vector polygons depicting tree canopy. The resulting features were reviewed and edited through manual interpretation by GIS professionals. When appropriate, NAIP 2022 aerial imagery supplemented satellite images that had cloud cover, and a manual editing process made sure tree canopy represented 2022 conditions. Finally, an independent accuracy assessment was performed by the City of Austin and the Texas A&M Forest Service for quality assurance. GIS professionals assessed agreement between the tree canopy data and its source satellite imagery. An overall accuracy of 98% was found. Only 23 errors were found out of a total 1,000 locations reviewed. These were mostly omission errors (e.g. not including canopy in this dataset when canopy is shown in the satellite or aerial image). Best efforts were made to ensure ground-truth locations contained a tree on the ground. To ensure this, location data were used from City of Austin and Texas A&M Forest Service databases. Analysis: The City of Austin measures tree canopy using the calculation: acres of tree canopy divided by acres of land. The area of interest for the land acres is evaluated at the City of Austin's jurisdiction including Full Purpose, Limited Purpose, and Extraterritorial jurisdictions as of May 2023. New data show, in 2022, tree canopy covered 41% of the total land area within Austin's city limits (using city limit boundaries May 2023 and included in the download as layer name "city_of_austin_2023"). 160,046.50 canopy acres (2022) / 395,037.53 land acres = 40.51% ~41%. This compares to 36% last measured in 2018, and a historical average that’s also hovered around 36%. The time period between 2018 and 2022 saw a 5 percentage point change resulting in over 19K acres of canopy gained (estimated). Data Disclaimer: It's possible changes in percent canopy over the years is due to annexation and improved data methods (e.g. higher resolution imagery, AI, software used, etc.) in addition to actual in changes in tree canopy cover on the ground. For planning purposes only. Dataset does not account for individual trees, tree species nor any metric for tree canopy height. Tree canopy data is provided in vector GIS format housed in a Geodatabase. Download and unzip the folder to get started. Please note, errors may exist in this dataset due to the variation in species composition and land use found across the study area. This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. It does not represent an on-the-ground survey and represents only the approximate relative location of property boundaries. This product has been produced by the City of Austin for the sole purpose of geographic reference. No warranty is made by the City of Austin regarding specific accuracy or completeness. Data Provider: Ecopia AI Tech Corporation and PlanIT Geo, Inc. Data derived from Maxar Technologies, Inc. and USDA NAIP imagery
The U.S. Geological Survey (USGS) Aerial Photography data set includes over 2.5 million film transparencies. Beginning in 1937, photographs were acquired for mapping purposes at different altitudes using various focal lengths and film types. The resultant black-and-white photographs contain less than 5 percent cloud cover and were acquired under rigid quality control and project specifications (e.g., stereo coverage, continuous area coverage of map or administrative units). Prior to the initiation of the National High Altitude Photography (NHAP) program in 1980, the USGS photography collection was one of the major sources of aerial photographs used for mapping the United States. Since 1980, the USGS has acquired photographs over project areas that require photographs at a larger scale than the photographs in the NHAP and National Aerial Photography Program collections.
A set of three estimates of land-cover types and annual transformations of land use are provided on a global 0.5 x0.5 degree lat/lon grid at annual time steps. The longest of the three estimates spans 1770-2010. The dataset presented here takes into account land-cover change due to four major land-use/management activities: (1) cropland expansion and abandonment, (2) pastureland expansion and abandonment, (3) urbanization, and (4) secondary forest regrowth due to wood harvest. Due to uncertainties associated with estimating historical agricultural (crops and pastures) land use, the study uses three widely accepted global reconstruction of cropland and pastureland in combination with common wood harvest and urban land data set to provide three distinct estimates of historical land-cover change and underlying land-use conversions. Hence, these distinct historical reconstructions offer a wide range of plausible regional estimates of uncertainty and extent to which different ecosystem have undergone changes. The three estimates use a consistent methodology, and start with a common land-cover map during pre-industrial conditions (year 1765), taking different courses as determined by the land-use/management datasets (cropland, pastureland, urbanization and wood harvest) to attain forest area distributions close to satellite estimates of forests for contemporary period. The satellite based estimates of forest area are based on MODIS sensor. All data uses the WGS84 spatial coordinate system for mapping.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
City of Phoenix parcel boundaries and details are shown for use to provide the best readability when used with different basemaps or aerial photos. Not intended for surveying, legal or engineering purposes. For non-commercial purposes only! This data is updated monthly.
NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public.
Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications.
The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet.
The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions.
The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.
This dataset contains Barrow Area Remote Sensing - Brw Be Land Cover data. Cloud free Quickbird satellite imagery was used to develop the land cover maps in this study. The dataset is composed of four multispectral (2.4m) and one panchromatic (0.6m) band. The multispectral bands were fused with the panchromatic scene using a Principal Components sharpening method, which characteristically maintains spatial and spectral quality (Vijayaraj et al., 2006). Ten land cover types were chosen for the land cover classification. These included seven vegetated land cover types identified from cluster analysis of plot level species cover data from the International Tundra Experiment (ITEX) and resampled International Biological Program (IBP) plots, bare ground, ice/snow/urban areas, and water.
description: This dataset consists of general soil association units. It was developed by the National Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) dataset published in 1994. It consists of a broad based inventory of soils and non-soil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped of 1:250,000 in the continental U.S., Hawaii, Puerto, and the Virgin Islands and 1:1,000,000 in Alaska. The dataset was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas were studied, and the probable classification and extent of the soils were determined. Map unit composition was determined by transecting or sampling areas on the more detailed maps and expanding the data statistically to characterize the entire map unit. This dataset consists of georeferenced vector digital data and tabular digital data. The map data were collected in 1- by 2-degree topographic quadrangle units and merged into a seamless national dataset. The soil map units are linked to attributes in the National Soil Information system relational database, which gives the proportionate extent of the component soils and their properties. These data provide information about soil features on or near the surface of the Earth. Data were collected as part of the National Cooperative Soil Survey. These data are intended for geographic display and analysis at the state, regional, and national level. The data should be displayed and analyzed at scales appropriate for 1:250,000-scale data.; abstract: This dataset consists of general soil association units. It was developed by the National Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) dataset published in 1994. It consists of a broad based inventory of soils and non-soil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped of 1:250,000 in the continental U.S., Hawaii, Puerto, and the Virgin Islands and 1:1,000,000 in Alaska. The dataset was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas were studied, and the probable classification and extent of the soils were determined. Map unit composition was determined by transecting or sampling areas on the more detailed maps and expanding the data statistically to characterize the entire map unit. This dataset consists of georeferenced vector digital data and tabular digital data. The map data were collected in 1- by 2-degree topographic quadrangle units and merged into a seamless national dataset. The soil map units are linked to attributes in the National Soil Information system relational database, which gives the proportionate extent of the component soils and their properties. These data provide information about soil features on or near the surface of the Earth. Data were collected as part of the National Cooperative Soil Survey. These data are intended for geographic display and analysis at the state, regional, and national level. The data should be displayed and analyzed at scales appropriate for 1:250,000-scale data.
[From The Landmap Project: Introduction, "http://www.landmap.ac.uk/background/intro.html"]
A joint project to provide orthorectified satellite image mosaics of Landsat,
SPOT and ERS radar data and a high resolution Digital Elevation Model for the
whole of the UK. These data will be in a form which can easily be merged with
other data, such as road networks, so that any user can quickly produce a
precise map of their area of interest.
Predominately aimed at the UK academic and educational sectors these data and
software are held online at the Manchester University super computer facility
where users can either process the data remotely or download it to their local
network.
Please follow the links to the left for more information about the project or
how to obtain data or access to the radar processing system at MIMAS. Please
also refer to the MIMAS spatial-side website,
"http://www.mimas.ac.uk/spatial/", for related remote sensing materials.
Map Index Sheets from Block and Lot Grid of Property Assessment and based on aerial photography, showing 1983 datum with solid line and NAD 27 with 5 second grid tics and italicized grid coordinate markers and outlines of map sheet boundaries. Each grid square is 3500 x 4500 feet. Each Index Sheet contains 16 lot/block sheets, labeled from left to right, top to bottom (4 across, 4 down): A, B, C, D, E, F, G, H, J, K, L, M, N, P, R, S. The first (4) numeric characters in a parcelID indicate the Index sheet in which the parcel can be found, the alpha character identifies the block in which most (or all) of the property lies.