The GIS shapefile Census_sum_2019 provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2019 range-wide census. The USGS spring range-wide sea otter census has been undertaken each year since 1982, using consistent methodology involving both ground-based and aerial-based counts. The spring census provides the primary basis for gauging population trends by State and Federal management agencies. This shapefile includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square kilometer of habitat), linear density (otters per kilometer of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2019). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60 meter isobath: this depth range includes over 99 percent of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined by combining independent otters within a moving window of 10-kilometer stretches of coastline (as measured along the 10-meter bathymetric contour; 20 contiguous ATOS intervals each) and taking the northern and southern ATOS values, respectively, of the northernmost and southernmost stretches in which at least five otters were counted for at least 2 consecutive spring surveys during the last 3 years. The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T. , D. P. Costa , J. A. Estes , and N. Wieringa . 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012
The GIS shapefile "Census summary of southern sea otter 2017" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2017 range-wide census. The USGS range-wide sea otter census has been undertaken twice a year since 1982, once in May and once in October, using consistent methodology involving both ground-based and aerial-based counts. The spring census is considered more accurate than the fall count, and provides the primary basis for gauging population trends by State and Federal management agencies. This Shape file includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2017). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T. , D. P. Costa , J. A. Estes , and N. Wieringa . 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012
The GIS layer "Census_sum_15" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2015 range-wide census. The USGS range-wide sea otter census has been undertaken twice a year since 1982, once in May and once in October, using consistent methodology involving both ground-based and aerial-based counts. The spring census is considered more accurate than the fall count, and provides the primary basis for gauging population trends by State and Federal management agencies. This Shape file includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2015). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California.
This dataset represents an archived record of annual California sea otter surveys from 1985-2014. Survey procedures involve counting animals during the "spring survey" -- generally beginning in late April or early May and usually ending in late May early June but may extend into early July, depending on weather conditions. Annual surveys are organized by survey year and within each year, three shapefiles are included: census summary of southern sea otter, extra limit counts of southern sea otter, and range extent of southern sea otter. The surveys, conducted cooperatively by scientists of the U.S. Geological Survey, California Department of Fish and Wildlife, U.S. Fish and Wildlife Service and Monterey Bay Aquarium with the help of experienced volunteers, cover about 375 miles of California coast, from Half Moon Bay south to Santa Barbara. The information gathered may be used by federal and state wildlife agencies in making decisions about the management of this threatened marine mammal. These data, in conjunction with findings from several more in-depth studies, may also provide the necessary information to assess female reproductive rates and changes in reproductive success of the California sea otter population through time. For more information on annual California sea otter surveys, including most current surveys and associated data and corresponding USGS Data Series reports, go to: https://www.sciencebase.gov/catalog/item/5601b6dae4b03bc34f5445ec The GIS shapefile "Census summary of southern sea otter" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring range-wide census. This census has been undertaken each year using consistent methodology involving both ground-based and aerial-based counts. This range-wide census provides the primary basis for gauging population trends by State and Federal management agencies. This shapefile includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California. Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al. 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. The GIS shapefile "Extra limit counts of southern sea otters" is a point layer representing the locations of sea otter sightings that fall outside the officially recognized range of the southern sea otter in mainland California. These data were collected during the spring range-wide census. Sea otter distribution in California (the mainland range) is considered to comprise a band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits as defined above. However, a few individual sea otters (almost always males) can frequently be found outside this officially recognized range, and these "extra-limital" animals are also counted during the census. The GIS shapefile "Range extent of southern sea otters" is a simple polyline representing the geographic distribution of the southern sea otter in mainland California, based on data collected during the spring range-wide census. The spring 2011 survey was incomplete due to weather conditions and there were no “extra-limital” sightings of otters during the spring 1992 survey, hence no data or shapefile for “Extra limit counts 1992.” For ease of access, an additional CSV file of the census summary from 1985-2014 is provided: "AnnualCaliforniaSeaOtter_Census_summary_1985_2014.csv" References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T. , D. P. Costa , J. A. Estes , and N. Wieringa . 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012
The GIS shapefile "Census summary of southern sea otter 2018" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2018 range-wide census. The USGS spring range-wide sea otter census has been undertaken each year since 1982, using consistent methodology involving both ground-based and aerial-based counts. The spring census provides the primary basis for gauging population trends by State and Federal management agencies. This Shape file includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2018). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T., D. P. Costa , J. A. Estes , and N. Wieringa. 2007. Individual dietary specialization and dive behavior in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012
The GIS shapefile "Census summary of southern sea otter 2016" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2016 range-wide census. The USGS range-wide sea otter census has been undertaken twice a year since 1982, once in May and once in October, using consistent methodology involving both ground-based and aerial-based counts. The spring census is considered more accurate than the fall count, and provides the primary basis for gauging population trends by State and Federal management agencies. This Shape file includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2016). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California.
The GIS shapefile "Census summary of southern sea otter 2016" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2016 range-wide census. The USGS range-wide sea otter census has been undertaken twice a year since 1982, once in May and once in October, using consistent methodology involving both ground-based and aerial-based counts. The spring census is considered more accurate than the fall count, and provides the primary basis for gauging population trends by State and Federal management agencies. This Shape file includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2016). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California.
Original provider: Sylvia K. Osterrieder, Randall W. Davis
Dataset credits: Sylvia K. Osterrieder, Randall W. Davis
Abstract: In altricial mammals, the mother’s care and attendance are essential for the young to acquire survival skills. Not much is known about mother-pup behavior in the sea otter population of Simpson Bay, Prince William Sound, Alaska, United States. In these studies, firstly, water depth and location of feeding females with pups of different ages were recorded (global positioning system [GPS] locations of the sea otters are given in the map). Secondly, boat locations were noted when females with pups were observed for 24 hour activity budgets (GPS locations of the boat are given in the map). Weather, time and tidal conditions were also recorded and tested on the influence on sea otters behavior.
This web map depicts the current range of the Southern sea otter, from Pigeon Point to Gaviota, CA. It also points out areas of interest to the history of the sea otter such as the Big Sur coast, which was the site of one of the only known remaining sea otter populations in the 1930s following their near-extinction from the fur trade. It is from this population that all sea otters in California today descend.(supports the following items: The Extraordinary Sea Otter storymap by mevansen)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Microsatellite statistics of pre-fur trade and modern sea otter populations.
The following map shows the historic range of the Sea Otter around the pacific rim before the fur trade that extended from the Russian coast to the California coast during the colonization period where they population had almost went extinct. The sea otter’s brush with extinction began far away from those rocky shores, in the Russian Far East. Aboard the ship Svyatoy Petr (Saint Peter), Vitus Bering’s second Kamchatka expedition foundered in storms and wrecked near an uninhabited island, later named after Bering himself, who was buried there. From the moment Bering’s men returned home to Russia with sea otter pelts, the species was in mortal danger. It was 1742. With more hairs per square inch than those of any other mammal, the thick, lush furs fetched enormous sums.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sea otters are apex predators that can exert considerable influence over the nearshore communities they occupy. Since facing near extinction in the early 1900s, sea otters are making a remarkable recovery in Southeast Alaska, particularly in Glacier Bay, the largest protected tidewater glacier fjord in the world. The expansion of sea otters across Glacier Bay offers both a challenge to monitoring and stewardship and an unprecedented opportunity to study the top-down effect of a novel apex predator across a diverse and productive ecosystem. Our goal was to integrate monitoring data across trophic levels, space, and time to quantify and map the predator-prey interaction between sea otters and butter clams (Saxidomus gigantea), one of the dominant large bivalves in Glacier Bay and a favored prey of sea otters. To do so, we developed a modeling framework to account for both bottom-up and top-down drivers of butter clam abundance and dynamics. For the bottom-up driver, we used the root-mean-square current speed (m/s) predicted by a tidal circulation model of Glacier Bay developed by Drew et al. (2013). For top-down sea otter dynamics, we used the posterior mean sea otter abundance estimates from Lu et al. (2019). This repository contains the current speed raster (100m x 100m resolution) produced by Drew et al. (2013) and the files and model output from Lu et al. (2019) necessary to generate a time series of rasters (400m x 400m resolution raster brick with 26 layers for the years 1993-2018) of estimated posterior mean sea otter abundance. These data layers are used in Leach et al. (2023) to model butter clam dynamics at sampling sites across Glacier Bay.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The sea otter (Enhydra lutris) is a marine mammal hunted to near extinction during the 1800s. Despite their well-known importance as a keystone species, we know little about historical sea otter ecology. Here, we characterize the ecological niche of ancient southern sea otters (E. lutris nereis) using d13C and d15N analysis of bones recovered from archaeological sites spanning ~7,000 to 350 years before present (N=112 individuals) at five regions along the coast of California. These data are compared with previously published data on modern animals (N=165) and potential modern prey items. In addition, we analyze the d15N of individual amino acids for 23 individuals to test for differences in sea otter trophic ecology through time. After correcting for tissue-specific and temporal isotopic effects, we employ nonparametric statistics and Bayesian niche models to quantify differences among ancient and modern animals. We find ancient otters occupied a larger isotopic niche than nearly all modern localities; this likely reflects broader habitat and prey use in pre-fur trade populations. In addition, ancient sea otters at the most southerly sites occupied an isotopic niche that was more than twice as large as ancient otters from northerly regions. The latter likely reflects greater invertebrate prey diversity in southern California relative to northern California. Thus, we suggest the potential dietary niche of sea otters in southern California could be larger than in central and northern California. At two sites, Año Nuevo and Monterey Bay, ancient otters had significantly higher d15N values than modern populations. Amino acid d15N data indicated this resulted from shifting baseline isotope values, rather than a change in sea otter trophic ecology. Our results help in better understanding the contemporary ecological role of sea otters and exemplify the strength of combing zooarchaeological and biological information to provide baseline data for conservation efforts.
Marine Fish and Shellfish Survey data were collected from otter trawls in the Chukchi Sea from the OCEAN HOPE. Data were collected by the University of Alaska from 16 August 1990 to 31 July 1992. Data were processed by NODC to the NODC standard F123 Fish/Shellfish Surveys format. This data type contains data from field sampling of marine fish and shellfish. The data derive from analysis of midwater or bottom tow catches and provide information on population density and distribution. Cruise information, position, date, time, gear type, fishing distance and duration, and number of hauls are reported for each survey. Environmental data may include: meteorological conditions; surface temperature and salinity; bottom temperature and salinity; trawl depth temperature and salinity; current direction and speed. Bottom trawl or other gear dimensions and characteristics are also reported. Catch statistics (e.g., weight, volume, number of fish per unit volume) may be reported for both total haul and for individual species. Biological characteristics of selected specimens, predator/prey information (from stomach contents analysis) and growth data may also be included. Specimens are identified by an NODC Taxonomic Code. Data are very sparse prior to 1975.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The GIS shapefile Census_sum_2019 provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2019 range-wide census. The USGS spring range-wide sea otter census has been undertaken each year since 1982, using consistent methodology involving both ground-based and aerial-based counts. The spring census provides the primary basis for gauging population trends by State and Federal management agencies. This shapefile includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square kilometer of habitat), linear density (otters per kilometer of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2019). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60 meter isobath: this depth range includes over 99 percent of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined by combining independent otters within a moving window of 10-kilometer stretches of coastline (as measured along the 10-meter bathymetric contour; 20 contiguous ATOS intervals each) and taking the northern and southern ATOS values, respectively, of the northernmost and southernmost stretches in which at least five otters were counted for at least 2 consecutive spring surveys during the last 3 years. The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T. , D. P. Costa , J. A. Estes , and N. Wieringa . 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012