63 datasets found
  1. NOAA Office for Coastal Management Sea Level Rise Data: Mapping Confidence

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). NOAA Office for Coastal Management Sea Level Rise Data: Mapping Confidence [Dataset]. https://catalog.data.gov/dataset/noaa-office-for-coastal-management-sea-level-rise-data-mapping-confidence3
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://www.coast.noaa.gov/slr These data depict the mapping confidence of the associated Sea Level Rise inundation data, for the sea level rise amount specified. Areas that have a low degree of confidence, or high uncertainty, represent locations that may be mapped correctly (either as inundated or dry) less than 8 out of 10 times. Areas that have a high degree of confidence, or low uncertainty, represent locations that will be correctly mapped (either as inundated or dry) more than 8 out of 10 times or that there is an 80 percent degree of confidence that these areas are correctly mapped. Areas mapped as dry (no inundation) with a high confidence or low uncertainty are coded as 0. Areas mapped as dry or wet with a low confidence or high uncertainty are coded as 1. Areas mapped as wet (inundation) with a high confidence or low uncertainty are coded as 2. The NOAA Office for Coastal Management has tentatively adopted an 80 percent rank (as either inundated or not inundated) as the zone of relative confidence. The use of 80 percent has no special significance but is a commonly used rule of thumb measure to describe economic systems (Epstein and Axtell, 1996). In short, the method includes the uncertainty in the lidar derived elevation data (root mean square error, or RMSE) and the uncertainty in the modeled tidal surface from the NOAA VDATUM model (RMSE). This uncertainty is combined and mapped to show that the inundation depicted in this data is not really a hard line, but rather a zone with greater and lesser chances of getting wet. For a detailed description of the confidence level and its computation, please see the Mapping Inundation Uncertainty document available at: https://coast.noaa.gov/data/digitalcoast/pdf/mapping-inundation-uncertainty.pdf

  2. a

    Sea Level Rise: Inundation Map Services

    • noaa.hub.arcgis.com
    Updated Mar 21, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2014). Sea Level Rise: Inundation Map Services [Dataset]. https://noaa.hub.arcgis.com/maps/ea4fbec7c7374c838adda508386e34ff
    Explore at:
    Dataset updated
    Mar 21, 2014
    Dataset authored and provided by
    NOAA GeoPlatform
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios.The purpose of these map services are to show potential sea level rise inundation from current Mean Higher High Water (MHHW) to 6ft above MHHW. Tiles have been cached down to Level ID 11 (1:18,055).For more information visit the Sea Level Rise Impacts Viewer.

  3. NOAA Digital Coast Sea Level Rise and Coastal Flooding Impacts Viewer

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Jan 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2025). NOAA Digital Coast Sea Level Rise and Coastal Flooding Impacts Viewer [Dataset]. https://catalog.data.gov/dataset/noaa-digital-coast-sea-level-rise-and-coastal-flooding-impacts-viewer1
    Explore at:
    Dataset updated
    Jan 21, 2025
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    The Sea Level Rise and Coastal Flooding Impacts Viewer depicts potential sea level rise and its associated impacts on the nation's coastal areas. These coastal areas include all the states (except for Alaska, Louisiana, and Great Lake states) and the U.S. territories of Guam, Puerto Rico, Saipan, and the U.S. Virgin Islands. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. Being able to visualize potential impacts from sea level rise is a powerful teaching and planning tool, and the viewer brings this capability to coastal communities. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: http://www.coast.noaa.gov/slr/. Some of the features of this tool are: 1. Displays potential future sea levels 2. Provides simulations of sea level rise at local landmarks 3. Communicates the spatial uncertainty of mapped sea levels 4. Models potential marsh migration due to sea level rise 5. Overlays social and economic data onto potential sea level rise 6. Examines how tidal flooding will become more frequent with sea level rise

  4. n

    Sea Level Rise - 9.5ft Inundation

    • opdgig.dos.ny.gov
    Updated Mar 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of State (2025). Sea Level Rise - 9.5ft Inundation [Dataset]. https://opdgig.dos.ny.gov/maps/NYSDOS::sea-level-rise-9-5ft-inundation
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    New York State Department of State
    Area covered
    Description

    This dataset displays potential future sea levels. The purpose of this dataset is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. The data and maps in this tool illustrate the scale of potential flooding, not the exact location, and do not account for erosion, subsidence, or future construction. Water levels are shown as they would appear during the highest high tides (excludes wind driven tides). The data, maps, and information provided should be used only as a screening-level tool for management decisions. This dataset was created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The purpose of this dataset is to show potential sea level rise inundation of 9.5ft above current Mean Higher High Water (MHHW) for the area. Tiles have been cached down to Level ID 15 (1:18,055). This dataset illustrates the scale of potential flooding, not the exact location, and does not account for erosion, subsidence, or future construction. Inundation is shown as it would appear during the highest high tides (excludes wind driven tides) with the sea level rise amount. The dataset should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. The dataset is provided "as is," without warranty to its performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of this dataset is assumed by the user. This dataset should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes. For more information visit the Sea Level Rise Impacts Viewer (https://coast.noaa.gov/slr).View Dataset on the Gateway

  5. n

    SLR Viewer Data Extent

    • opdgig.dos.ny.gov
    Updated Feb 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of State (2023). SLR Viewer Data Extent [Dataset]. https://opdgig.dos.ny.gov/datasets/NYSDOS::sea-level-rise-certainty-2-ft-inundation/about?layer=1
    Explore at:
    Dataset updated
    Feb 7, 2023
    Dataset authored and provided by
    New York State Department of Statehttp://www.dos.ny.gov/
    Area covered
    Description

    Inundation Uncertainty Associated with Elevation Data and Tidal Datum Conversion for 2ft Sea Level Rise. This dataset was created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The purpose of this dataset is to depict errors that are directly related to elevation and water height data. These errors can be used to begin defining areas with mapped inundation that do not have the same level of confidence as other areas. For a detailed explanation of mapping methods, see http://www.coast.noaa.gov/slr/assets/pdfs/Elevation_Mapping_Confidence_Methods.pdf. The dataset should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. The dataset is provided "as is," without warranty to its performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of this dataset is assumed by the user. This dataset should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.View Dataset on the Gateway

  6. Westchester County, New York Sea Level Rise - 1 Foot

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Sep 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Westchester County, New York (2018). Westchester County, New York Sea Level Rise - 1 Foot [Dataset]. https://koordinates.com/layer/96594-westchester-county-new-york-sea-level-rise-1-foot/
    Explore at:
    pdf, shapefile, dwg, geodatabase, geopackage / sqlite, mapinfo tab, kml, csv, mapinfo mifAvailable download formats
    Dataset updated
    Sep 11, 2018
    Dataset provided by
    Westchester Countyhttp://www.westchestergov.com/
    Authors
    Westchester County, New York
    Area covered
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Coastal Services Center's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses.Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: http://www.csc.noaa.gov/slr These data depict the potential inundation of coastal areas resulting from a projected 1 to 6 feet rise in sea level above current Mean Higher High Water (MHHW) conditions. The process used to produce the data can be described as a modified bathtub approach that attempts to account for both local/regional tidal variability as well as hydrological connectivity. The process uses two source datasets to derive the final inundation rasters and polygons and accompanying low-lying polygons for each iteration of sea level rise: the Digital Elevation Model (DEM) of the area and a tidal surface model that represents spatial tidal variability. The tidal model is created using the NOAA National Geodetic Survey's VDATUM datum transformation software (http://vdatum.noaa.gov) in conjunction with spatial interpolation/extrapolation methods and represents the MHHW tidal datum in orthometric values (North American Vertical Datum of 1988). The model used to produce these data does not account for erosion, subsidence, or any future changes in an area's hydrodynamics. It is simply a method to derive data in order to visualize the potential scale, not exact location, of inundation from sea level rise.

    © Acknowledgment of the NOAA Coastal Services Center as a data source would be appreciated in products developed from these data, and such acknowledgment as is standard for citation and legal practices for data source is expected.

  7. Sea Level Rise 3 ft

    • noaa.hub.arcgis.com
    Updated Jan 9, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2015). Sea Level Rise 3 ft [Dataset]. https://noaa.hub.arcgis.com/maps/f3dac601c26947f19b88aec20377b1a9
    Explore at:
    Dataset updated
    Jan 9, 2015
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    This map was created by NOAA’s Office for Coastal Management for The King Tides Project to help people understand the global impacts of sea level rise. Find the complete story map at this link:

    http://noaa.maps.arcgis.com/apps/MapJournal/index.html?appid=dddff4fa30bb4a91bfd1d9e758a56929 3ft Sea Level Rise InundationThis dataset was created as part of the National Oceanic and Atmospheric Administration Coastal Services Center's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios.The purpose of this dataset is to show potential sea level rise inundation of 3 ft above current Mean Higher High Water (MHHW) for the area. Tiles have been cached down to Level ID 11 (1:18,055).This dataset illustrates the scale of potential flooding, not the exact location, and does not account for erosion, subsidence, or future construction. Inundation is shown as it would appear during the highest high tides (excludes wind driven tides) with the sea level rise amount. The dataset should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. The dataset is provided "as is," without warranty to its performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of this dataset is assumed by the user. This dataset should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.For more information visit the Sea Level Rise Impacts Viewer.

  8. E

    ATLAS - Interactive GIS map service for the NW Black Sea Coastal zone

    • edmed.seadatanet.org
    • bodc.ac.uk
    nc
    Updated Mar 24, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ukrainian scientific center of Ecology of Sea (2011). ATLAS - Interactive GIS map service for the NW Black Sea Coastal zone [Dataset]. https://edmed.seadatanet.org/report/5353/
    Explore at:
    ncAvailable download formats
    Dataset updated
    Mar 24, 2011
    Dataset authored and provided by
    Ukrainian scientific center of Ecology of Sea
    License

    https://vocab.nerc.ac.uk/collection/L08/current/UN/https://vocab.nerc.ac.uk/collection/L08/current/UN/

    Time period covered
    Jan 1, 2007 - Present
    Area covered
    Description

    Interactive map service (http://ims.sea.gov.ua:8081/website/Atlas_forAll_en/viewer.htm), based on GIS database ATLAS has been created by UkrSCES to provide an integrated picture of the modern state of the Black Sea coastal zone. It provides information on the geography of NWBS coastal zone and coastal water areas, as well as data on demography, natural resources, economy and pollution. The work is financed under the auspices of the Ministry for Environmental Protection of Ukraine. ATLAS is organised around several themes and elements, comprising interactive maps, statistical data, and descriptions. The cartography is based on the digital topographic chart of Ukraine (scale 1:500,000) and includes the following thematic layers: * Natural resources, * Protected territories, * Pollution resources, * Recreational potential, * Coastal zone. The main part of the descriptive text of ATLAS is drawn from the results of various studies that were undertaken by UkrSCES from 1993 to 2006. ATLAS allows users to select and display information on the resources, state and condition оf the NWBS coastal zone. This interactive service can be employed not only by experts and those responsible for decision-making, but also by the general public. It represents a major contribution to Ukraine's responsibilities under the Aarhus Convention for access to environmental information.

  9. NOAA Office for Coastal Management Coastal Inundation Digital Elevation...

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Middle 1 [Dataset]. https://catalog.data.gov/dataset/noaa-office-for-coastal-management-coastal-inundation-digital-elevation-model-north-carolina-mi3
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    North Carolina
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://coast.noaa.gov/slr. This metadata record describes the North Carolina, Middle 1 digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications. This DEM includes data for Beaufort, Bertie, Hertford, Hyde, Martin, Pitt, Tyrrell, and Washington Counties. The DEM was produced from the following lidar data sets: 1. 2014 NGS Coastal Mapping Program Topobathy Lidar: Post-Sandy Atlantic Seaboard 2. 2014 NC Statewide Lidar - Phase 1 The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.

  10. NOAA Office for Coastal Management Coastal Inundation Digital Elevation...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Georgia, North [Dataset]. https://catalog.data.gov/dataset/noaa-office-for-coastal-management-coastal-inundation-digital-elevation-model-georgia-north1
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://coast.noaa.gov/slr. This metadata record describes the Georgia North digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications. This DEM includes data for Chatham, Effingham, Bryan, Liberty, Long and Mcintosh Counties. The DEM was produced from the following lidar data sets: 1. USGS 2018 Statewide GA Lidar The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.

  11. g

    Map Viewing Service (WMS) of the dataset: Transverse boundary of the...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Map Viewing Service (WMS) of the dataset: Transverse boundary of the Finistère Sea | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_fr-120066022-srv-8e8e9cf1-7826-46b6-b1e7-dafed21839ac/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Finistère
    Description

    The transverse boundary of the sea (LTM) essentially distinguishes the public maritime domain (downstream) from the public river domain (if the watercourse in question is federal) or from the private domain of the riparians (upstream). This is the real limit in the domestic law of the sea, and it is that which serves as a reference for determining the communes “riveraines de la mer” within the meaning of the coastal law. 20 lines indicating the transverse boundary of the sea (LTM) in the relevant rivers of the Finistère.

  12. d

    Data from: California State Waters Map Series--Offshore of Santa Cruz Web...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Santa Cruz Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-santa-cruz-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Santa Cruz, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Santa Cruz map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Santa Cruz map area data layers. Data layers are symbolized as shown on the associated map sheets.

  13. a

    Sea-Level Rise

    • arcgis.com
    • secas-fws.hub.arcgis.com
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2022). Sea-Level Rise [Dataset]. https://www.arcgis.com/sharing/oauth2/social/authorize?socialLoginProviderName=apple&oauth_state=al6hx70TZzQChM8VJnxaC3g..RdW61ILSWTI58-s4l2OxbhtWRYK5-TWbfmPBmy53wYMxIvsC18VVIGvpeLCukupTLStlWJBeOWcmOZ991V3NFiQJdeGTWw3xjWFx1gOcjrfRscyH4r1Er5SmX2JIWYh2WO5qgxdrqTojQHeYOk24r-XUTvNDSerVJzL91untrvg2Ly8L341dQwRfGivgCm8rzH8L80s2e4Pr_OSUjAimYAskVtXcYuRoon92DK32jbcnSV0e-lN7c21PdCbmH38U-SQqPzyooxbA3v3Ctmg6XwUNijEKZxJ8Z2y4V3_UX1sQZvcIqeTqG5r6AJMUggerxyzfnGTVH4HE15iEL_gAXPgT
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    These sea-level rise projections come from the Sea Level Rise Impacts Viewer (https://coast.noaa.gov/slr). These data are used in the Southeast Blueprint Explorer viewer and automated reporting.The blue areas of the map represent the inundation footprint and relative depth at various sea-level rise scenarios. Water levels are relative to local Mean Higher High Water Datum. Areas that are hydrologically connected to the ocean are shown in shades of blue (darker blue = greater depth). The green areas of the map are low-lying areas, hydrologically "unconnected" areas that may also flood. They are determined solely by how well the elevation data captures the area’s drainage characteristics. The dark shading represents inland counties where SLR is unlikely to be a threat.The white hatching represents areas where sea-level rise data is not available.These sea-level rise projections were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The purpose of these datasets is to show potential sea level rise inundation of 1-10 ft above current Mean Higher High Water (MHHW)--or average highest daily tide--for the area.Tiles have been cached down to Level ID 15 (1:18,055). This dataset illustrates the scale of potential flooding, not the exact location, and does not account for erosion, subsidence, or future construction. Inundation is shown as it would appear during the highest high tides (excludes wind driven tides) with the sea level rise amount. The dataset should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. The dataset is provided "as is," without warranty to its performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of this dataset is assumed by the user. This dataset should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.For more information, including a visualization of mapping confidence, visit the Sea Level Rise Impacts Viewer (https://coast.noaa.gov/slr).

  14. a

    USA Average Wind Speed (elevation 10-m to 200-m)

    • hub.arcgis.com
    • climate-arcgis-content.hub.arcgis.com
    Updated Nov 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2022). USA Average Wind Speed (elevation 10-m to 200-m) [Dataset]. https://hub.arcgis.com/maps/0606f3020e424ab698a755bda0c7ed21
    Explore at:
    Dataset updated
    Nov 21, 2022
    Dataset authored and provided by
    UN Environment, Early Warning &Data Analytics
    Area covered
    Description

    The Wind Integration National Dataset (WIND) Toolkit, developed by the National Renewable Energy Laboratory (NREL), provides modeled wind speeds at multiple elevations. Instantaneous wind measurements were analyzed from more than 126,000 sites in the continental United States for the years 2007–2013. The model results were mapped on a 2-km grid. A subset of the contiguous United States data for 2012 is shown here. Offshore data is shown to 50 nautical miles.Time Extent: Annual 2012Units: m/sCell Size: 2 kmSource Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection:  WGS 1984 Web MercatorExtent: Contiguous United StatesSource: NREL Wind Integration National Dataset v1.1WIND is an update and expansion of the Eastern Wind Integration Data Set and Western Wind Integration Data Set. It supports the next generation of wind integration studies.Accessing Elevation InformationEach of the 9 elevation slices can be accessed, visualized, and analyzed. In ArcGIS Pro, go to the Multidimensional Ribbon and use the Elevation pull-down menu. In ArcGIS Online, it is best to use Web Map Viewer Classic where the elevation slider will automatically appear on the righthand side. The elevation slider will be available in the new Map Viewer in an upcoming release. What can you do with this layer?This layer may be added to maps to visualize and quickly interrogate each pixel value. The pop-up provides the pixel’s wind speed value.This analytical imagery tile layer can be used in analysis. For example, the layer may be added to ArcGIS Pro and proposed wind turbine locations can be used to Sample the layer at multiple elevation to determine the optimal hub height. Source data can be accessed on Amazon Web ServicesUsers of the WIND Toolkit should use the following citations:Draxl, C., B.M. Hodge, A. Clifton, and J. McCaa. 2015. Overview and Meteorological Validation of the Wind Integration National Dataset Toolkit (Technical Report, NREL/TP-5000-61740). Golden, CO: National Renewable Energy Laboratory.Draxl, C., B.M. Hodge, A. Clifton, and J. McCaa. 2015. "The Wind Integration National Dataset (WIND) Toolkit." Applied Energy 151: 355366.King, J., A. Clifton, and B.M. Hodge. 2014. Validation of Power Output for the WIND Toolkit (Technical Report, NREL/TP-5D00-61714). Golden, CO: National Renewable Energy Laboratory.

  15. n

    Sea Level Rise - 6.5ft Inundation

    • opdgig.dos.ny.gov
    Updated Mar 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of State (2025). Sea Level Rise - 6.5ft Inundation [Dataset]. https://opdgig.dos.ny.gov/maps/081177a9cd1041569d862525e93b168a
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    New York State Department of State
    Area covered
    Description

    This dataset was created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The purpose of this dataset is to show potential sea level rise inundation of 6.5ft above current Mean Higher High Water (MHHW) for the area. Tiles have been cached down to Level ID 15 (1:18,055). This dataset illustrates the scale of potential flooding, not the exact location, and does not account for erosion, subsidence, or future construction. Inundation is shown as it would appear during the highest high tides (excludes wind driven tides) with the sea level rise amount. The dataset should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. The dataset is provided "as is," without warranty to its performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of this dataset is assumed by the user. This dataset should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes. For more information visit the Sea Level Rise Impacts Viewer (https://coast.noaa.gov/slr).View Dataset on the Gateway

  16. NOAA Office for Coastal Management Sea Level Rise Data: Current Mean Higher...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2025). NOAA Office for Coastal Management Sea Level Rise Data: Current Mean Higher High Water Inundation Extent [Dataset]. https://catalog.data.gov/dataset/noaa-office-for-coastal-management-sea-level-rise-data-current-mean-higher-high-water-inundatio5
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://www.coast.noaa.gov/slr These data depict the potential inundation of coastal areas resulting from current Mean Higher High Water (MHHW) conditions. The process used to produce the data can be described as a modified bathtub approach that attempts to account for both local/regional tidal variability as well as hydrological connectivity. The process uses two source datasets to derive the final inundation rasters and polygons and accompanying low-lying polygons: the Digital Elevation Model (DEM) of the area and a tidal surface model that represents spatial tidal variability. The tidal model is created using the NOAA National Geodetic Survey's VDATUM datum transformation software (http://vdatum.noaa.gov) in conjunction with spatial interpolation/extrapolation methods and represents the MHHW tidal datum in orthometric values (North American Vertical Datum of 1988). The model used to produce these data does not account for erosion, subsidence, or any future changes in an area's hydrodynamics. It is simply a method to derive data in order to visualize the potential scale, not exact location, of inundation from sea level rise. Both raster and vector data are provided. The raster data represent both the horizontal extent of inundation and depth above ground, in meters. The vector data represent the horizontal extent of both hydrologically connected and unconnected inundation. The vector "slr" data represent inundation that is hydrologically connected to the ocean. The vector "low" data represent areas that are hydrologically unconnected to the ocean, but are below MHHW and may also flood. For more information, contact coastal.info@noaa.gov.

  17. n

    Sea Level Rise - 8.5ft Inundation

    • opdgig.dos.ny.gov
    Updated Mar 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of State (2025). Sea Level Rise - 8.5ft Inundation [Dataset]. https://opdgig.dos.ny.gov/maps/NYSDOS::sea-level-rise-8-5ft-inundation
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    New York State Department of State
    Area covered
    Description

    This dataset displays potential future sea levels. The purpose of this dataset is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. The data and maps in this tool illustrate the scale of potential flooding, not the exact location, and do not account for erosion, subsidence, or future construction. Water levels are shown as they would appear during the highest high tides (excludes wind driven tides). The data, maps, and information provided should be used only as a screening-level tool for management decisions. This dataset was created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The purpose of this dataset is to show potential sea level rise inundation of 8.5ft above current Mean Higher High Water (MHHW) for the area. Tiles have been cached down to Level ID 15 (1:18,055). This dataset illustrates the scale of potential flooding, not the exact location, and does not account for erosion, subsidence, or future construction. Inundation is shown as it would appear during the highest high tides (excludes wind driven tides) with the sea level rise amount. The dataset should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. The dataset is provided "as is," without warranty to its performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of this dataset is assumed by the user. This dataset should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes. For more information visit the Sea Level Rise Impacts Viewer (https://coast.noaa.gov/slr).View Dataset on the Gateway

  18. d

    Bathymetric Map of the Bering/Chukchi Sea

    • catalog.data.gov
    • data.usgs.gov
    • +4more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Bathymetric Map of the Bering/Chukchi Sea [Dataset]. https://catalog.data.gov/dataset/bathymetric-map-of-the-bering-chukchi-sea
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Bering Strait, Chukchi Sea, Bering Sea
    Description

    Two bathymetric maps were developed by the U.S. Geological Survey, one for the Chukchi Sea and Arctic Ocean, and one for the Aleutian Trench and Bering Sea. The 2 maps overlap near the Bering Strait. Bathymetric contours were generated from several published sources. It is unclear whether new soundings were collected for these maps. The northern map extends from Wrangel Island, Russia to MacKenzie Bay, Canada, and north to 76 N latitude. The southern map extends from Shelikof Bay, Russia, to the western tip of the Alaska Peninsula, USA, and south to 48 N latitude. Bathymetric contours are at 400 meter intervals with 20, 30, 40, 50, 100, and 200 meter contours added. Contours above 50 meters are rare, and never along the Russian coast. Hard-copy maps were published by the USGS in 1976 and digitized by the Alaska Science Center in 1997. In digital format, the 2 maps have been connected where they overlap in the Bering Strait.

  19. d

    Sea floor maps showing topography, sun-illuminated topographic imagery, and...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Sea floor maps showing topography, sun-illuminated topographic imagery, and backscatter intensity of the Stellwagen Bank National Marine Sanctuary Region off Boston, Massachusetts [Dataset]. https://catalog.data.gov/dataset/sea-floor-maps-showing-topography-sun-illuminated-topographic-imagery-and-backscatter-inte
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Boston, Gerry E. Studds/Stellwagen Bank National Marine Sanctuary, Massachusetts
    Description

    This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.

  20. m

    NOAA Coastal Inundation Uncertainty - 3 Feet

    • gis.data.mass.gov
    • hub.arcgis.com
    Updated May 19, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2015). NOAA Coastal Inundation Uncertainty - 3 Feet [Dataset]. https://gis.data.mass.gov/datasets/noaa-coastal-inundation-uncertainty-3-feet
    Explore at:
    Dataset updated
    May 19, 2015
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Coastal Services Center's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. See the NOAA Sea Level Rise and Coastal Flooding Impacts Viewer. These data depict the mapping confidence of the associated Sea Level Rise inundation data, for the sea level rise amount specified. Areas that have a low degree of confidence, or high uncertainty, represent locations that may be mapped correctly (either as inundated or dry) less than 8 out of 10 times. Areas that have a high degree of confidence, or low uncertainty, represent locations that will be correctly mapped (either as inundated or dry) more than 8 out of 10 times or that there is an 80 percent degree of confidence that these areas are correctly mapped. Areas mapped as dry (no inundation) with a high confidence or low uncertainty are coded as 0. Areas mapped as dry or wet with a low confidence or high uncertainty are coded as 1. Areas mapped as wet (inundation) with a high confidence or low uncertainty are coded as 2. The NOAA Coastal Services Center has tentatively adopted an 80 percent rank (as either inundated or not inundated) as the zone of relative confidence. The use of 80 percent has no special significance but is a commonly used rule of thumb measure to describe economic systems (Epstein and Axtell, 1996). In short, the method includes the uncertainty in the lidar derived elevation data (root mean square error, or RMSE) and the uncertainty in the modeled tidal surface from the NOAA VDATUM model (RMSE). This uncertainty is combined and mapped to show that the inundation depicted in this data is not really a hard line, but rather a zone with greater and lesser chances of getting wet. For a detailed description of the confidence level and its computation, please see the Mapping Inundation Uncertainty document.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). NOAA Office for Coastal Management Sea Level Rise Data: Mapping Confidence [Dataset]. https://catalog.data.gov/dataset/noaa-office-for-coastal-management-sea-level-rise-data-mapping-confidence3
Organization logo

NOAA Office for Coastal Management Sea Level Rise Data: Mapping Confidence

Explore at:
Dataset updated
Oct 31, 2024
Dataset provided by
National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
Description

These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://www.coast.noaa.gov/slr These data depict the mapping confidence of the associated Sea Level Rise inundation data, for the sea level rise amount specified. Areas that have a low degree of confidence, or high uncertainty, represent locations that may be mapped correctly (either as inundated or dry) less than 8 out of 10 times. Areas that have a high degree of confidence, or low uncertainty, represent locations that will be correctly mapped (either as inundated or dry) more than 8 out of 10 times or that there is an 80 percent degree of confidence that these areas are correctly mapped. Areas mapped as dry (no inundation) with a high confidence or low uncertainty are coded as 0. Areas mapped as dry or wet with a low confidence or high uncertainty are coded as 1. Areas mapped as wet (inundation) with a high confidence or low uncertainty are coded as 2. The NOAA Office for Coastal Management has tentatively adopted an 80 percent rank (as either inundated or not inundated) as the zone of relative confidence. The use of 80 percent has no special significance but is a commonly used rule of thumb measure to describe economic systems (Epstein and Axtell, 1996). In short, the method includes the uncertainty in the lidar derived elevation data (root mean square error, or RMSE) and the uncertainty in the modeled tidal surface from the NOAA VDATUM model (RMSE). This uncertainty is combined and mapped to show that the inundation depicted in this data is not really a hard line, but rather a zone with greater and lesser chances of getting wet. For a detailed description of the confidence level and its computation, please see the Mapping Inundation Uncertainty document available at: https://coast.noaa.gov/data/digitalcoast/pdf/mapping-inundation-uncertainty.pdf

Search
Clear search
Close search
Google apps
Main menu