International Journal of Data Science and Analytics Impact Factor 2024-2025 - ResearchHelpDesk - International Journal of Data Science and Analytics - Data Science has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. The field encompasses the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation. The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Background: The assessment of scientific publications is an integral part of the scientific process. Here we investigate three methods of assessing the merit of a scientific paper: subjective post-publication peer review, the number of citations gained by a paper and the impact factor of the journal in which the article was published. Methodology/principle findings: We investigate these methods using two datasets in which subjective post-publication assessments of scientific publications have been made by experts. We find that there are moderate, but statistically significant, correlations between assessor scores, when two assessors have rated the same paper, and between assessor score and the number of citations a paper accrues. However, we show that assessor score depends strongly on the journal in which the paper is published, and that assessors tend to over-rate papers published in journals with high impact factors. If we control for this bias, we find that the correlation between assessor scores and between assessor score and the number of citations is weak, suggesting that scientists have little ability to judge either the intrinsic merit of a paper or its likely impact. We also show that the number of citations a paper receives is an extremely error-prone measure of scientific merit. Finally, we argue that the impact factor is likely to be a poor measure of merit, since it depends on subjective assessment. Conclusions: We conclude that the three measures of scientific merit considered here are poor; in particular subjective assessments are an error-prone, biased and expensive method by which to assess merit. We argue that the impact factor may be the most satisfactory of the methods we have considered, since it is a form of pre-publication review. However, we emphasise that it is likely to be a very error-prone measure of merit that is qualitative, not quantitative.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data sharing is crucial to the advancement of science because it facilitates collaboration, transparency, reproducibility, criticism, and re-analysis. Publishers are well-positioned to promote sharing of research data by implementing data sharing policies. While there is an increasing trend toward requiring data sharing, not all journals mandate that data be shared at the time of publication. In this study, we extended previous work to analyze the data sharing policies of 447 journals across several scientific disciplines, including biology, clinical sciences, mathematics, physics, and social sciences. Our results showed that only a small percentage of journals require data sharing as a condition of publication, and that this varies across disciplines and Impact Factors. Both Impact Factors and discipline are associated with the presence of a data sharing policy. Our results suggest that journals with higher Impact Factors are more likely to have data sharing policies; use shared data in peer review; require deposit of specific data types into publicly available data banks; and refer to reproducibility as a rationale for sharing data. Biological science journals are more likely than social science and mathematics journals to require data sharing.
International Journal of Computational Intelligence Systems Impact Factor 2024-2025 - ResearchHelpDesk - The International Journal of Computational Intelligence Systems is an international peer reviewed journal and the official publication of the European Society for Fuzzy Logic and Technologies (EUSFLAT). The journal publishes original research on all aspects of applied computational intelligence, especially targeting papers demonstrating the use of techniques and methods originating from computational intelligence theory. This is an open access journal, i.e. all articles are immediately and permanently free to read, download, copy & distribute. The journal is published under the CC BY-NC 4.0 user license which defines the permitted 3rd-party reuse of its articles. Aims & Scope The International Journal of Computational Intelligence Systems publishes original research on all aspects of applied computational intelligence, especially targeting papers demonstrating the use of techniques and methods originating from computational intelligence theory. The core theories of computational intelligence are fuzzy logic, neural networks, evolutionary computation and probabilistic reasoning. The journal publishes only articles related to the use of computational intelligence and broadly covers the following topics: Autonomous reasoning Bio-informatics Cloud computing Condition monitoring Data science Data mining Data visualization Decision support systems Fault diagnosis Intelligent information retrieval Human-machine interaction and interfaces Image processing Internet and networks Noise analysis Pattern recognition Prediction systems Power (nuclear) safety systems Process and system control Real-time systems Risk analysis and safety-related issues Robotics Signal and image processing IoT and smart environments Systems integration System control System modelling and optimization Telecommunications Time series prediction Warning systems Virtual reality Web intelligence Deep learning
Ancient Science of Life Impact Factor 2024-2025 - ResearchHelpDesk - Ancient Science of Life, is the oldest peer-reviewed scientific journal in Ayurveda which publishes full-length original papers and reviews on Ayurveda, allied disciplines and all forms of traditional medicines. The journal provides an interdisciplinary platform for linking traditional knowledge with the latest advancements in science. Preferences are given for contributions that interface Ayurveda with disciplines like Botany, Ethnobotany, Ethnomedicine, Ethnopharmacology, Biology, Biotechnology, Medicinal chemistry, Pharmacology, Cclinical pharmacology, Phytochemistry, Pharmacognosy, Clinical research, Animal experiments and the like. Articles on traditional medicines from the perspective of the history of medicine, medical anthropology, medical sociology, epidemiology and community medicine will also be accepted. Original literary studies covering aspects of linguistics, philology, literary criticism and critical editing of the original writings of Ayurveda and other traditional systems of medicine will also be accepted for publication. Abstracting and Indexing Information The journal is registered with the following abstracting partners: Baidu Scholar, CNKI (China National Knowledge Infrastructure), EBSCO Publishing's Electronic Databases, Ex Libris – Primo Central, Google Scholar, Hinari, Infotrieve, National Science Library, ProQuest, TdNet, Wanfang Data The journal is indexed with, or included in, the following: DOAJ, Emerging Sources Citation Index, Index Copernicus, Indian Science Abstracts, Web of Science
Data for impact factor. Fields are descriptive.. Visit https://dataone.org/datasets/sha256%3A0bcdcdcf5e67b4b376267a6df16ade1fba10942c4efe3b8cffe14363e1532fc5 for complete metadata about this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Survey period: 08 April - 08 May, 2014 Top 10 Impact Factor journals in each of 22 categories
Figures https://doi.org/10.6084/m9.figshare.6857273.v1
Article https://doi.org/10.20651/jslis.62.1_20 https://doi.org/10.15068/00158168
International Journal of Scientific and Technology Research Impact Factor 2024-2025 - ResearchHelpDesk - IJSTR - International Journal of Scientific & Technology Research is an open access international journal from diverse fields in sciences, engineering, and technologies Open Access that emphasizes new research, development, and applications. Papers reporting original research or extended versions of already published conference/journal papers are all welcomed. Papers for publication are selected through peer review to ensure originality, relevance, and readability. IJSTR ensures a wide indexing policy to make published papers highly visible to the scientific community. IJSTR is part of the eco-friendly community and favors e-publication mode for being an online 'GREEN journal'. IJSTR is an international peer-reviewed, electronic, online journal published monthly. The aim and scope of the journal is to provide an academic medium and an important reference for the advancement and dissemination of research results that support high-level learning, teaching, and research in the fields of engineering, science, and technology. Original theoretical work and application-based studies, which contribute to a better understanding of engineering, science, and technological challenges, are encouraged. IJSTR Publication Charges IJSTR covers the costs partially through article processing fees. IJSTR expenses are split among peer review administration and management, production of articles in PDF format, editorial costs, electronic composition and production, journal information system, manuscript management system, electronic archiving, overhead expenses, and administrative costs. Moreover, we are providing research paper publishing in minimum available costing such as there are no charges for rejected articles, no submission charges, and no surcharges based on the figures or supplementary data. IJSTR Publication Indexing IJSTR ​​​​​submit all published papers to indexing partners. Indexing totally depends on the content, indexing partner guidelines, and their indexing procedures. This is the reason sometimes indexing happens immediately and sometimes it takes time. Publication with IJSTR does not guarantee that paper will surely be added indexing partner website. The whole process for including any article (s) in the Scopus database is done by the Scopus team only. Journal or Publication House doesn't have any involvement in the decision whether to accept or reject a paper for the Scopus database and cannot influence the processing time of paper. International Journal of Scientific & Technology Research RG Journal Impact: 0.31 * *This value is calculated using ResearchGate data and is based on average citation counts from work published in this journal. The data used in the calculation may not be exhaustive. RG Journal impact history 2018 / 2019 0.31 2017 0.34 2016 0.33 2015 0.36 2014 0.19 Is Ijstr Scopus indexed? Yes IJSTR - International Journal of Scientific & Technology Research Journal is Scopus indexed. please visit for more details - IJSTR Scoups
Supplementary data files associated with this study, which takes a stratified random sample of articles published in 2014 from the top 10 journals in the disciplines of biology, chemistry, mathematics, and physics, as ranked by impact factor. Sampled articles were examined for their reporting of original data or reuse of prior data, and were coded for whether the data was publicly shared or otherwise made available to readers. Other characteristics such as the sharing of software code used for analysis and use of data citation and DOIs for data were examined. The study finds that data sharing practices are still relatively rare in these disciplines’ top journals, but that the disciplines have markedly different practices. Biology shares original data at the highest rate, and physics shares at the lowest rate. Overall, the study finds that only 13% of articles with original data published in 2014 make the data available to others.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Variables include journal identity, 5-year journal impact factor, publication information (year published, volume, issue, and authors), collection date and publication date (used to calculate time since publication), number of tweets, number of users, Twitter reach, and number of Web of Science citations. (CSV)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Using data from a global survey of 630 scientists across diverse disciplines, genders, regions, and experience levels, Structural Equation Modelling (SEM) was employed to assess the influence of 29 factors related to researcher characteristics, research attributes, publication strategies, institutional support, and national roles.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background: Attribution to the original contributor upon reuse of published data is important both as a reward for data creators and to document the provenance of research findings. Previous studies have found that papers with publicly available datasets receive a higher number of citations than similar studies without available data. However, few previous analyses have had the statistical power to control for the many variables known to predict citation rate, which has led to uncertain estimates of the "citation benefit". Furthermore, little is known about patterns in data reuse over time and across datasets. Method and Results: Here, we look at citation rates while controlling for many known citation predictors, and investigate the variability of data reuse. In a multivariate regression on 10,555 studies that created gene expression microarray data, we found that studies that made data available in a public repository received 9% (95% confidence interval: 5% to 13%) more citations than similar studies for which the data was not made available. Date of publication, journal impact factor, open access status, number of authors, first and last author publication history, corresponding author country, institution citation history, and study topic were included as covariates. The citation benefit varied with date of dataset deposition: a citation benefit was most clear for papers published in 2004 and 2005, at about 30%. Authors published most papers using their own datasets within two years of their first publication on the dataset, whereas data reuse papers published by third-party investigators continued to accumulate for at least six years. To study patterns of data reuse directly, we compiled 9,724 instances of third party data reuse via mention of GEO or ArrayExpress accession numbers in the full text of papers. The level of third-party data use was high: for 100 datasets deposited in year 0, we estimated that 40 papers in PubMed reused a dataset by year 2, 100 by year 4, and more than 150 data reuse papers had been published by year 5. Data reuse was distributed across a broad base of datasets: a very conservative estimate found that 20% of the datasets deposited between 2003 and 2007 had been reused at least once by third parties. Conclusion: After accounting for other factors affecting citation rate, we find a robust citation benefit from open data, although a smaller one than previously reported. We conclude there is a direct effect of third-party data reuse that persists for years beyond the time when researchers have published most of the papers reusing their own data. Other factors that may also contribute to the citation benefit are considered.We further conclude that, at least for gene expression microarray data, a substantial fraction of archived datasets are reused, and that the intensity of dataset reuse has been steadily increasing since 2003.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
An academic journal or research journal is a periodical publication in which research articles relating to a particular academic discipline is published, according to Wikipedia. Currently, there are more than 25,000 peer-reviewed journals that are indexed in citation index databases such as Scopus and Web of Science. These indexes are ranked on the basis of various metrics such as CiteScore, H-index, etc. The metrics are calculated from yearly citation data of the journal. A lot of efforts are given to make a metric that reflects the journal's quality.
This is a comprehensive dataset on the academic journals coving their metadata information as well as citation, metrics, and ranking information. Detailed data on their subject area is also given in this dataset. The dataset is collected from the following indexing databases: - Scimago Journal Ranking - Scopus - Web of Science Master Journal List
The data is collected by scraping and then it was cleaned, details of which can be found in HERE.
Rest of the features provide further details on the journal's subject area or category: - Life Sciences: Top level subject area. - Social Sciences: Top level subject area. - Physical Sciences: Top level subject area. - Health Sciences: Top level subject area. - 1000 General: ASJC main category. - 1100 Agricultural and Biological Sciences: ASJC main category. - 1200 Arts and Humanities: ASJC main category. - 1300 Biochemistry, Genetics and Molecular Biology: ASJC main category. - 1400 Business, Management and Accounting: ASJC main category. - 1500 Chemical Engineering: ASJC main category. - 1600 Chemistry: ASJC main category. - 1700 Computer Science: ASJC main category. - 1800 Decision Sciences: ASJC main category. - 1900 Earth and Planetary Sciences: ASJC main category. - 2000 Economics, Econometrics and Finance: ASJC main category. - 2100 Energy: ASJC main category. - 2200 Engineering: ASJC main category. - 2300 Environmental Science: ASJC main category. - 2400 Immunology and Microbiology: ASJC main category. - 2500 Materials Science: ASJC main category. - 2600 Mathematics: ASJC main category. - 2700 Medicine: ASJC main category. - 2800 Neuroscience: ASJC main category. - 2900 Nursing: ASJC main category. - 3000 Pharmacology, Toxicology and Pharmaceutics: ASJC main category. - 3100 Physics and Astronomy: ASJC main category. - 3200 Psychology: ASJC main category. - 3300 Social Sciences: ASJC main category. - 3400 Veterinary: ASJC main category. - 3500 Dentistry: ASJC main category. - 3600 Health Professions: ASJC main category.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here are the data for papers [1,2]. The 1st excel sheet ("theory") has data for Figures 1, 2 of [1]. The 2nd sheet ("JCR data") has data for Figures 3, 4, 5, 6 of [1], and Figure 1 of [2].A. Data in the "theory" sheet:2nd row: Citation count, c, of a single paper published by a journal of Impact Factor f1=10 and biennial size N1. We have chosen c to range from 0 to 1000 in our data. 2nd column: biennial size N1 of journal. We have chosen N1 to range from 10 to 2500 in our data. The data in the cells from C3 to EC283 in the sheet are calculations of the volatility, Δf(c), as defined in Eq. (4) of [1].B. Data in the "JCR data" sheet:The publication and citation data below are from each journal's individual Journal Citation Report for 2017. Impact Factor. These are data from the 2017 Journal Citation Reports (JCR).Journal biennial size, N2Y. This is the number of articles & reviews published in 2015-2016 by each journal.Citation average, f. This is the average number of citations received in 2017 by the articles & reviews published in 2015-2016.Volatility, Δf(c*): This is defined as f - f* (see below for f*)Relative volatility, Δfr(c*): This is defined as (f - f*)/f* (see below for f*)Top-cited paper, c*: This is the citation count of the top-cited paper in each journal, in the year 2017. Citation average excluding top-cited paper, f*: This is the average number of citations received in 2017 by the articles & reviews published in 2015-2016, once we exclude the top-cited paper (article or review). AcknowledgmentThis work uses data, accessed through Columbia University, from the Web of Science and Journal Citation Reports (2017) with explicit consent from Clarivate Analytics.References [1] M. Antonoyiannakis, Impact Factor volatility to a single paper: A comprehensive analysis, Quantitative Science Studies (2020, accepted), https://arxiv.org/abs/1911.02533[2] M. Antonoyiannakis, How a single paper affects the Impact Factor: Implications for Scholarly Publishing, Proceedings of the 17th Conference of the International Society on Scientometrics & Informetrics, vol. II, 2306-2313 (2019), https://arxiv.org/abs/1906.02660
Background This bibliometric analysis examines the top 50 most-cited articles on COVID-19 complications, offering insights into the multifaceted impact of the virus. Since its emergence in Wuhan in December 2019, COVID-19 has evolved into a global health crisis, with over 770 million confirmed cases and 6.9 million deaths as of September 2023. Initially recognized as a respiratory illness causing pneumonia and ARDS, its diverse complications extend to cardiovascular, gastrointestinal, renal, hematological, neurological, endocrinological, ophthalmological, hepatobiliary, and dermatological systems. Methods Identifying the top 50 articles from a pool of 5940 in Scopus, the analysis spans November 2019 to July 2021, employing terms related to COVID-19 and complications. Rigorous review criteria excluded non-relevant studies, basic science research, and animal models. The authors independently reviewed articles, considering factors like title, citations, publication year, journal, impact fa..., A bibliometric analysis of the most cited articles about COVID-19 complications was conducted in July 2021 using all journals indexed in Elsevier’s Scopus and Thomas Reuter’s Web of Science from November 1, 2019 to July 1, 2021. All journals were selected for inclusion regardless of country of origin, language, medical speciality, or electronic availability of articles or abstracts. The terms were combined as follows: (“COVID-19†OR “COVID19†OR “SARS-COV-2†OR “SARSCOV2†OR “SARS 2†OR “Novel coronavirus†OR “2019-nCov†OR “Coronavirus†) AND (“Complication†OR “Long Term Complication†OR “Post-Intensive Care Syndrome†OR “Venous Thromboembolism†OR “Acute Kidney Injury†OR “Acute Liver Injury†OR “Post COVID-19 Syndrome†OR “Acute Cardiac Injury†OR “Cardiac Arrest†OR “Stroke†OR “Embolism†OR “Septic Shock†OR “Disseminated Intravascular Coagulation†OR “Secondary Infection†OR “Blood Clots† OR “Cytokine Release Syndrome†OR “Paediatric Inflammatory Multisystem Syndrome†OR “Vaccine..., , # Data of top 50 most cited articles about COVID-19 and the complications of COVID-19
This dataset contains information about the top 50 most cited articles about COVID-19 and the complications of COVID-19. We have looked into a variety of research and clinical factors for the analysis.
The data sheet offers a comprehensive analysis of the selected articles. It delves into specifics such as the publication year of the top 50 articles, the journals responsible for publishing them, and the geographical region with the highest number of citations in this elite list. Moreover, the sheet sheds light on the key players involved, including authors and their affiliated departments, in crafting the top 50 most cited articles.
Beyond these fundamental aspects, the data sheet goes on to provide intricate details related to the study types and topics prevalent in the top 50 articles. To enrich the analysis, it incorporates clinical data, capturing...
International Journal of Engineering and Advanced Technology Impact Factor 2024-2025 - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset Country-based impact document.
Source: Web of Science and INCITES.
Date: Data obtained between April 2020 and February 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
John Ioannidis and co-authors [1] created a publicly available database of top-cited scientists in the world. This database, intended to address the misuse of citation metrics, has generated a lot of interest among the scientific community, institutions, and media. Many institutions used this as a yardstick to assess the quality of researchers. At the same time, some people look at this list with skepticism citing problems with the methodology used. Two separate databases are created based on career-long and, single recent year impact. This database is created using Scopus data from Elsevier[1-3]. The Scientists included in this database are classified into 22 scientific fields and 174 sub-fields. The parameters considered for this analysis are total citations from 1996 to 2022 (nc9622), h index in 2022 (h22), c-score, and world rank based on c-score (Rank ns). Citations without self-cites are considered in all cases (indicated as ns). In the case of a single-year case, citations during 2022 (nc2222) instead of Nc9622 are considered.
To evaluate the robustness of c-score-based ranking, I have done a detailed analysis of the matrix parameters of the last 25 years (1998-2022) of Nobel laureates of Physics, chemistry, and medicine, and compared them with the top 100 rank holders in the list. The latest career-long and single-year-based databases (2022) were used for this analysis. The details of the analysis are presented below:
Though the article says the selection is based on the top 100,000 scientists by c-score (with and without self-citations) or a percentile rank of 2% or above in the sub-field, the actual career-based ranking list has 204644 names[1]. The single-year database contains 210199 names. So, the list published contains ~ the top 4% of scientists. In the career-based rank list, for the person with the lowest rank of 4809825, the nc9622, h22, and c-score were 41, 3, and 1.3632, respectively. Whereas for the person with the No.1 rank in the list, the nc9622, h22, and c-score were 345061, 264, and 5.5927, respectively. Three people on the list had less than 100 citations during 96-2022, 1155 people had an h22 less than 10, and 6 people had a C-score less than 2.
In the single year-based rank list, for the person with the lowest rank (6547764), the nc2222, h22, and c-score were 1, 1, and 0. 6, respectively. Whereas for the person with the No.1 rank, the nc9622, h22, and c-score were 34582, 68, and 5.3368, respectively. 4463 people on the list had less than 100 citations in 2022, 71512 people had an h22 less than 10, and 313 people had a C-score less than 2. The entry of many authors having single digit H index and a very meager total number of citations indicates serious shortcomings of the c-score-based ranking methodology. These results indicate shortcomings in the ranking methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The classification in reproducible and not reproducible models was made by Tiwari et al.
Citations were looked up in Scopus, Web of Science and Google Scholar.
The following journals had to be excluded, as Journal Impact Factors (JIF) were missing or papers were discontinued: * Experientia was closed 1996 and continued as Cellular and Molecular Life Sciences 1997 * The American journal of physiology – split into fields 1977, further splits in 1980 and 1989 * IFAC Proceedings Volumes – last issue 2014, continued as IFAC-PapersOnLine * Mathematical and Computer Modelling – discontinued as of 2014 * IOP Conference Series: Materials Science and Engineering – not a journal but conference proceedings – no impact factor listed * Infectious Disease Modelling – no impact factor found * Jurnal Teknologi – no impact factor found * JCO clinical cancer informatics – no impact factor found * Quantitative biology (Beijing, China) – no impact factor found * Letters in Biomathematics – no impact factor found * Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference – no impact factor found * Haemostasis – discontinued; no impact factor found
It was tried to include as many papers as possible.
As the JIF is calculated every year, an average JIF of the Journal Citation Reports from 2014 to 2021 was calculated and used for the analysis. The results do not differ qualitatively if only the JIF of 2021 was used. As the Journal Impact Factor reports belong to Clarivate the JCR data was not uploaded to the repository.
Big Data and Society Impact Factor 2024-2025 - ResearchHelpDesk - Big Data & Society (BD&S) is open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities and computing and their intersections with the arts and natural sciences about the implications of Big Data for societies. The Journal's key purpose is to provide a space for connecting debates about the emerging field of Big Data practices and how they are reconfiguring academic, social, industry, business, and government relations, expertise, methods, concepts, and knowledge. BD&S moves beyond usual notions of Big Data and treats it as an emerging field of practice that is not defined by but generative of (sometimes) novel data qualities such as high volume and granularity and complex analytics such as data linking and mining. It thus attends to digital content generated through online and offline practices in social, commercial, scientific, and government domains. This includes, for instance, the content generated on the Internet through social media and search engines but also that which is generated in closed networks (commercial or government transactions) and open networks such as digital archives, open government, and crowdsourced data. Critically, rather than settling on a definition the Journal makes this an object of interdisciplinary inquiries and debates explored through studies of a variety of topics and themes. BD&S seeks contributions that analyze Big Data practices and/or involve empirical engagements and experiments with innovative methods while also reflecting on the consequences for how societies are represented (epistemologies), realized (ontologies) and governed (politics). Article processing charge (APC) The article processing charge (APC) for this journal is currently 1500 USD. Authors who do not have funding for open access publishing can request a waiver from the publisher, SAGE, once their Original Research Article is accepted after peer review. For all other content (Commentaries, Editorials, Demos) and Original Research Articles commissioned by the Editor, the APC will be waived. Abstract & Indexing Clarivate Analytics: Social Sciences Citation Index (SSCI) Directory of Open Access Journals (DOAJ) Google Scholar Scopus
International Journal of Data Science and Analytics Impact Factor 2024-2025 - ResearchHelpDesk - International Journal of Data Science and Analytics - Data Science has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. The field encompasses the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation. The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations.