The Digital Geologic-GIS Map of the Chesnee Quadrangle, South Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (ches_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (ches_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (cowp_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cowp_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ches_geology_metadata_faq.pdf). Please read the cowp_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: South Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ches_geology_metadata.txt or ches_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Geospatial data about Charleston County, South Carolina County Tax Districts. Export to CAD, GIS, PDF, CSV and access via API.
The Digital Geologic-GIS Map of the Cowpens Quadrangle, South Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (cwpn_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (cwpn_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (cowp_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cowp_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (cwpn_geology_metadata_faq.pdf). Please read the cowp_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: South Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cwpn_geology_metadata.txt or cwpn_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of Cowpens National Battlefield and Vicinity, South Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (cowp_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (cowp_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (cowp_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cowp_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (cowp_geology_metadata_faq.pdf). Please read the cowp_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: South Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cowp_geology_metadata.txt or cowp_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of Fort Sumter and Fort Moultrie National Historical Park and Vicinity, South Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (fosu_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (fosu_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (fosu_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (fosu_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (fosu_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (fosu_geology_metadata_faq.pdf). Please read the fosu_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (fosu_geology_metadata.txt or fosu_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .
Points represent the location of permitted agricultural facilites, including animal houses, burial sites and centroids of potential manure utilization areas (MUA). Although a MUA is permitted for land application, the permittee may never have actually used the field for land application. Use records are maintained by the permittee.
The Digital Geologic Map of Fort Sumter National Monument and vicinity, South Carolina is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (fosu_metadata.txt; available at http://nrdata.nps.gov/fosu/nrdata/geology/gis/fosu_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (fosu_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 17N. That data is within the area of interest of Fort Sumter National Monument, Charles Pinckney National Historic Site and Fort Moultrie National Monument.
This data represents the graphic portrayal of land parcels and their spatial relationships throughout York County, South Carolina. Land parcel boundaries are also the basis for and define coincident boundaries for other layers, such as zoning, subdivisions, public safety response (ORI -Police, Fire, EMS) and Jurisdiction.Boundaries are established from a variety of sources including cadastral plats, subdivision plats, deeds, land contracts, right-of-way plats, and others. Each feature represents a parcel of land that is inventoried by a unique identifier, referred to as a “Tax Map Id” number. This dataset also includes multi-unit structures which have separate tax accounts for each unit, such as condominium units, represented as stacked polygon features. The parent parcel number [ParentTaxID] for the land parcel is distinguished from the child parcel [TaxMapID] for the condo unit. This data does not include mobile home data. Attributes include data stored within the Esri Fabric data model combined with those from the CAMA data. Examples of relevant attributes include:the [TaxMapID], [ParcelID] and [AprAccNum] can be used to uniquely identify each parcel. the [MailAddr1], [MailAddr2], [MailApt], [MailCity], [MailState], [MailZip] can be used as the full tax billing address for the owner.The [Owner1], [Owner2], [Owner3] describe the owner.the [YearBuilt] offers the oldest year a building was built on the property, reference this web map for info on potential lead pipes on premises;the area of the parcel in acres [GISSizeAC] as calculated from the parcel geometry and also the [deededAcres] from recorded documents, and ;the date that the parcel boundary was last edited [DATE_MODIFIED].How were parcels compiled? This layer was initially developed as an ink-on-mylar property maps maintained by the County from the early 1970's through around 2001.In the 1990s, the county procured services to convert parcels from source documents, however the product delivered in 2000 used a methodology which lost fidelity of source documents. Since then, county staff adhered to this same methodology in their daily work. Between 2001 and 2015 staff used an Esri topology to maintain parcel data in ArcMap. In 2015 the county migrated to Parcel Fabric (ArcMap) and then in 2021 to Pro (2.6/10.8.1 Enterprise) Parcel Fabric. In May of 2021 the county began outsourcing maintenance of parcel edits. This has worked well and was initiated in part to ensure a higher standard of editing practice was adhered to, but also to fulfil a shortage of skilled staff in the job market. County parcel mapping staff remain responsible for simple transactions (merge, split), compilation of materials to create vendor edit request task, and QC or review of vendor work. In Q4 2021, County Staff performed a needs assessment to review alignment issues between parcels and other layers and the internal business requirements for data alignment to parcels. They determined boundary layers must remain coincident with parcels, which are used in decision making by citizens and across many areas of government. Also, it was determined that our parcels had many errors from 20 years of edits in a non-Fabric data model and the previous editing practices. The county will be remapping parcels using ARP grant funding in the 2023-2024 timeframe. Upon delivery in 2024, data maintenance practices will ensure ongoing alignment with parcels.Year BuiltTo obtain the year built for structures on a property, use the 'Buildings' table available through our open data portal.Once you have downloaded the 'Buildings' table and this parcels layer, consider processing the building records in some way to join or perform a relate as there could be many buildings on one parcel, using the following fields:Parcel.AprAccNum = BuildingTable.PropertyID(Note: 98,227 parcels have 1 building, 647 parcels have 2 buildings, 272 have 3 or more)Data SchemaReview the Parcel schema document (PDF) to gain a better understand of the data fields. Access the file geodatabase source data in SC State Plane coordinate system
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Map data for the original land grants in the present Enoree District of the Sumter National Forest, with dates and names of grantees. This data set consists of a GIS shapefile mosaic of the original survey plats for land grants from the king of England and the state of South Carolina for the years 1749-1851 for the Enoree District of the Sumter National Forest.
Dataset DOI: http://dx.doi.org/10.3886/ICPSR37078.v1
© Greenville County GIS Division, Greenville, South Carolina
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This publication includes a black and white georeferenced 1903 map of Cooper River holdings of the E.P. Burton Company from the publication “Working plan for forest lands in Berkeley County, South Carolina”. The map includes the area of the Santee Experimental Forest.The 1903 map of Cooper River holdings shows the stock of pine and cypress trees in stands within and around the Santee Experimental Forest.Original map is currently archived at the National Archives in Atlanta, Georgia.
This layer is a component of Internet Map.
© Berkeley County GIS
This layer is a component of Internet Map.
© Berkeley County GIS
© Greenville County GIS Division, Greenville, South Carolina
The initial intent in developing this dataset was to support responses to questions regarding amounts of estuarine marsh, estuarine shoreline, extent of tidal creeks and so-forth, and to provide a base layer to perform analysis.
These data were automated to provide an accurate high-resolution historical shoreline of Ashley River, SC suitable as a geographic information system (GIS) data layer. These data are derived from shoreline maps that were produced by the NOAA National Ocean Service including its predecessor agencies which were based on an office interpretation of imagery and/or field survey. The NGS attribut...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Carolina Traffic Fatality Count Site Data
In 2018 Amy Almond, a DFP intern, worked on the project "Coastal Impoundment Mapping in the Southeast". An impoundment is defined as an area within which water levels are actively managed to benefit wetland-dependent wildlife.The goal was to create a comprehensive GIS map layer of impoundments within the Southern Atlantic Coastal Plain. Amy contacted managers of National Wildlife Refuges and state-managed lands within the range (NC, SC, GA, FL) for information about impoundments on their lands.The information provided by the project will help determine potential locations to manage for Black Rails or to work with partners to create new habitat. This information will also benefit other waterbirds and waterfowl since their habitat overlaps.In order to obtain the impoundment information, Amy emailed each of the land managers with a short data request. She asked them to send any GIS shapefiles they had of impounded areas on their lands and sent a Google Form questionnaire to ask specific questions about how they manage these areas, like primary species management, vegetation, and water depth.Most of the land managers responded to the Google Form we created to collect descriptive management data. Some folks sent an email or management plan document, which did not contain the same information as the Google Form.Total impoundments: 750Total impoundment acreage: 121,129.52Total impoundment hectares: 49,019.37Federal ImpoundmentsRefuge Complexes: 15Refuges: 63Impoundments: 329Acres: 63,977Hectares: 25,890.57 State ImpoundmentsStates: 4State-managed lands: 48Impoundments: 421Acres: 57,152.52Hectares: 23,128.8 North Carolina ImpoundmentsImpoundments: 143Acres: 19,699.88Hectares: 7,972.26 South Carolina ImpoundmentsImpoundments: 322Acres: 50,451.69Hectares: 20,597.08 Georgia ImpoundmentsImpoundments: 93Acres: 7,116.85Hectares: 2,880.08Florida ImpoundmentsImpoundments: 192Acres: 43,861.1Hectares: 17,749.96
The zip file contains a large tiff mosaic stitched together from a series of aerial photographs of the Calhoun CZO area taken in 1933, when the area was being acquired by the US Forest Service. USFS archaeologist Mike Harmon delivered the black-and-white photographs, known to him as the 'Sumter National Forest Purchase Aerials', to us in a box. The photographs include most of the Enoree District of the Sumter National Forest, including the entirety of the Calhoun CZO, not just the long-term plots and small watersheds. The photographs were scanned and georectified, then color-balanced and stitched together following 'seams' - high-contrast features such as rivers and roads ('seamlined'). In addition to the main tiff are four files that can be used to properly geolocate the composite image in ArcGIS.
The multilayer pdf file includes a smaller version of the seamlined 1933 aerial photography mosaic raster layer, as well as this aerial mosaic transparent over slope map (for a 3D-like 1933 image raster). Other layers include contours, roads, boundaries, sampling locations, 1.5 m DEM, 1.5m slope, 1m 2013 NAIP aerial imagery, and 2014 canopy height. The pdf file includes both 'interfluve order' and 'landshed order.' These two layers mean the same thing, but the landshed is the area unit around the interfluve that is used for statistics; this dataset has been QC'ed. The Interfluve Order network was used to delineate the landsheds and agrees with it >95% of the time, but has a few inaccuracies (it was automated by the computer) that were fixed manually. Use the network for viewing and considering the landscape at large, but for the specific interfluve order, check the color of the 'Landshed Order' dataset to verify its accuracy.
Date Range Comments: The exact date these photos were taken is unknown, but the year is thought to be 1933.The flight date is prior to the USFS land purchases for the Enoree District of the Sumter National Forest; the photos are thus known as the "pre-purchase photos").
The Digital Geologic-GIS Map of the Chesnee Quadrangle, South Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (ches_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (ches_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (cowp_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cowp_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ches_geology_metadata_faq.pdf). Please read the cowp_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: South Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ches_geology_metadata.txt or ches_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).