In California in 2022, 20.5 percent of students enrolled in K-12 public schools were white, 11.9 percent were Asian, and 56.2 percent were Hispanic. In the United States overall, 44.7 percent of K-12 public school students were white, 5.5 percent were Asian, and 28.7 percent were Hispanic.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Data includes: board and school information, grade 3 and 6 EQAO student achievements for reading, writing and mathematics, and grade 9 mathematics EQAO and OSSLT. Data excludes private schools, Education and Community Partnership Programs (ECPP), summer, night and continuing education schools. How Are We Protecting Privacy? Results for OnSIS and Statistics Canada variables are suppressed based on school population size to better protect student privacy. In order to achieve this additional level of protection, the Ministry has used a methodology that randomly rounds a percentage either up or down depending on school enrolment. In order to protect privacy, the ministry does not publicly report on data when there are fewer than 10 individuals represented. * Percentages depicted as 0 may not always be 0 values as in certain situations the values have been randomly rounded down or there are no reported results at a school for the respective indicator. * Percentages depicted as 100 are not always 100, in certain situations the values have been randomly rounded up. The school enrolment totals have been rounded to the nearest 5 in order to better protect and maintain student privacy. The information in the School Information Finder is the most current available to the Ministry of Education at this time, as reported by schools, school boards, EQAO and Statistics Canada. The information is updated as frequently as possible. This information is also available on the Ministry of Education's School Information Finder website by individual school. Descriptions for some of the data types can be found in our glossary. School/school board and school authority contact information are updated and maintained by school boards and may not be the most current version. For the most recent information please visit: https://data.ontario.ca/dataset/ontario-public-school-contact-information.
In 2022, there were about 14.36 million students of Hispanic background enrolled in public elementary and secondary schools in the United States, up from about 12.1 million in 2012. This is compared to about 22.06 million white students who were enrolled in that same year.
Report on Demographic Data in New York City Public Schools, 2020-21Enrollment counts are based on the November 13 Audited Register for 2020. Categories with total enrollment values of zero were omitted. Pre-K data includes students in 3-K. Data on students with disabilities, English language learners, and student poverty status are as of March 19, 2021. Due to missing demographic information in rare cases and suppression rules, demographic categories do not always add up to total enrollment and/or citywide totals. NYC DOE "Eligible for free or reduced-price lunch” counts are based on the number of students with families who have qualified for free or reduced-price lunch or are eligible for Human Resources Administration (HRA) benefits. English Language Arts and Math state assessment results for students in grade 9 are not available for inclusion in this report, as the spring 2020 exams did not take place. Spring 2021 ELA and Math test results are not included in this report for K-8 students in 2020-21. Due to the COVID-19 pandemic’s complete transformation of New York City’s school system during the 2020-21 school year, and in accordance with New York State guidance, the 2021 ELA and Math assessments were optional for students to take. As a result, 21.6% of students in grades 3-8 took the English assessment in 2021 and 20.5% of students in grades 3-8 took the Math assessment. These participation rates are not representative of New York City students and schools and are not comparable to prior years, so results are not included in this report. Dual Language enrollment includes English Language Learners and non-English Language Learners. Dual Language data are based on data from STARS; as a result, school participation and student enrollment in Dual Language programs may differ from the data in this report. STARS course scheduling and grade management software applications provide a dynamic internal data system for school use; while standard course codes exist, data are not always consistent from school to school. This report does not include enrollment at District 75 & 79 programs. Students enrolled at Young Adult Borough Centers are represented in the 9-12 District data but not the 9-12 School data. “Prior Year” data included in Comparison tabs refers to data from 2019-20. “Year-to-Year Change” data included in Comparison tabs indicates whether the demographics of a school or special program have grown more or less similar to its district or attendance zone (or school, for special programs) since 2019-20. Year-to-year changes must have been at least 1 percentage point to qualify as “More Similar” or “Less Similar”; changes less than 1 percentage point are categorized as “No Change”. The admissions method tab contains information on the admissions methods used for elementary, middle, and high school programs during the Fall 2020 admissions process. Fall 2020 selection criteria are included for all programs with academic screens, including middle and high school programs. Selection criteria data is based on school-reported information. Fall 2020 Diversity in Admissions priorities is included for applicable middle and high school programs. Note that the data on each school’s demographics and performance includes all students of the given subgroup who were enrolled in the school on November 13, 2020. Some of these students may not have been admitted under the admissions method(s) shown, as some students may have enrolled in the school outside the centralized admissions process (via waitlist, over-the-counter, or transfer), and schools may have changed admissions methods over the past few years. Admissions methods are only reported for grades K-12. "3K and Pre-Kindergarten data are reported at the site level. See below for definitions of site types included in this report. Additionally, please note that this report excludes all students at District 75 sites, reflecting slightly lower enrollment than our total of 60,265 students
This report is prepared pursuant to Local Law 226 of 2019 regarding the demographics of school staff in New York City public schools. The law specifies the reporting of demographics (gender and race or ethnicity) for schools staff in three categories: teaching staff, leadership staff, and other professional and paraprofessional staff. Consistent with the law, the data is further disaggregated to show length of experience in the school and length of experience in the title. The data is shown for each school and aggregated for each community school district, by borough, and citywide. The following additional notes apply:
This map shows schools, school districts, and population density throughout the US. Click on the map to learn more about the school districts and schools within an area. A few things you can learn within this map:How many public/private schools fall within the district?What type of population density lives within this district? Socioeconomic factors about the Census Tracts which fall within the district:School enrollment of under 19 by grade Children living below the poverty level Children with no internet at home Children without a working parentRace/ethnicity breakdown of the population within the districtFor more information about the data sources:Socioeconomic factors:The American Community Survey (ACS) helps us understand the population in the US. This app uses the 5-year estimates, and the data is updated annually when the U.S. Census Bureau releases the newest estimates. For detailed metadata, visit the links in the bullet points above. Current School Districts layer:The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated school district boundary composite files that include public elementary, secondary, and unified school district boundaries clipped to the U.S. shoreline. School districts are single-purpose administrative units designed by state and local officials to organize and provide public education for local residents. District boundaries are collected for NCES by the U.S. Census Bureau to support educational research and program administration, and the boundaries are essential for constructing district-level estimates of the number of children in poverty.The Census Bureau’s School District Boundary Review program (SDRP) (https://www.census.gov/programs-surveys/sdrp.html) obtains the boundaries, names, and grade ranges from state officials, and integrates these updates into Census TIGER. Census TIGER boundaries include legal maritime buffers for coastal areas by default, but the NCES composite file removes these buffers to facilitate broader use and cleaner cartographic representation. The NCES EDGE program collaborates with the U.S. Census Bureau’s Education Demographic, Geographic, and Economic Statistics (EDGE) Branch to develop the composite school district files. The inputs for this data layer were developed from Census TIGER/Line and represent the most current boundaries available. For more information about NCES school district boundary data, see https://nces.ed.gov/programs/edge/Geographic/DistrictBoundaries.Private Schools layer:This Private Schools feature dataset is composed of private elementary and secondary education facilities in the United States as defined by the Private School Survey (PSS, https://nces.ed.gov/surveys/pss/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2017-2018 school year. This includes all prekindergarten through 12th grade schools as tracked by the PSS. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 2675 new records, modifications to the spatial location and/or attribution of 19836 records, the removal of 254 records no longer applicable. Additionally, 10,870 records were removed that previously had a STATUS value of 2 (Unknown; not represented in the most recent PSS data) and duplicate records identified by ORNL.Public Schools layer:This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/ ), National Center for Education Statistics (NCES, https://nces.ed.gov ), US Department of Education for the 2017-2018 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 3065 new records, modifications to the spatial location and/or attribution of 99,287 records, and removal of 2996 records not present in the NCES CCD data.WorldPop Populated Foorprint layer:This layer represents an estimate of the footprint of human settlement in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis.This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers. WorldPop modeled this population footprint based on imagery datasets and population data from national statistical organizations and the United Nations. Zooming in to very large scales will often show discrepancies between reality and this or any model. Like all data sources imagery and population counts are subject to many types of error, thus this gridded footprint contains errors of omission and commission. The imagery base maps available in ArcGIS Online were not used in WorldPop's model. Imagery only informs the model of characteristics that indicate a potential for settlement, and cannot intrinsically indicate whether any or how many people live in a building.
Annual school accounts of NYC public school student populations served by grade, special programs, ethnicity, gender and Title I funded programs.
Enrollment is a head count of all students receiving their primary PK-12 educational services through Wisconsin public schools. This map is in a series of maps that show enrollments by district for a particular student group (demographic) for the 2023-2024 school year. Additional enrollment data are available for the public to view on the WISEdash Public Portal. Enrollment data is sourced from the WISEdata system. Enrollment Count is the number of students enrolled on specific dates as determined by school enrollment/exit dates that cover those dates. Percent Enrollment by Student Group is a percent of the enrollment count for all student groups combined. DPI collects data to meet all required school, district, state, and federal reporting mandates, e.g., Every Student Succeeds Act (ESSA), Individuals with Disabilities Education Act (IDEA), and Title II Higher Education Act. These data inform education research and data analysis. Multiple teams from IT and content areas work together at DPI to build tools for data collection, to support districts in data collection, and to report on and facilitate the use of data based on federal and state reporting mandates. Through the DPI dashboard and reporting tools, DPI staff, teachers, administrators, parents, and researchers are better able to understand and improve educational outcomes for Wisconsin students.A person's race or ethnicity is the racial and/or ethnic group to which the person belongs or with which he or she most identifies. Ethnicity is self-reported as either Hispanic/Not Hispanic. Race is self-reported as any of the following 5 categories: Asian, American Indian or Alaskan Native, Black or African American, Native Hawaiian or other Pacific Islander, or White. The data displayed reflects the race/ethnicity that is reported by school districts to DPI.An economically disadvantaged student is one who is identified by Direct Certification (only if participating in the National School Lunch Program) OR a member of a household that meets the income eligibility guidelines for free or reduced-price meals (less than or equal to 185 percent of Federal Poverty Guidelines) under the National School Lunch Program (NSLP) OR identified by an alternate mechanism, such as the alternate household income form.English Learner status is any student whose first language, or whose parents' or guardians' first language, is not English and whose level of English proficiency requires specially designed instruction, either in English or in the first language or both, in order for the student to fully benefit from classroom instruction and to be successful in attaining the state's high academic standards expected of all students at their grade level.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical Dataset of Midway School is provided by PublicSchoolReview and contain statistics on metrics:Total Students Trends Over Years (1987-2023),Total Classroom Teachers Trends Over Years (1990-2023),Distribution of Students By Grade Trends,Student-Teacher Ratio Comparison Over Years (1990-2023),Asian Student Percentage Comparison Over Years (1988-2023),Hispanic Student Percentage Comparison Over Years (1991-2023),Black Student Percentage Comparison Over Years (1991-2023),White Student Percentage Comparison Over Years (1991-2023),Two or More Races Student Percentage Comparison Over Years (2013-2023),Diversity Score Comparison Over Years (1991-2023),Free Lunch Eligibility Comparison Over Years (1992-2023),Reduced-Price Lunch Eligibility Comparison Over Years (2000-2015),Reading and Language Arts Proficiency Comparison Over Years (2011-2022),Math Proficiency Comparison Over Years (2011-2022),Science Proficiency Comparison Over Years (2021-2022),Overall School Rank Trends Over Years (2011-2022)
This dataset includes the attendance rate for public school students PK-12 by student group and by district during the 2021-2022 school year. Student groups include: Students experiencing homelessness Students with disabilities Students who qualify for free/reduced lunch English learners All high needs students Non-high needs students Students by race/ethnicity (Hispanic/Latino of any race, Black or African American, White, All other races) Attendance rates are provided for each student group by district and for the state. Students who are considered high needs include students who are English language learners, who receive special education, or who qualify for free and reduced lunch. When no attendance data is displayed in a cell, data have been suppressed to safeguard student confidentiality, or to ensure that statistics based on a very small sample size are not interpreted as equally representative as those based on a sufficiently larger sample size. For more information on CSDE data suppression policies, please visit http://edsight.ct.gov/relatedreports/BDCRE%20Data%20Suppression%20Rules.pdf.
This dataset contains yearly certified enrollment for all public school districts (with physical boundaries) in Wisconsin for the 2023-2024 school year. This data is also available in the WISEdash Public Portal. This dataset is derived from publicly available files on the WISEdash Download Page. Enrollment Count is the number of students enrolled on specific dates as determined by school enrollment/exit dates that cover those dates. Percent Enrollment by Student Group is a percent of the enrollment count for all student groups combined. Reporting Disability is indicated in the pupil’s individualized education program (IEP) or individualized service plan (ISP). A person's race or ethnicity is the racial and/or ethnic group to which the person belongs or with which he or she most identifies. Ethnicity is self-reported as either Hispanic/Not Hispanic. Race is self-reported as any of the following 5 categories: Asian, American Indian or Alaskan Native, Black or African American, Native Hawaiian or other Pacific Islander, or White. The data displayed reflects the race/ethnicity that is reported by school districts to DPI.An economically disadvantaged student is one who is identified by Direct Certification (only if participating in the National School Lunch Program) OR a member of a household that meets the income eligibility guidelines for free or reduced-price meals (less than or equal to 185 percent of Federal Poverty Guidelines) under the National School Lunch Program (NSLP) OR identified by an alternate mechanism, such as the alternate household income form.English Learner status is any student whose first language, or whose parents' or guardians' first language, is not English and whose level of English proficiency requires specially designed instruction, either in English or in the first language or both, in order for the student to fully benefit from classroom instruction and to be successful in attaining the state's high academic standards expected of all students at their grade level.A child is eligible for the Migrant Education Program (MEP) (and thereby eligible to receive MEP services) if the child: meets the definition of “migratory child” in section 1309(3) of the ESEA,[1] and is an “eligible child” as the term is used in section 1115(c)(1)(A) of the ESEA and 34 C.F.R. § 200.103; and has the basis for the State’s determination that the child is a “migratory child” properly recorded on the national Certificate of Eligibility (COE). Eligibility determination is made by a Wisconsin state migrant recruiter during a face-to-face family interview.
This data package consists of 26 datasets all containing statistical data relating to the population and particular groups within it belonging to different countries, mostly the United States.
In June 2011, 15 New York City public schools closed for poor performance. This report provides data regarding students enrolled in these schools during the 2010-2011 school year, according to the guidelines set by Local Law 2011/043.
https://www.icpsr.umich.edu/web/ICPSR/studies/33321/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/33321/terms
The University of Washington - Beyond High School (UW-BHS) project surveyed students in Washington State to examine factors impacting educational attainment and the transition to adulthood among high school seniors. The project began in 1999 in an effort to assess the impact of I-200 (the referendum that ended Affirmative Action) on minority enrollment in higher education in Washington. The research objectives of the project were: (1) to describe and explain differences in the transition from high school to college by race and ethnicity, socioeconomic origins, and other characteristics, (2) to evaluate the impact of the Washington State Achievers Program, and (3) to explore the implications of multiple race and ethnic identities. Following a successful pilot survey in the spring of 2000, the project eventually included baseline and one-year follow-up surveys (conducted in 2002, 2003, 2004, and 2005) of almost 10,000 high school seniors in five cohorts across several Washington school districts. The high school senior surveys included questions that explored students' educational aspirations and future career plans, as well as questions on family background, home life, perceptions of school and home environments, self-esteem, and participation in school related and non-school related activities. To supplement the 2000, 2002, and 2003 student surveys, parents of high school seniors were also queried to determine their expectations and aspirations for their child's education, as well as their own educational backgrounds and fields of employment. Parents were also asked to report any financial measures undertaken to prepare for their child's continued education, and whether the household received any form of financial assistance. In 2010, a ten-year follow-up with the 2000 senior cohort was conducted to assess educational, career, and familial outcomes. The ten year follow-up surveys collected information on educational attainment, early employment experiences, family and partnership, civic engagement, and health status. The baseline, parent, and follow-up surveys also collected detailed demographic information, including age, sex, ethnicity, language, religion, education level, employment, income, marital status, and parental status.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical Dataset of Rosemont Elementary School is provided by PublicSchoolReview and contain statistics on metrics:Total Students Trends Over Years (1999-2023),Total Classroom Teachers Trends Over Years (1999-2023),Distribution of Students By Grade Trends,Student-Teacher Ratio Comparison Over Years (1999-2023),Asian Student Percentage Comparison Over Years (2001-2023),Hispanic Student Percentage Comparison Over Years (1999-2023),Black Student Percentage Comparison Over Years (1999-2023),White Student Percentage Comparison Over Years (1999-2023),Two or More Races Student Percentage Comparison Over Years (2013-2023),Diversity Score Comparison Over Years (1999-2023),Free Lunch Eligibility Comparison Over Years (1998-2023),Reduced-Price Lunch Eligibility Comparison Over Years (1999-2023),Reading and Language Arts Proficiency Comparison Over Years (2011-2022),Math Proficiency Comparison Over Years (2010-2022),Science Proficiency Comparison Over Years (2021-2022),Overall School Rank Trends Over Years (2010-2022)
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Jonathan Ortiz [source]
This College Completion dataset provides an invaluable insight into the success and progress of college students in the United States. It contains graduation rates, race and other data to offer a comprehensive view of college completion in America. The data is sourced from two primary sources – the National Center for Education Statistics (NCES)’ Integrated Postsecondary Education System (IPEDS) and Voluntary System of Accountability’s Student Success and Progress rate.
At four-year institutions, the graduation figures come from IPEDS for first-time, full-time degree seeking students at the undergraduate level, who entered college six years earlier at four-year institutions or three years earlier at two-year institutions. Furthermore, colleges report how many students completed their program within 100 percent and 150 percent of normal time which corresponds with graduation within four years or six year respectively. Students reported as being of two or more races are included in totals but not shown separately
When analyzing race and ethnicity data NCES have classified student demographics since 2009 into seven categories; White non-Hispanic; Black non Hispanic; American Indian/ Alaskan native ; Asian/ Pacific Islander ; Unknown race or ethnicity ; Non resident with two new categorize Native Hawaiian or Other Pacific Islander combined with Asian plus students belonging to several races. Also worth noting is that different classifications for graduate data stemming from 2008 could be due to variations in time frame examined & groupings used by particular colleges – those who can’t be identified from National Student Clearinghouse records won’t be subjected to penalty by these locations .
When it comes down to efficiency measures parameters like “Awards per 100 Full Time Undergraduate Students which includes all undergraduate completions reported by a particular institution including associate degrees & certificates less than 4 year programme will assist us here while we also take into consideration measures like expenditure categories , Pell grant percentage , endowment values , average student aid amounts & full time faculty members contributing outstandingly towards instructional research / public service initiatives .
When trying to quantify outcomes back up Median Estimated SAT score metric helps us when it is derived either on 25th percentile basis / 75th percentile basis with all these factors further qualified by identifying required criteria meeting 90% threshold when incoming students are considered for relevance . Last but not least , Average Student Aid equalizes amount granted by institution dividing same over total sum received against what was allotted that particular year .
All this analysis gives an opportunity get a holistic overview about performance , potential deficits &
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains data on student success, graduation rates, race and gender demographics, an efficiency measure to compare colleges across states and more. It is a great source of information to help you better understand college completion and student success in the United States.
In this guide we’ll explain how to use the data so that you can find out the best colleges for students with certain characteristics or focus on your target completion rate. We’ll also provide some useful tips for getting the most out of this dataset when seeking guidance on which institutions offer the highest graduation rates or have a good reputation for success in terms of completing programs within normal timeframes.
Before getting into specifics about interpreting this dataset, it is important that you understand that each row represents information about a particular institution – such as its state affiliation, level (two-year vs four-year), control (public vs private), name and website. Each column contains various demographic information such as rate of awarding degrees compared to other institutions in its sector; race/ethnicity Makeup; full-time faculty percentage; median SAT score among first-time students; awards/grants comparison versus national average/state average - all applicable depending on institution location — and more!
When using this dataset, our suggestion is that you begin by forming a hypothesis or research question concerning student completion at a given school based upon observable characteristics like financ...
In 2021, around 3.2 percent of students of Asian descent in the United States reported being the victim of a threat or injury with a weapon at school. In the same year, 8.5 percent of students belonging to two or more races reported being threatened or injured with a weapon at school.
This release contains the latest statistics on school and pupil numbers and their characteristics, including:
School census statistics team
Email mailto:Schools.Statistics@education.gov.uk">Schools.Statistics@education.gov.uk
Ann Claytor 0370 000 2288
In 2022, the high school drop out rate for American Indian/Alaska Natives in the United States was *** percent -- the highest rate of any ethnicity. In comparison, the high school drop out rate for Asians was *** percent.
This file includes Report Card teacher demographic data for the 2017-18 through 2023-24 school years. Data is disaggregated by state, ESD, LEA, and school level. Please review the notes below for more information.
In California in 2022, 20.5 percent of students enrolled in K-12 public schools were white, 11.9 percent were Asian, and 56.2 percent were Hispanic. In the United States overall, 44.7 percent of K-12 public school students were white, 5.5 percent were Asian, and 28.7 percent were Hispanic.