Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This page includes the data and code necessary to reproduce the results of the following paper: Yang Liao, Dinesh Raghu, Bhupinder Pal, Lisa Mielke and Wei Shi. cellCounts: fast and accurate quantification of 10x Chromium single-cell RNA sequencing data. Under review. A Linux computer running an operating system of CentOS 7 (or later) or Ubuntu 20.04 (or later) is recommended for running this analysis. The computer should have >2 TB of disk space and >64 GB of RAM. The following software packages need to be installed before running the analysis. Software executables generated after installation should be included in the $PATH environment variable.
R (v4.0.0 or newer) https://www.r-project.org/ Rsubread (v2.12.2 or newer) http://bioconductor.org/packages/3.16/bioc/html/Rsubread.html CellRanger (v6.0.1) https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome STARsolo (v2.7.10a) https://github.com/alexdobin/STAR sra-tools (v2.10.0 or newer) https://github.com/ncbi/sra-tools Seurat (v3.0.0 or newer) https://satijalab.org/seurat/ edgeR (v3.30.0 or newer) https://bioconductor.org/packages/edgeR/ limma (v3.44.0 or newer) https://bioconductor.org/packages/limma/ mltools (v0.3.5 or newer) https://cran.r-project.org/web/packages/mltools/index.html
Reference packages generated by 10x Genomics are also required for this analysis and they can be downloaded from the following link (2020-A version for individual human and mouse reference packages should be selected): https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest After all these are done, you can simply run the shell script ‘test-all-new.bash’ to perform all the analyses carried out in the paper. This script will automatically download the mixture scRNA-seq data from the SRA database, and it will output a text file called ‘test-all.log’ that contains all the screen outputs and speed/accuracy results of CellRanger, STARsolo and cellCounts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Biological experiments involving genomics or other high-throughput assays typically yield a data matrix that can be explored and analyzed using the R programming language with packages from the Bioconductor project. Improvements in the throughput of these assays have resulted in an explosion of data even from routine experiments, which poses a challenge to the existing computational infrastructure for statistical data analysis. For example, single-cell RNA sequencing (scRNA-seq) experiments frequently generate large matrices containing expression values for each gene in each cell, requiring sparse or file-backed representations for memory-efficient manipulation in R. These alternative representations are not easily compatible with high-performance C++ code used for computationally intensive tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named beachmat, which enables agnostic data access from various matrix representations. This allows package developers to write efficient C++ code that is interoperable with dense, sparse and file-backed matrices, amongst others. We evaluated the performance of beachmat for accessing data from each matrix representation using both simulated and real scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an appropriate representation. We also demonstrate how beachmat can be incorporated into the code of other packages to drive analyses of a very large scRNA-seq data set.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
tar.gz of processed data in the form of compressed R files (rds) of SingleCellExperiment (https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html) objects and a metadata csv for the data in the publication Dissociation of solid tumour tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses (O'Flanagan et al. 2019).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
OverviewThis dataset contains R Bioconductor objects that have 3'UTR isoform counts quantified with the scUTRquant pipeline (https://doi.org/10.5281/zenodo.8118393). These objects are part of the minimum dataset required for verifying the analysis reported in Fansler et al., bioRxiv, 2023.Loading objectsThe objects can be loaded into R 4.2 using Bioconductor 3.16. A minimal Conda environment definition is provided for creating compatible environments. For example:conda env create -n sce_bioc_3_16 -f envs/sce_bioc_3_16.min.yamlThe .Rds objects can be loaded with (for example):sce
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single-cell gene expression analysis using sequencing (scRNA-seq) has gained increased attention in the past decades for studying cellular transcriptional programs and their heterogeneity in an unbiased manner, and novel protocols allow the simultaneous measurement of gene expression, T-cell receptor clonality and cell surface protein expression. In this article, we describe the methods to isolate scRNA/TCR-seq-compatible CD4+ T cells from murine tissues, such as skin, spleen, and lymph nodes. We describe the processing of cells and quality control parameters during library preparation, protocols for multiplexing of samples, and strategies for sequencing. Moreover, we describe a step-by-step bioinformatic analysis pipeline from sequencing data generated using these protocols. This includes quality control, preprocessing of sequencing data and demultiplexing of individual samples. We perform quantification of gene expression and extraction of T-cell receptor alpha and beta chain sequences, followed by quality control and doublet detection, and methods for harmonization and integration of datasets. Next, we describe the identification of highly variable genes and dimensionality reduction, clustering and pseudotemporal ordering of data, and we demonstrate how to visualize the results with interactive and reproducible dashboards. We will combine different analytic R-based frameworks such as Bioconductor and Seurat, illustrating how these can be interoperable to optimally analyze scRNA/TCR-seq data of CD4+ T cells from murine tissues.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This page includes the data and code necessary to reproduce the results of the following paper: Yang Liao, Dinesh Raghu, Bhupinder Pal, Lisa Mielke and Wei Shi. cellCounts: fast and accurate quantification of 10x Chromium single-cell RNA sequencing data. Under review. A Linux computer running an operating system of CentOS 7 (or later) or Ubuntu 20.04 (or later) is recommended for running this analysis. The computer should have >2 TB of disk space and >64 GB of RAM. The following software packages need to be installed before running the analysis. Software executables generated after installation should be included in the $PATH environment variable.
R (v4.0.0 or newer) https://www.r-project.org/ Rsubread (v2.12.2 or newer) http://bioconductor.org/packages/3.16/bioc/html/Rsubread.html CellRanger (v6.0.1) https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome STARsolo (v2.7.10a) https://github.com/alexdobin/STAR sra-tools (v2.10.0 or newer) https://github.com/ncbi/sra-tools Seurat (v3.0.0 or newer) https://satijalab.org/seurat/ edgeR (v3.30.0 or newer) https://bioconductor.org/packages/edgeR/ limma (v3.44.0 or newer) https://bioconductor.org/packages/limma/ mltools (v0.3.5 or newer) https://cran.r-project.org/web/packages/mltools/index.html
Reference packages generated by 10x Genomics are also required for this analysis and they can be downloaded from the following link (2020-A version for individual human and mouse reference packages should be selected): https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest After all these are done, you can simply run the shell script ‘test-all-new.bash’ to perform all the analyses carried out in the paper. This script will automatically download the mixture scRNA-seq data from the SRA database, and it will output a text file called ‘test-all.log’ that contains all the screen outputs and speed/accuracy results of CellRanger, STARsolo and cellCounts.