75 datasets found
  1. u

    Data from: Q-Herilearn Scale data

    • portaldelaciencia.uva.es
    • scidb.cn
    • +2more
    Updated 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olaia Fontal Merillas; Arias, Victor B.; Arias, Benito; Olaia Fontal Merillas; Arias, Victor B.; Arias, Benito (2023). Q-Herilearn Scale data [Dataset]. https://portaldelaciencia.uva.es/documentos/668fc414b9e7c03b01bd3eb7
    Explore at:
    Dataset updated
    2023
    Authors
    Olaia Fontal Merillas; Arias, Victor B.; Arias, Benito; Olaia Fontal Merillas; Arias, Victor B.; Arias, Benito
    Description

    The Q-Herilearn scale is a probabilistic scale of summative estimates that measures different aspects of the learning process in Heritage Education. It consists of seven factors (Knowing, Understanding, Respecting, Valuing, Caring, Enjoying and Transmitting). Each dimension is measured by means of seven indicators scored on a 4-point frequency response scale (1 = Never or almost never; 2 = Sometimes; 3 = Quite often; 4 = Always or almost always). Sufficient evidence of content validity has been obtained through a concordance analysis —which employed multi-facet logistic models (Many Facet Rasch Model MFRM)— of the scores of 40 judges, who estimated the relevance, adequacy, and clarity of each item. The metric properties of the scores were determined using ESEM —Exploratory Structural Equation Modeling—, EGA Exploratory Graph Analysis and Network Analysis. The scale was calibrated using Item Response Theory models: the Nominal Response Model and the Graded Response Model.

  2. u

    Atlas of Canada National Scale Data 1:5,000,000 - Rivers

    • data.urbandatacentre.ca
    • beta.data.urbandatacentre.ca
    • +1more
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Atlas of Canada National Scale Data 1:5,000,000 - Rivers [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-eda6b104-a284-5701-93b0-8dcde6777450
    Explore at:
    Dataset updated
    Oct 1, 2024
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    The Atlas of Canada National Scale Data 1:5,000,000 Series consists of boundary, coast, island, place name, railway, river, road, road ferry and waterbody data sets that were compiled to be used for atlas medium scale (1:5,000,000 to 1:15,000,000) mapping. These data sets have been integrated so that their relative positions are cartographically correct. Any data outside of Canada included in the data sets is strictly to complete the context of the data.

  3. c

    Asia Pacific Hyper-scale Data Center market USD 32544.7 million in 2024 and...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Asia Pacific Hyper-scale Data Center market USD 32544.7 million in 2024 and will grow at a compound annual growth rate (CAGR) of 8.2% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/regional-analysis/asia-pacific-hyper-scale-data-center-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Asia–Pacific, Region
    Description

    Asia Pacific Hyper-scale Data Center market USD 32544.7 million in 2024 and will grow at a compound annual growth rate (CAGR) of 8.2% from 2024 to 2031. Expanding IT infrastructure and growing presence of major players is expected to aid the sales to USD 55207.4 million by 2031

  4. c

    North America Hyper-scale Data Center market size will be USD 56616.8...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jun 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2022). North America Hyper-scale Data Center market size will be USD 56616.8 million in 2024. [Dataset]. https://www.cognitivemarketresearch.com/regional-analysis/north-america-hyper-scale-data-center-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 15, 2022
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    North America, United States, Region
    Description

    North America Hyper-scale Data Center market size will be USD 56616.8 million in 2024 and will grow at a compound annual growth rate (CAGR) of 4.4% from 2024 to 2031. North America has emerged as a prominent participant, and its sales revenue is estimated to reach USD 83242.5 Million by 2031. This growth is mainly attributed to the region's widespread use of digital services, from streaming and social media to cloud computing and IoT.

  5. Données sur l'échelle du saumon de l'expédition du saumon dans le golfe...

    • data.npafc.org
    • catalogue.cioos.ca
    • +1more
    html
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard Beamish (2025). Données sur l'échelle du saumon de l'expédition du saumon dans le golfe d'Alaska 2020 [Dataset]. https://data.npafc.org/dataset/ca-cioos_bbf34546-7e29-483e-89f7-43b8d59dc772
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset provided by
    North Pacific Anadromous Fish Commissionhttp://npafc.org/
    iys
    Authors
    Richard Beamish
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 12, 2020 - Apr 5, 2020
    Area covered
    Variables measured
    Other
    Description

    Les écailles ont été prélevées sur le saumon dans l'océan Pacifique Nord-Est et analysées pour obtenir des informations sur l'âge. Ces données ont été recueillies dans le cadre de l'expédition en haute mer du golfe d'Alaska de l'Année internationale du saumon (IYS) menée en mars et avril 2020, afin d'améliorer encore la compréhension des facteurs ayant une incidence sur la survie hivernale du saumon en début de mer.

  6. c

    The Latin America Hyper-scale Data Center market will be USD 7077.1 million...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Aug 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2024). The Latin America Hyper-scale Data Center market will be USD 7077.1 million in 2024 and is estimated to grow at a compound annual growth rate (CAGR) of 5.6% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/regional-analysis/south-america-hyper-scale-data-center-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Aug 24, 2024
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Latin America, Region
    Description

    The Latin America Hyper-scale Data Center market will be USD 7077.1 million in 2024 and is estimated to grow at a compound annual growth rate (CAGR) of 5.6% from 2024 to 2031. The market is foreseen to reach USD 11429.7 million by 2031 owing to Investments in high-speed internet and telecommunications networks.

  7. u

    Atlas of Canada National Scale Data 1:1,000,000 - Coasts and Coastal Islands...

    • data.urbandatacentre.ca
    • beta.data.urbandatacentre.ca
    • +2more
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Atlas of Canada National Scale Data 1:1,000,000 - Coasts and Coastal Islands [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-f030716b-2fdb-5468-8dd8-03a958683b9d
    Explore at:
    Dataset updated
    Oct 1, 2024
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    The Atlas of Canada National Scale Data 1:1,000,000 Series consists of boundary, coast, island, place name, railway, river, road, road ferry and waterbody data sets that were compiled to be used for atlas large scale (1:1,000,000 to 1:4,000,000) mapping. These data sets have been integrated so that their relative positions are cartographically correct. Any data outside of Canada included in the data sets is strictly to complete the context of the data.

  8. D

    Hyper Scale Data Centres Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Hyper Scale Data Centres Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-hyper-scale-data-centres-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Sep 22, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Hyper Scale Data Centres Market Outlook



    The global market size for Hyper Scale Data Centres was valued at USD 35.6 billion in 2023 and is projected to reach USD 92.4 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 11.1% during the forecast period. The market is being driven by the increasing demand for scalable and efficient data handling capabilities, as well as the rising adoption of cloud services by enterprises worldwide.



    One of the primary growth factors for the Hyper Scale Data Centres market is the exponential increase in data generation across various sectors. The proliferation of Internet of Things (IoT) devices, the rise of big data analytics, and the advancement in artificial intelligence and machine learning technologies have necessitated sophisticated data storage and processing solutions. Hyper Scale Data Centres, with their ability to scale resources seamlessly, offer a robust solution to manage these vast amounts of data efficiently, thereby fueling market growth.



    Another significant growth driver is the increasing adoption of cloud computing services. As businesses continue to transition from traditional on-premises data centers to cloud-based solutions, the demand for Hyper Scale Data Centres has surged. Cloud service providers are investing heavily in hyper-scalable infrastructure to meet the growing needs of enterprises for high-performance computing, data storage, and network capabilities. This shift towards cloud-centric operations is expected to sustain the growth of the Hyper Scale Data Centres market over the forecast period.



    The need for enhanced data security and regulatory compliance is also contributing to the market's expansion. Businesses are increasingly focusing on ensuring the security and integrity of their data amidst a growing number of cyber threats. Hyper Scale Data Centres offer advanced security features, including encryption, access controls, and multi-factor authentication, which are critical for industries such as BFSI, healthcare, and government. The ability of Hyper Scale Data Centres to provide robust security measures while maintaining operational efficiency is a key factor driving their adoption.



    From a regional perspective, North America holds a significant share of the Hyper Scale Data Centres market, driven by the presence of major cloud service providers and technological advancements in the region. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, owing to the rapid digital transformation across emerging economies, increasing investments in data center infrastructure, and the growing demand for cloud-based services. Europe, Latin America, and the Middle East & Africa are also anticipated to contribute to market growth, albeit at varying growth rates.



    Component Analysis



    The Hyper Scale Data Centres market is segmented by component into hardware, software, and services. Each of these components plays a critical role in the overall functioning and efficiency of hyper-scale data centers. The hardware segment includes servers, storage devices, networking equipment, and other physical infrastructure essential for building and operating data centers. Due to the need for high-performance and reliable hardware, this segment is expected to hold a substantial market share.



    Servers are the backbone of Hyper Scale Data Centres, providing the computational power required to process and analyze large datasets. With advancements in server technology, including higher processing power, energy efficiency, and scalability, the hardware segment continues to evolve. Additionally, the growing emphasis on environmentally sustainable data center operations has led to the adoption of energy-efficient servers and cooling systems, further driving the hardware market.



    Software plays an equally important role in the Hyper Scale Data Centres ecosystem. This segment encompasses data center management software, virtualization software, and security solutions. Effective software solutions are crucial for managing the complex operations of hyper-scale data centers, ensuring optimal resource allocation, and maintaining high levels of security and compliance. With increasing cyber threats and the need for streamlined operations, the demand for advanced software solutions is on the rise.



    The services component includes consulting, implementation, and maintenance services. As businesses continue to adopt hyper-scale data center solutions, the need for expert guidance and support becomes para

  9. u

    Atlas of Canada National Scale Data 1:15,000,000 - Rivers

    • beta.data.urbandatacentre.ca
    • data.urbandatacentre.ca
    • +2more
    Updated Sep 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Atlas of Canada National Scale Data 1:15,000,000 - Rivers [Dataset]. https://beta.data.urbandatacentre.ca/dataset/gov-canada-ff0ecee9-ee79-58d8-bb06-7ba234677661
    Explore at:
    Dataset updated
    Sep 13, 2024
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    The Atlas of Canada National Scale Data 1:15,000,000 Series consists of boundary, coast and coastal islands, place name, railway, river, road, road ferry and waterbody data sets that were compiled to be used for atlas small scale (1:15,000,000 and 1:30,000,000) mapping. These data sets have been integrated so that their relative positions are cartographically correct. Any data outside of Canada included in the data sets is strictly to complete the context of the data.

  10. Données sur l'échelle du saumon de l'expédition du saumon dans le golfe de...

    • data.npafc.org
    • catalogue.cioos.ca
    • +1more
    html
    Updated Jul 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksey Somov; Albina Kanzeparova; Richard Beamish (2025). Données sur l'échelle du saumon de l'expédition du saumon dans le golfe de l'Alaska 2019 [Dataset]. https://data.npafc.org/dataset/ca-cioos_e40270e1-caf0-4912-a1eb-41b15cdf1854
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset provided by
    North Pacific Anadromous Fish Commissionhttp://npafc.org/
    iys
    Authors
    Aleksey Somov; Albina Kanzeparova; Richard Beamish
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 18, 2019 - Mar 14, 2019
    Area covered
    Variables measured
    Other
    Description

    Les écailles ont été prélevées sur le saumon dans l'océan Pacifique Nord-Est et analysées pour obtenir des informations sur l'âge. Ces données ont été recueillies dans le cadre de l'expédition en haute mer du golfe d'Alaska de l'Année internationale du saumon (IYS) menée en février et mars 2019, afin d'améliorer encore la compréhension des facteurs ayant une incidence sur la survie hivernale du saumon en début de mer.

  11. d

    Data from: Interrogating genomic-scale data for Squamata (lizards, snakes,...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frank Burbrink; Felipe Grazziotin; R. Pyron; David Cundall; Stephen Donnellan; Frances Irish; Scott Keogh; Fred Kraus; Robert Murphy; Brice Noonan; Christopher Raxworthy; Sara Ruane; Alan Lemmon; Emily Lemmon; Hussam Zaher (2025). Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships [Dataset]. http://doi.org/10.5061/dryad.sm6jb0p
    Explore at:
    Dataset updated
    Jun 4, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Frank Burbrink; Felipe Grazziotin; R. Pyron; David Cundall; Stephen Donnellan; Frances Irish; Scott Keogh; Fred Kraus; Robert Murphy; Brice Noonan; Christopher Raxworthy; Sara Ruane; Alan Lemmon; Emily Lemmon; Hussam Zaher
    Time period covered
    Sep 13, 2019
    Description

    Genomics is narrowing uncertainty in the phylogenetic structure for many amniote groups. For one of the most diverse and species-rich groups, the squamate reptiles (lizards and snakes, amphisbaenians), an inverse correlation between the number of taxa and loci sampled still persists across all publications using DNA sequence data and reaching a consensus on the relationships among them has been highly problematic. Here, we use high-throughput sequence data from 289 samples covering 75 families of squamates to address phylogenetic affinities, estimate divergence times, and characterize residual topological uncertainty in the presence of genome scale data. Importantly, we address genomic support for the traditional taxonomic groupings Scleroglossa and Macrostomata using novel machine-learning techniques. We interrogate genes using various metrics inherent to these loci, including parsimony-informative sites, phylogenetic informativeness, length, gaps, number of substitutions, and site con...

  12. m

    Mexico Hyper Scale Data Center Market Size and Forecasts 2030

    • mobilityforesights.com
    pdf
    Updated Apr 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mobility Foresights (2025). Mexico Hyper Scale Data Center Market Size and Forecasts 2030 [Dataset]. https://mobilityforesights.com/product/mexico-hyper-scale-data-center-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Apr 25, 2025
    Dataset authored and provided by
    Mobility Foresights
    License

    https://mobilityforesights.com/page/privacy-policyhttps://mobilityforesights.com/page/privacy-policy

    Description

    In Mexico Hyper Scale Data Center Market, The cloud and IT sector is expected to remain the largest consumer as cloud adoption grows.

  13. NOAA/WDS Paleoclimatology - Laguna Pallcacocha, Ecuador 15KYr Sediment Gray...

    • catalog.data.gov
    Updated Oct 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact); NOAA World Data Service for Paleoclimatology (Point of Contact) (2023). NOAA/WDS Paleoclimatology - Laguna Pallcacocha, Ecuador 15KYr Sediment Gray Scale Data [Dataset]. https://catalog.data.gov/dataset/noaa-wds-paleoclimatology-laguna-pallcacocha-ecuador-15kyr-sediment-gray-scale-data1
    Explore at:
    Dataset updated
    Oct 1, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Lake. The data include parameters of paleolimnology with a geographic location of Ecuador. The time period coverage is from 15090 to -26 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.

  14. m

    China Hyper Scale Data Center Market Size and Forecasts 2030

    • mobilityforesights.com
    pdf
    Updated Nov 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mobility Foresights (2024). China Hyper Scale Data Center Market Size and Forecasts 2030 [Dataset]. https://mobilityforesights.com/product/china-hyper-scale-data-center-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Nov 8, 2024
    Dataset authored and provided by
    Mobility Foresights
    License

    https://mobilityforesights.com/page/privacy-policyhttps://mobilityforesights.com/page/privacy-policy

    Description

    In China Hyper Scale Data Center Market, The cloud and IT sector is expected to remain the largest consumer as cloud adoption grows.

  15. Original Scale Data: COCOMO_Lipidomics

    • figshare.com
    xlsx
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ujjwal Neogi (2022). Original Scale Data: COCOMO_Lipidomics [Dataset]. http://doi.org/10.6084/m9.figshare.14509452.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 7, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Ujjwal Neogi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Untargeted lipidomics data

  16. c

    Europe's Hyper-scale Data Center market USD 42462.6 million in 2024 and will...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). Europe's Hyper-scale Data Center market USD 42462.6 million in 2024 and will grow at a compound annual growth rate (CAGR) of 4.7% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/regional-analysis/europe-hyper-scale-data-center-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 12, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Europe, Region
    Description

    Europe's Hyper-scale Data Center market USD 42462.6 million in 2024 and will grow at a compound annual growth rate (CAGR) of 4.7% from 2024 to 2031. European digital traffic increased tremendously due to the surge in electronic transactions, systems, and digital information is expected to aid sales to USD 61245.7 million by 2031

  17. f

    The identified I-O relationships, parameters of the Hill equation, and gain...

    • figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Takaho Tsuchiya; Masashi Fujii; Naoki Matsuda; Katsuyuki Kunida; Shinsuke Uda; Hiroyuki Kubota; Katsumi Konishi; Shinya Kuroda (2023). The identified I-O relationships, parameters of the Hill equation, and gain and time constant calculated from the linear ARX model in Fig 4. [Dataset]. http://doi.org/10.1371/journal.pcbi.1005913.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS Computational Biology
    Authors
    Takaho Tsuchiya; Masashi Fujii; Naoki Matsuda; Katsuyuki Kunida; Shinsuke Uda; Hiroyuki Kubota; Katsumi Konishi; Shinya Kuroda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The identified I-O relationships, parameters of the Hill equation, and gain and time constant calculated from the linear ARX model in Fig 4.

  18. d

    Local and landscape-scale data describing patterns of coastal wetland loss...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Local and landscape-scale data describing patterns of coastal wetland loss in the Texas Chenier Plain, U.S.A., 2017-2018 [Dataset]. https://catalog.data.gov/dataset/local-and-landscape-scale-data-describing-patterns-of-coastal-wetland-loss-in-the-tex-2017
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Texas, United States
    Description

    We characterized coastal wetland responses to flooding stress by measuring vegetation cover, wetland elevation and water elevation in healthy and degrading wetlands dominated by Spartina patens. Wetland elevation was measured using real-time kinematic survey methods. Vegetation cover was determined by visual estimation methods, and water elevation was measured using in situ continuous recorders. In addition to these local-scale responses, we also measured landscape-scale patterns of land and water aggregation or fragmentation using remotely sensed data (Jones et al., 2018). Associated products: Jones, W.R., Hartley, S.B., Stagg, C.L., and Osland, M.J. 2018. Land-water classification for selected sites in McFaddin NWR and J.D. Murphree WMA: U.S. Geological Survey data release, https://doi.org/10.5066/F7736Q51.

  19. TSd5.RDS - CD40 inhibiton in AMI on d5, seq on d7 and d14

    • zenodo.org
    Updated Oct 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Lang; Alexander Lang (2023). TSd5.RDS - CD40 inhibiton in AMI on d5, seq on d7 and d14 [Dataset]. http://doi.org/10.5281/zenodo.10015471
    Explore at:
    Dataset updated
    Oct 17, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander Lang; Alexander Lang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ##### CD40 inhibiton in AMI on d5, seq on d7 and d14

    # Load necessary libraries for data manipulation, analysis, and visualization

    library(dplyr)

    library(Seurat)

    library(patchwork)

    library(plyr)

    # Set the working directory to the folder containing the data

    setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/01_TS_d5_paper/03_CD40 inhibition on day 5, seq on day 7 and 14/938-2_cellranger_count/outs")

    # Read the M0 dataset from the 10X Genomics format

    pbmc.data <- Read10X(data.dir = "filtered_feature_bc_matrix/")

    RNA <- pbmc.data$`Gene Expression`

    ADT <- pbmc.data$`Antibody Capture`

    HST <- pbmc.data$`Multiplexing Capture`

    # Load the Matrix package

    library(Matrix)

    # Hashtag 1, 2 and 3 are marking the mouse replicates per condition

    # Subset the rows based on row names

    subsetted_rows <- c("TotalSeq-B0301", "TotalSeq-B0302", "TotalSeq-B0303")

    animals_data <- HST[subsetted_rows, , drop = FALSE]

    # Hashtag 4, 5, 6, 7 are representing DMSO d7, TS d7, DMSO d14 and TS d14

    subsetted_rows <- c(""TotalSeq-B0304", "TotalSeq-B0305", "TotalSeq-B0306", "TotalSeq-B0307")

    treatment_data <- HST[subsetted_rows, , drop = FALSE]

    #Create a Seurat obeject and more assays to combine later

    RNA <- CreateSeuratObject(counts = RNA)

    ADT <- CreateAssayObject(counts = ADT)

    Mice <- CreateAssayObject(counts = animals_data)

    Treatment <- CreateAssayObject(counts = treatment_data)

    seurat <- RNA

    #Add the Assays

    seurat[["ADT"]] <- ADT

    seurat[["HST_Mice"]] <- Mice

    seurat[["HST_Treatment"]] <- Treatment

    #Check for AK Names

    rownames(seurat[["ADT"]])

    #Cluster cells on the basis of their scRNA-seq profiles

    # perform visualization and clustering steps

    DefaultAssay(seurat) <- "RNA"

    seurat <- NormalizeData(seurat)

    seurat <- FindVariableFeatures(seurat)

    seurat <- ScaleData(seurat)

    seurat <- RunPCA(seurat, verbose = FALSE)

    seurat <- FindNeighbors(seurat, dims = 1:30)

    seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)

    seurat <- RunUMAP(seurat, dims = 1:30)

    DimPlot(seurat, label = TRUE)

    FeaturePlot(seurat, features = "Col1a1", order = T)

    # Normalize ADT data,

    DefaultAssay(seurat) <- "ADT"

    seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)

    #Demultiplex cells based on Mouse_Hashtag Enrichment

    seurat <- NormalizeData(seurat, assay = "HST_Mice", normalization.method = "CLR")

    seurat <- HTODemux(seurat, assay = "HST_Mice", positive.quantile = 0.60)

    #Visualize demultiplexing results

    # Global classification results

    table(seurat$HST_Mice_classification.global)

    DimPlot(seurat, group.by = "HST_Mice_classification")

    #Demultiplex cells based on Treatment_Hashtag Enrichment

    seurat <- NormalizeData(seurat, assay = "HST_Treatment", normalization.method = "CLR")

    seurat <- HTODemux(seurat, assay = "HST_Treatment", positive.quantile = 0.60)

    #Visualize demultiplexing results

    # Global classification results

    table(seurat$HST_Treatment_classification.global)

    DimPlot(seurat, group.by = "HST_Treatment_classification")

    Idents(seurat) <- seurat$HST_Treatment_classification

    pbmc.singlet <- subset(seurat, idents = "Negative", invert = T)

    Idents(pbmc.singlet) <- pbmc.singlet$HST_Mice_classification

    pbmc.singlet <- subset(pbmc.singlet, idents = "Negative", invert = T)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")

    #Redo the clssification to remove the doublettes

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.99)

    table(pbmc.singlet$HST_Treatment_classification.global)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_classification")

    pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.99)

    table(pbmc.singlet$HST_Mice_classification.global)

    pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.60)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.60)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")

    DimPlot(pbmc.singlet, group.by = "HST_Mice_maxID")

    seurat <- pbmc.singlet

    seurat$mice <- seurat$HST_Mice_maxID

    seurat$treatment <- seurat$HST_Treatment_maxID

    library(plyr)

    seurat$treatment <- revalue(seurat$treatment, c(

    "TotalSeq-B0304" = "DMSO_d7",

    "TotalSeq-B0305" = "TS_d7",

    "TotalSeq-B0306" = "DMSO_d14",

    "TotalSeq-B0307" = "TS_d14"

    ))

    library(plyr)

    seurat$mice <- revalue(seurat$mice, c(

    "TotalSeq-B0301" = "1",

    "TotalSeq-B0302" = "2",

    "TotalSeq-B0303" = "3"

    ))

    #Cluster cells on the basis of their scRNA-seq profiles without doublettes

    # perform visualization and clustering steps

    DefaultAssay(seurat) <- "RNA"

    seurat <- NormalizeData(seurat)

    seurat <- FindVariableFeatures(seurat)

    seurat <- ScaleData(seurat)

    seurat <- RunPCA(seurat, verbose = FALSE)

    seurat <- FindNeighbors(seurat, dims = 1:30)

    seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)

    seurat <- RunUMAP(seurat, dims = 1:30)

    DimPlot(seurat, label = TRUE)

    DefaultAssay(seurat) <- "ADT"

    seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)

    setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/01_TS_d5_paper/03_CD40 inhibition on day 5, seq on day 7 and 14/Analyse")

    saveRDS(seurat, file= "TSd5.v0.1.RDS")

  20. CD40 activation and the effect on Neutrophils

    • zenodo.org
    Updated Oct 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Lang; Alexander Lang (2023). CD40 activation and the effect on Neutrophils [Dataset]. http://doi.org/10.5281/zenodo.10019624
    Explore at:
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander Lang; Alexander Lang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ##### CD40 activation and the effect on Neutrophils

    # Load necessary libraries for data manipulation, analysis, and visualization

    library(dplyr)

    library(Seurat)

    library(patchwork)

    library(plyr)

    # Set the working directory to the folder containing the data

    setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/05_FGK45 Wirkung auf Neutros - scRNAseq/938-1_cellranger_count/outs")

    # Read the M0 dataset from the 10X Genomics format

    pbmc.data <- Read10X(data.dir = "filtered_feature_bc_matrix/")

    RNA <- pbmc.data$`Gene Expression`

    ADT <- pbmc.data$`Antibody Capture`

    HST <- pbmc.data$`Multiplexing Capture`

    # Load the Matrix package

    library(Matrix)

    # Hashtag 1, 2 and 3 are marking the organs (heart, blood, spleen)

    # Subset the rows based on row names

    subsetted_rows <- c("TotalSeq-B0301", "TotalSeq-B0302", "TotalSeq-B0303")

    animals_data <- HST[subsetted_rows, , drop = FALSE]

    # Hashtag 4, 5, 6, 7 are representing IgG_1, IgG_1, FGK45_1 and FGK45_1

    subsetted_rows <- c("TotalSeq-B0304", "TotalSeq-B0305", "TotalSeq-B0306", "TotalSeq-B0307")

    treatment_data <- HST[subsetted_rows, , drop = FALSE]

    #Create a Seurat obeject and more assays to combine later

    RNA <- CreateSeuratObject(counts = RNA)

    ADT <- CreateAssayObject(counts = ADT)

    Organ <- CreateAssayObject(counts = animals_data)

    Treatment <- CreateAssayObject(counts = treatment_data)

    seurat <- RNA

    #Add the Assays

    seurat[["ADT"]] <- ADT

    seurat[["HST_Mice"]] <- Organ

    seurat[["HST_Treatment"]] <- Treatment

    #Check for AK Names

    rownames(seurat[["ADT"]])

    #Cluster cells on the basis of their scRNA-seq profiles

    # perform visualization and clustering steps

    DefaultAssay(seurat) <- "RNA"

    seurat <- NormalizeData(seurat)

    seurat <- FindVariableFeatures(seurat)

    seurat <- ScaleData(seurat)

    seurat <- RunPCA(seurat, verbose = FALSE)

    seurat <- FindNeighbors(seurat, dims = 1:30)

    seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)

    seurat <- RunUMAP(seurat, dims = 1:30)

    DimPlot(seurat, label = TRUE)

    FeaturePlot(seurat, features = "S100a9", order = T)

    # Normalize ADT data,

    DefaultAssay(seurat) <- "ADT"

    seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)

    #Demultiplex cells based on Mouse_Hashtag Enrichment

    seurat <- NormalizeData(seurat, assay = "HST_Mice", normalization.method = "CLR")

    seurat <- HTODemux(seurat, assay = "HST_Mice", positive.quantile = 0.99)

    #Visualize demultiplexing results

    # Global classification results

    table(seurat$HST_Mice_classification.global)

    DimPlot(seurat, group.by = "HST_Mice_classification")

    #Demultiplex cells based on Treatment_Hashtag Enrichment

    seurat <- NormalizeData(seurat, assay = "HST_Treatment", normalization.method = "CLR")

    seurat <- HTODemux(seurat, assay = "HST_Treatment", positive.quantile = 0.99)

    #Visualize demultiplexing results

    # Global classification results

    table(seurat$HST_Treatment_classification.global)

    DimPlot(seurat, group.by = "HST_Treatment_classification")

    Idents(seurat) <- seurat$HST_Treatment_classification

    pbmc.singlet <- subset(seurat, idents = "Negative", invert = T)

    Idents(pbmc.singlet) <- pbmc.singlet$HST_Mice_classification

    pbmc.singlet <- subset(pbmc.singlet, idents = "Negative", invert = T)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")

    #Redo the clssification to remove the doublettes

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.99)

    table(pbmc.singlet$HST_Treatment_classification.global)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_classification")

    pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.99)

    table(pbmc.singlet$HST_Mice_classification.global)

    pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.60)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.60)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")

    DimPlot(pbmc.singlet, group.by = "HST_Mice_maxID")

    seurat <- pbmc.singlet

    seurat$organ <- seurat$HST_Mice_maxID

    seurat$mouse <- seurat$HST_Treatment_maxID

    seurat$treatment <- seurat$HST_Treatment_maxID

    library(plyr)

    seurat$treatment <- revalue(seurat$treatment, c(

    "TotalSeq-B0304" = "IgG",

    "TotalSeq-B0305" = "IgG",

    "TotalSeq-B0306" = "FGK45",

    "TotalSeq-B0307" = "FGK45"

    ))

    library(plyr)

    seurat$organ <- revalue(seurat$organ, c(

    "TotalSeq-B0301" = "heart",

    "TotalSeq-B0302" = "blood",

    "TotalSeq-B0303" = "spleen"

    ))

    seurat$mouse <- revalue(seurat$mouse, c(

    "TotalSeq-B0304" = "1",

    "TotalSeq-B0305" = "2",

    "TotalSeq-B0306" = "3",

    "TotalSeq-B0307" = "4"

    ))

    #Cluster cells on the basis of their scRNA-seq profiles without doublettes

    # perform visualization and clustering steps

    DefaultAssay(seurat) <- "RNA"

    seurat <- NormalizeData(seurat)

    seurat <- FindVariableFeatures(seurat)

    seurat <- ScaleData(seurat)

    seurat <- RunPCA(seurat, verbose = FALSE)

    seurat <- FindNeighbors(seurat, dims = 1:30)

    seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)

    seurat <- RunUMAP(seurat, dims = 1:30)

    DimPlot(seurat, label = TRUE)

    DefaultAssay(seurat) <- "ADT"

    seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)

    setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/05_FGK45 Wirkung auf Neutros - scRNAseq/Analyse")

    saveRDS(seurat, file = "FGK45_heart_blood_spleen.v0.1.RDS")

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Olaia Fontal Merillas; Arias, Victor B.; Arias, Benito; Olaia Fontal Merillas; Arias, Victor B.; Arias, Benito (2023). Q-Herilearn Scale data [Dataset]. https://portaldelaciencia.uva.es/documentos/668fc414b9e7c03b01bd3eb7

Data from: Q-Herilearn Scale data

Related Article
Explore at:
Dataset updated
2023
Authors
Olaia Fontal Merillas; Arias, Victor B.; Arias, Benito; Olaia Fontal Merillas; Arias, Victor B.; Arias, Benito
Description

The Q-Herilearn scale is a probabilistic scale of summative estimates that measures different aspects of the learning process in Heritage Education. It consists of seven factors (Knowing, Understanding, Respecting, Valuing, Caring, Enjoying and Transmitting). Each dimension is measured by means of seven indicators scored on a 4-point frequency response scale (1 = Never or almost never; 2 = Sometimes; 3 = Quite often; 4 = Always or almost always). Sufficient evidence of content validity has been obtained through a concordance analysis —which employed multi-facet logistic models (Many Facet Rasch Model MFRM)— of the scores of 40 judges, who estimated the relevance, adequacy, and clarity of each item. The metric properties of the scores were determined using ESEM —Exploratory Structural Equation Modeling—, EGA Exploratory Graph Analysis and Network Analysis. The scale was calibrated using Item Response Theory models: the Nominal Response Model and the Graded Response Model.

Search
Clear search
Close search
Google apps
Main menu