4 datasets found
  1. n

    SUPFAM

    • neuinfo.org
    • rrid.site
    • +2more
    Updated Nov 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). SUPFAM [Dataset]. http://identifiers.org/RRID:SCR_005304
    Explore at:
    Dataset updated
    Nov 19, 2024
    Description

    SUPFAM is a database that consists of clusters of potentially related homologous protein domain families, with and without three-dimensional structural information, forming superfamilies. The present release (Release 3.0) of SUPFAM uses homologous families in Pfam (Version 23.0) and SCOP (Release 1.69) which are examples of sequence -alignment and structure classification databases respectively. The two steps involved in setting up of SUPFAM database are * Relating Pfam and SCOP families using a new profile-profile alignment algorithm AlignHUSH. This results in identifying many Pfam families which could be related to a family or superfamily of known structural information. * An all-against-all match among Pfam families with yet unknown structure resulting in identification of related Pfam families forming new potential superfamilies. The SUPFAM database can be used in either the Browse mode or Search mode. In Browse mode you can browse through the Superfamilies, Pfam families or SCOP families. In each of these modes you will be presented with a full list which can be easily browsed. In Search mode, you can search for Pfam families, SCOP families or Superfamilies based on keywords or SCOP/Pfam identifiers of families and superfamilies., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

  2. e

    SUPERFAMILY

    • ebi.ac.uk
    Updated Nov 8, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2010). SUPERFAMILY [Dataset]. https://www.ebi.ac.uk/interpro/
    Explore at:
    Dataset updated
    Nov 8, 2010
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SUPERFAMILY is a library of profile hidden Markov models that represent all proteins of known structure. The library is based on the SCOP classification of proteins: each model corresponds to a SCOP domain and aims to represent the entire SCOP superfamily that the domain belongs to. SUPERFAMILY is based at the University of Bristol, UK.

  3. c

    Protein Structural Domain Classification

    • cathdb.info
    • ec.i4cologne.com
    • +3more
    Updated Sep 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Protein Structural Domain Classification [Dataset]. http://identifiers.org/MIR:00100005
    Explore at:
    Dataset updated
    Sep 30, 2024
    Description

    CATH Domain Classification List (latest release) - protein structural domains classified into CATH hierarchy.

  4. f

    Data from: MuLiMs-MCoMPAs: A Novel Multiplatform Framework to Compute Tensor...

    • acs.figshare.com
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ernesto Contreras-Torres; Yovani Marrero-Ponce; Julio E. Terán; César R. García-Jacas; Carlos A. Brizuela; Juan Carlos Sánchez-Rodríguez (2023). MuLiMs-MCoMPAs: A Novel Multiplatform Framework to Compute Tensor Algebra-Based Three-Dimensional Protein Descriptors [Dataset]. http://doi.org/10.1021/acs.jcim.9b00629.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    ACS Publications
    Authors
    Ernesto Contreras-Torres; Yovani Marrero-Ponce; Julio E. Terán; César R. García-Jacas; Carlos A. Brizuela; Juan Carlos Sánchez-Rodríguez
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This report introduces the MuLiMs-MCoMPAs software (acronym for Multi-Linear Maps based on N-Metric and Contact Matrices of 3D Protein and Amino-acid weightings), designed to compute tensor-based 3D protein structural descriptors by applying two- and three-linear algebraic forms. Moreover, these descriptors contemplate generalizing components such as novel 3D protein structural representations, (dis)similarity metrics, and multimetrics to extract geometrical related information between two and three amino acids, weighting schemes based on amino acid properties, matrix normalization procedures that consider simple-stochastic and mutual probability transformations, topological and geometrical cutoffs, amino acid, and group-based MD calculations, and aggregation operators for merging amino acidic and group MDs. The MuLiMs-MCoMPAs software, which belongs to the ToMoCoMD-CAMPS suite, was developed in Java (version 1.8) using the Chemistry Development Kit (CDK) (version 1.4.19) and the Jmol libraries. This software implemented a divide-and-conquer strategy to parallelize the computation of the indices as well as modules for data preprocessing and batch computing functionalities. Furthermore, it consists of two components: (i) a desktop-graphical user interface (GUI) and (ii) an API library. The relevance of this novel approach is demonstrated through two analyses that considered Shannon’s entropy-based variability and a principal component analysis. These studies showed that the MuLiMs-MCoMPAs’ three-linear descriptor family contains higher informational entropy than several other descriptors generated with available computation tools. Moreover, the MuLiMs-MCoMPAs indices capture additional orthogonal information to the one codified by the available calculation approaches. As a result, two sets of suggested theoretical configurations that contain 13648 two-linear indices and 20263 three-linear indices are available for download at tomocomd.com. Furthermore, as a demonstration of the applicability and easy integration of the MuLiMs library into a QSAR-based expert system, a software application (ProStAF) was generated to predict SCOP protein structural classes and folding rate. It can thus be anticipated that the MuLiMs-MCoMPAs framework will turn into a valuable contribution to the chem- and bioinformatics research fields.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). SUPFAM [Dataset]. http://identifiers.org/RRID:SCR_005304

SUPFAM

RRID:SCR_005304, nif-0000-03517, SUPFAM (RRID:SCR_005304), SUPFAM

Explore at:
Dataset updated
Nov 19, 2024
Description

SUPFAM is a database that consists of clusters of potentially related homologous protein domain families, with and without three-dimensional structural information, forming superfamilies. The present release (Release 3.0) of SUPFAM uses homologous families in Pfam (Version 23.0) and SCOP (Release 1.69) which are examples of sequence -alignment and structure classification databases respectively. The two steps involved in setting up of SUPFAM database are * Relating Pfam and SCOP families using a new profile-profile alignment algorithm AlignHUSH. This results in identifying many Pfam families which could be related to a family or superfamily of known structural information. * An all-against-all match among Pfam families with yet unknown structure resulting in identification of related Pfam families forming new potential superfamilies. The SUPFAM database can be used in either the Browse mode or Search mode. In Browse mode you can browse through the Superfamilies, Pfam families or SCOP families. In each of these modes you will be presented with a full list which can be easily browsed. In Search mode, you can search for Pfam families, SCOP families or Superfamilies based on keywords or SCOP/Pfam identifiers of families and superfamilies., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Search
Clear search
Close search
Google apps
Main menu