26 datasets found
  1. h

    sceneflow

    • huggingface.co
    Updated Jun 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    maomao (2025). sceneflow [Dataset]. https://huggingface.co/datasets/olivermao/sceneflow
    Explore at:
    Dataset updated
    Jun 8, 2025
    Authors
    maomao
    Description

    olivermao/sceneflow dataset hosted on Hugging Face and contributed by the HF Datasets community

  2. r

    Spring: A Light Field Scene Flow Dataset

    • researchdata.edu.au
    Updated Jul 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taubman David; Naman Aous; Gray James; University of New South Wales; University of New South Wales; David Taubman; Aous Thabit Naman (2024). Spring: A Light Field Scene Flow Dataset [Dataset]. http://doi.org/10.26190/UNSWORKS/30292
    Explore at:
    Dataset updated
    Jul 2024
    Dataset provided by
    University of New South Wales
    UNSW, Sydney
    Authors
    Taubman David; Naman Aous; Gray James; University of New South Wales; University of New South Wales; David Taubman; Aous Thabit Naman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains 9 x 9 Views of frame-pairs from several shots from the Blender Open Source movie, "Spring". Ground Truth scene flow and depth-maps are stored as .exr files.

    The files are grouped according to scene. There are six scenes: - 01_025_A - 02_020_A - 02_040_A - 02_055_A - 05_030_A - 08_040_A

    A brief summary of important meta data is included below:

    Scene Frame Pair Spacing (mm) Focal length (mm) Frame Rate (fps) 01_025_A 840, 841 0.5 35 96 02_020_A 510, 511 3.0 21 72 02_040_A 360, 361 9.0 16 72 02_055_A 2064, 2065 1.0 65 384 05_030_A 6390, 6391 3.0 21 360 08_040_A 145, 146 110.0 18 24

    The original framerate was 24 fps.

    A file containing meta data for each scene called meta_data.json is located within the relevant .zip file for each scene. It contains: - Focal Length (mm) - Sensor Width (px) - Sensor height (px) - Horizontal Resolution (px) - Vertical resolution (px) - Number of views in the x direction - Number of views in the y direction - Baseline or spacing between cameras (mm)

    The coordinate for each view is given by the folder name Cam (x, y). Ground truth data is given for the central view in the folder Cam (0, 0). Each image is saved as a .png file.

    The ground truth flow fields in the .exr files are stored as a 3D array with dimensions (height, width, 3). At a given row and column, the motion vector is given in the order (z, y, x). For example, [84, 42, 0] has the component of the flow field in the z direction at row 84, column 42 and, [42, 84, 2] has the x component of the flow field at row 42, column 84. Each component of the vector field is given in the unit, metres per frame (m / frame).

    If you use this work please cite:

    @phdthesis{Gray_2024, author = {James L. Gray}, title = {Gradient Consistency: A New Take on Variational Optical Flow and Disparity Estimation}, school = {University of New South Wales}, address = {Sydney, NSW}, year = {2024}, month = {jul} }

  3. t

    nuScenes Scene Flow - Dataset - LDM

    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). nuScenes Scene Flow - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/nuscenes-scene-flow
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    Self-driving dataset for scene flow estimation

  4. a

    flyingthings3d_one_sixteenth_baseline_opticalflow.tar.bz2

    • academictorrents.com
    bittorrent
    Updated May 15, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikolaus Mayer (2019). flyingthings3d_one_sixteenth_baseline_opticalflow.tar.bz2 [Dataset]. https://academictorrents.com/details/e04f244538a23dbfc55e1012b4c718c4cb9cddc3
    Explore at:
    bittorrent(352740882095)Available download formats
    Dataset updated
    May 15, 2019
    Dataset authored and provided by
    Nikolaus Mayer
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    This torrent contains the "Optical Flow" data for a one-sixteenth-baseline version of the "FlyingThings3D" dataset from the CVPR 2016 paper "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation" by Mayer et al. ().

  5. e

    Spring: A High-Resolution High-Detail Dataset and Benchmark for Scene Flow,...

    • b2find.eudat.eu
    Updated Oct 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Spring: A High-Resolution High-Detail Dataset and Benchmark for Scene Flow, Optical Flow and Stereo - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/5ab90fad-ea51-5684-a905-d72bc6707fb0
    Explore at:
    Dataset updated
    Oct 10, 2024
    Description

    The Spring dataset contains files for scene flow, optical flow and stereo estimation. For easier handling, we organized them into sub-directories: train split: train_frame_left.zip: left camera frames train_frame_right.zip: right camera frames train_disp1_left.zip: left-to-right disparity in the reference frame train_disp1_right.zip: right-to-left disparity in the reference frame train_disp2_FW_left.zip: left-to-right disparity in the future/forward target frame train_disp2_BW_left.zip: left-to-right disparity in the past/backward target frame train_disp2_FW_right.zip: right-to-left disparity in the future/forward target frame train_disp2_BW_right.zip: right-to-left disparity in the past/backward target frame train_flow_FW_left.zip: left forward optical flow train_flow_BW_left.zip: left backward optical flow train_flow_FW_right.zip: right forward optical flow train_flow_BW_right.zip: right backward optical flow train_cam_data.zip: camera data: intrinsics, extrinsics, focal distance train_maps.zip: additional maps: detail, match, rigid, sky test split: test_frame_left.zip: left camera frames test_frame_right.zip: right camera frames test_cam_data.zip: camera data: intrinsics File formats: images and maps are given in png format optical flow files are given in HDF5 file format and named .flo5 disparity files are given in HDF5 file format and named .dsp5

  6. i

    Data from: Graph matching problems for GraphFlow – 6D Large Displacement...

    • research-explorer.ista.ac.at
    Updated Feb 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alhaija, Hassan; Kondermann, Daniel; Rother, Carsten; Sellent, Anita (2024). Graph matching problems for GraphFlow – 6D Large Displacement Scene Flow [Dataset]. https://research-explorer.ista.ac.at/record/5573
    Explore at:
    Dataset updated
    Feb 21, 2024
    Authors
    Alhaija, Hassan; Kondermann, Daniel; Rother, Carsten; Sellent, Anita
    Description

    Graph matching problems for large displacement optical flow of RGB-D images.

  7. f

    Results of EPE by adding different number of PA modules on Scene flow...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xuefei Yu; Jinan Gu; Zedong Huang; Zhijie Zhang (2023). Results of EPE by adding different number of PA modules on Scene flow dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0263735.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Xuefei Yu; Jinan Gu; Zedong Huang; Zhijie Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania
    Description

    Results of EPE by adding different number of PA modules on Scene flow dataset.

  8. e

    RobustSpring: Benchmarking Robustness to Image Corruptions for Optical Flow,...

    • b2find.eudat.eu
    Updated Jul 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). RobustSpring: Benchmarking Robustness to Image Corruptions for Optical Flow, Scene Flow and Stereo - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/70eb7f85-dd2e-5ba6-897a-982e1ff659b6
    Explore at:
    Dataset updated
    Jul 26, 2025
    Description

    The RobustSpring dataset contains the image corruption data files for scene flow, optical flow and stereo estimation with the Spring dataset. Note that this repository contains only the Spring test data files. For easier handling, we organized them into sub-directories by image corruption type: brightness.zip : brightness image corruption contrast.zip : contrast image corruption defocus_blur.zip : defocus_blur image corruption elastic_transform.zip : elastic_transform image corruption fog.zip : fog image corruption frost.zip : frost image corruption gaussian_blur.zip : gaussian_blur image corruption gaussian_noise.zip : gaussian_noise image corruption glass_blur.zip : glass_blur image corruption impulse_noise.zip : impulse_noise image corruption jpeg_compression.zip : jpeg_compression image corruption motion_blur.zip : motion_blur image corruption pixelate.zip : pixelate image corruption rain.zip : rain image corruption saturate.zip : saturate image corruption shot_noise.zip : shot_noise image corruption snow.zip : snow image corruption spatter.zip : spatter image corruption speckle_noise.zip : speckle_noise image corruption zoom_blur.zip : zoom_blur image corruption Each image corruption folder is internally organized as follows: test : Indicates that this is the test proportion of the Spring dataset

  9. t

    Flot: Scene flow on point clouds guided by optimal transport. - Dataset -...

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Flot: Scene flow on point clouds guided by optimal transport. - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/flot--scene-flow-on-point-clouds-guided-by-optimal-transport-
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    Scene flow estimation on point clouds guided by optimal transport.

  10. f

    Analysis of performance with different numbers of hourglasses on Scene Flow...

    • plos.figshare.com
    xls
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sen Lin; Xinxin Zhuo; Baozhen Qi (2024). Analysis of performance with different numbers of hourglasses on Scene Flow [19]. [Dataset]. http://doi.org/10.1371/journal.pone.0301093.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 25, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Sen Lin; Xinxin Zhuo; Baozhen Qi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of performance with different numbers of hourglasses on Scene Flow [19].

  11. a

    flyingthings3d_one_sixteenth_baseline_disparitychange.tar.bz2

    • academictorrents.com
    bittorrent
    Updated May 15, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikolaus Mayer (2019). flyingthings3d_one_sixteenth_baseline_disparitychange.tar.bz2 [Dataset]. https://academictorrents.com/details/9c31634dd91d8df5632655ba28acd8a979d368ed
    Explore at:
    bittorrent(131667761926)Available download formats
    Dataset updated
    May 15, 2019
    Dataset authored and provided by
    Nikolaus Mayer
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    This torrent contains the "Disparity Change" data for a one-sixteenth-baseline version of the "FlyingThings3D" dataset from the CVPR 2016 paper "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation" by Mayer et al. ().

  12. O

    FlyingThings3D

    • opendatalab.com
    zip
    Updated Mar 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technical University of Munich (2023). FlyingThings3D [Dataset]. https://opendatalab.com/OpenDataLab/flyingthings3d
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 17, 2023
    Dataset provided by
    University of Freiburg
    Technical University of Munich
    License

    https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.htmlhttps://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html

    Description

    FlyingThings3D is a synthetic dataset for optical flow, disparity and scene flow estimation. It consists of everyday objects flying along randomized 3D trajectories. We generated about 25,000 stereo frames with ground truth data. Instead of focusing on a particular task (like KITTI) or enforcing strict naturalism (like Sintel), we rely on randomness and a large pool of rendering assets to generate orders of magnitude more data than any existing option, without running a risk of repetition or saturation.

  13. t

    FlowNet3D: Learning scene flow in 3D point clouds. - Dataset - LDM

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). FlowNet3D: Learning scene flow in 3D point clouds. - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/flownet3d--learning-scene-flow-in-3d-point-clouds-
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    Learning scene flow in 3D point clouds.

  14. t

    Neural scene flow fields for space-time view synthesis of dynamic scenes -...

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Neural scene flow fields for space-time view synthesis of dynamic scenes - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/neural-scene-flow-fields-for-space-time-view-synthesis-of-dynamic-scenes
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    A neural scene flow fields for space-time view synthesis of dynamic scenes.

  15. f

    Ablation study results of PSM-Net, GWC-Net and PA-Net on the datasets of...

    • figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xuefei Yu; Jinan Gu; Zedong Huang; Zhijie Zhang (2023). Ablation study results of PSM-Net, GWC-Net and PA-Net on the datasets of Scene flow [8]. [Dataset]. http://doi.org/10.1371/journal.pone.0263735.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Xuefei Yu; Jinan Gu; Zedong Huang; Zhijie Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The results of PSM-Net [21] and GWC-Net [13] are trained with published code with our batch size, evaluation settings for fair comparison.

  16. d

    Data from: PLT-D3: A High-fidelity Dynamic Driving Simulation Dataset for...

    • search.dataone.org
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tokarsky, Joshua; Abdulhafiz, Ibrahim; Ayyalasomayajula, Satya; Mohsen, Mostafa; Rao, Navya G.; Forbes, Adam (2024). PLT-D3: A High-fidelity Dynamic Driving Simulation Dataset for Stereo Depth and Scene Flow [Dataset]. http://doi.org/10.7910/DVN/36SQKM
    Explore at:
    Dataset updated
    Sep 24, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Tokarsky, Joshua; Abdulhafiz, Ibrahim; Ayyalasomayajula, Satya; Mohsen, Mostafa; Rao, Navya G.; Forbes, Adam
    Description

    A Dynamic-weather Driving Dataset designed specifically to enhance autonomous driving systems' adaptability to diverse weather conditions. Includes stereo image pairs (left and right RGB) with ground truth depth, optical flow and delta disparity.

  17. f

    Quantitative evaluation of Fast-GFM on ETH3D [33] and Middlebury [34].

    • plos.figshare.com
    xls
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sen Lin; Xinxin Zhuo; Baozhen Qi (2024). Quantitative evaluation of Fast-GFM on ETH3D [33] and Middlebury [34]. [Dataset]. http://doi.org/10.1371/journal.pone.0301093.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 25, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Sen Lin; Xinxin Zhuo; Baozhen Qi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Quantitative evaluation of Fast-GFM on ETH3D [33] and Middlebury [34].

  18. a

    flyingthings3d_one_sixteenth_baseline_cleanpass.tar.bz2

    • academictorrents.com
    bittorrent
    Updated May 15, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikolaus Mayer (2019). flyingthings3d_one_sixteenth_baseline_cleanpass.tar.bz2 [Dataset]. https://academictorrents.com/details/de4602c3f53ba86d1542a48645e940298174d3cf
    Explore at:
    bittorrent(41071552590)Available download formats
    Dataset updated
    May 15, 2019
    Dataset authored and provided by
    Nikolaus Mayer
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    This torrent contains the "Cleanpass" image data for a one-sixteenth-baseline version of the "FlyingThings3D" dataset from the CVPR 2016 paper "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation" by Mayer et al. ().

  19. The results of the ablation comparison on Scene Flow.

    • plos.figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zedong Huang; Jinan Gu; Jing Li; Xuefei Yu (2023). The results of the ablation comparison on Scene Flow. [Dataset]. http://doi.org/10.1371/journal.pone.0251657.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Zedong Huang; Jinan Gu; Jing Li; Xuefei Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The results of the ablation comparison on Scene Flow.

  20. The experiment of ASPP structure on Scene Flow.

    • plos.figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zedong Huang; Jinan Gu; Jing Li; Xuefei Yu (2023). The experiment of ASPP structure on Scene Flow. [Dataset]. http://doi.org/10.1371/journal.pone.0251657.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Zedong Huang; Jinan Gu; Jing Li; Xuefei Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The experiment of ASPP structure on Scene Flow.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
maomao (2025). sceneflow [Dataset]. https://huggingface.co/datasets/olivermao/sceneflow

sceneflow

olivermao/sceneflow

Explore at:
Dataset updated
Jun 8, 2025
Authors
maomao
Description

olivermao/sceneflow dataset hosted on Hugging Face and contributed by the HF Datasets community

Search
Clear search
Close search
Google apps
Main menu