Website alows the public full access to the 1940 Census images, census maps and descriptions.
The 1940 Census population schedules were created by the Bureau of the Census in an attempt to enumerate every person living in the United States on April 1, 1940, although some persons were missed. The 1940 census population schedules were digitized by the National Archives and Records Administration (NARA) and released publicly on April 2, 2012. The 1940 Census enumeration district maps contain maps of counties, cities, and other minor civil divisions that show enumeration districts, census tracts, and related boundaries and numbers used for each census. The coverage is nation wide and includes territorial areas. The 1940 Census enumeration district descriptions contain written descriptions of census districts, subdivisions, and enumeration districts.
https://www.icpsr.umich.edu/web/ICPSR/studies/8236/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8236/terms
The 1940 Census Public Use Microdata Sample Project was assembled through a collaborative effort between the United States Bureau of the Census and the Center for Demography and Ecology at the University of Wisconsin. The collection contains a stratified 1-percent sample of households, with separate records for each household, for each "sample line" respondent, and for each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1940 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), standard metropolitan areas (SMAs), and state economic areas (SEAs). Accompanying the data collection is a codebook that includes an abstract, descriptions of sample design, processing procedures and file structure, a data dictionary (record layout), category code lists, and a glossary. Also included is a procedural history of the 1940 Census. Each of the 20 subsamples contains three record types: household, sample line, and person. Household variables describe the location and condition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, wage deductions for Social Security, and occupation. Person records also contain variables describing demographic characteristics including nativity, marital status, family membership, education, employment status, income, and occupation.
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The IPUMS microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1940 census data was collected in April 1940. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
1940 United States Federal Census contains records from Philadelphia, Pennsylvania, USA by United States of America, Bureau of the Census. Sixteenth Census of the United States, 1940. Washington, D.C.: National Archives and Records Administration, 1940. T627, 4,643 rolls. Year: 1940; Census Place: Upper Dublin, Montgomery, Pennsylvania; Roll: m-t0627-03585; Page: 20B; Enumeration District: 46-208 - .
This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1940 datasets.
1940 Ancestry Census Data for Baltimore, Maryland. Refer to the 1940 codebook (codebook_1940.pdf) for more information. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
This dataset includes all households from the 1940 US census.
This dataset includes all individuals from the 1940 US census.
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.7910/DVN/ZFVVNAhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.7910/DVN/ZFVVNA
The CenSoc WWII Army Enlistment Dataset is a cleaned and harmonized version of the National Archives and Records Administration’s Electronic Army Serial Number Merged File, ca. 1938 - 1946 (2002). It contains enlistment records for over 9 million men and women who served in the United States Army, including the Army Air Corps, Women's Army Auxiliary Corps, and Enlisted Reserve Corps. We publish links between men in the CenSoc WWII Army Enlistment Dataset, Social Security Administration mortality data, and the 1940 Census. The CenSoc Enlistment-Census-1940 file links these enlistment records to the complete 1940 Census, and may be merged with IPUMS-USA census data using the HISTID identifier variable. The CenSoc Enlistment-Numident file links enlistment records to the Berkley Unified Numident Mortality Database (BUNMD), and the CenSoc Enlistment-DMF file links enlistment records to the Social Security Death Master File. For enlistment records in the Enlistment-Numident and Enlistment-DMF datasets that have been independently and additionally linked to the 1940 Census, we include the HISTID identifier variable that can be used to merge the data with IPUMS census data.
https://www.icpsr.umich.edu/web/ICPSR/studies/8353/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8353/terms
This is an extract of the decennial Public Use Microdata Sample (PUMS) released by the Bureau of the Census. Because the complete PUMS files contain several hundred thousand records, ICPSR has constructed this subset to allow for easier and less costly analysis. The collection of data at ten year increments allows the user to follow various age cohorts through the life-cycle. Data include information on the household and its occupants such as size and value of dwelling, utility costs, number of people in the household, and their relationship to the respondent. More detailed information was collected on the respondent, the head of household, and the spouse, if present. Variables include education, marital status, occupation and income.
These data comprise Census records relating to the Alaskan people's population demographics for the State of Alaskan Salmon and People (SASAP) Project. Decennial census data were originally extracted from IPUMS National Historic Geographic Information Systems website: https://data2.nhgis.org/main (Citation: Steven Manson, Jonathan Schroeder, David Van Riper, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 12.0 [Database]. Minneapolis: University of Minnesota. 2017. http://doi.org/10.18128/D050.V12.0). A number of relevant tables of basic demographics on age and race, household income and poverty levels, and labor force participation were extracted. These particular variables were selected as part of an effort to understand and potentially quantify various dimensions of well-being in Alaskan communities. The file "censusdata_master.csv" is a consolidation of all 21 other data files in the package. For detailed information on how the datasets vary over different years, view the file "readme.docx" available in this data package. The included .Rmd file is a script which combines the 21 files by year into a single file (censusdata_master.csv). It also cleans up place names (including typographical errors) and uses the USGS place names dataset and the SASAP regions dataset to assign latitude and longitude values and region values to each place in the dataset. Note that some places were not assigned a region or location because they do not fit well into the regional framework. Considerable heterogeneity exists between census surveys each year. While we have attempted to combine these datasets in a way that makes sense, there may be some discrepancies or unexpected values. The RMarkdown document SASAPWebsiteGraphicsCensus.Rmd is used to generate a variety of figures using these data, including the additional file Chignik_population.png
1940 Education Census Data for Baltimore, Maryland. Refer to the 1940 codebook (codebook_1940.pdf) for more information. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
This crosswalk consists of individuals matched between the 1850 and 1940 complete-count US Censuses. Within the crosswalk, users have the option to select the linking method with which these matches were created. This version of the crosswalk contains links made by the ABE-exact (conservative and standard) method, the ABE-NYSIIS (conservative and standard) method and the ABE-NYSIIS (conservative and standard) method where race is used as a matching variable. Users can then merge into this crosswalk a wide set of individual- and household-level variables provided publicly by IPUMS, thereby creating a historical longitudinal dataset for analysis.
These data comprise Census records relating to the Alaskan people's population demographics for the State of Alaskan Salmon and People (SASAP) Project. Decennial census data were originally extracted from IPUMS National Historic Geographic Information Systems website: https://data2.nhgis.org/main (Citation: Steven Manson, Jonathan Schroeder, David Van Riper, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 12.0 [Database]. Minneapolis: University of Minnesota. 2017. http://doi.org/10.18128/D050.V12.0). A number of relevant tables of basic demographics on age and race, household income and poverty levels, and labor force participation were extracted. These particular variables were selected as part of an effort to understand and potentially quantify various dimensions of well-being in Alaskan communities. The file "censusdata_master.csv" is a consolidation of all 21 other data files in the package. For detailed information on how the datasets vary over different years, view the file "readme.docx" available in this data package. The included .Rmd file is a script which combines the 21 files by year into a single file (censusdata_master.csv). It also cleans up place names (including typographical errors) and uses the USGS place names dataset and the SASAP regions dataset to assign latitude and longitude values and region values to each place in the dataset. Note that some places were not assigned a region or location because they do not fit well into the regional framework. Considerable heterogeneity exists between census surveys each year. While we have attempted to combine these datasets in a way that makes sense, there may be some discrepancies or unexpected values. The RMarkdown document SASAPWebsiteGraphicsCensus.Rmd is used to generate a variety of figures using these data, including the additional file Chignik_population.png
1940 Employment Census Data for Baltimore, Maryland. Refer to the 1940 codebook (codebook_1940.pdf) for more information. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
This dataset was created primarily to map and track socioeconomic and demographic variables from the US Census Bureau from year 1940 to year 2010, by decade, within the City of Baltimore's Mayor's Office of Information Technology (MOIT) year 2010 neighborhood boundaries. The socioeconomic and demographic variables include the percent White, percent African American, percent owner occupied homes, percent vacant homes, the percentage of age 25 and older people with a high school education or greater, and the percentage of age 25 and older people with a college education or greater. Percent White and percent African American are also provided for year 1930. Each of the the year 2010 neighborhood boundaries were also attributed with the 1937 Home Owners' Loan Corporation (HOLC) definition of neighborhoods via spatial overlay. HOLC rated neighborhoods as A, B, C, D or Undefined. HOLC categorized the perceived safety and risk of mortgage refinance lending in metropolitan areas using a hierarchical grading scale of A, B, C, and D. A and B areas were considered the safest areas for federal investment due to their newer housing as well as higher earning and racially homogenous households. In contrast, C and D graded areas were viewed to be in a state of inevitable decline, depreciation, and decay, and thus risky for federal investment, due to their older housing stock and racial and ethnic composition. This policy was inherently a racist practice. Places were graded based on who lived there; poor areas with people of color were labeled as lower and less-than. HOLC's 1937 neighborhoods do not cover the entire extent of the year 2010 neighborhood boundaries. The neighborhood boundaries were also augmented to include which of the year 2017 Housing Market Typology (HMT) the 2010 neighborhoods fall within. Finally, the neighborhood boundaries were also augmented to include tree canopy and tree canopy change year 2007 to year 2015.
The world's Jewish population has had a complex and tumultuous history over the past millennia, regularly dealing with persecution, pogroms, and even genocide. The legacy of expulsion and persecution of Jews, including bans on land ownership, meant that Jewish communities disproportionately lived in urban areas, working as artisans or traders, and often lived in their own settlements separate to the rest of the urban population. This separation contributed to the impression that events such as pandemics, famines, or economic shocks did not affect Jews as much as other populations, and such factors came to form the basis of the mistrust and stereotypes of wealth (characterized as greed) that have made up anti-Semitic rhetoric for centuries. Development since the Middle Ages The concentration of Jewish populations across the world has shifted across different centuries. In the Middle Ages, the largest Jewish populations were found in Palestine and the wider Levant region, with other sizeable populations in present-day France, Italy, and Spain. Later, however, the Jewish disapora became increasingly concentrated in Eastern Europe after waves of pogroms in the west saw Jewish communities move eastward. Poland in particular was often considered a refuge for Jews from the late-Middle Ages until the 18th century, when it was then partitioned between Austria, Prussia, and Russia, and persecution increased. Push factors such as major pogroms in the Russian Empire in the 19th century and growing oppression in the west during the interwar period then saw many Jews migrate to the United States in search of opportunity.
During the eighteenth century, it is estimated that France's population grew by roughly fifty percent, from 19.7 million in 1700, to 29 million by 1800. In France itself, the 1700s are remembered for the end of King Louis XIV's reign in 1715, the Age of Enlightenment, and the French Revolution. During this century, the scientific and ideological advances made in France and across Europe challenged the leadership structures of the time, and questioned the relationship between monarchial, religious and political institutions and their subjects. France was arguably the most powerful nation in the world in these early years, with the second largest population in Europe (after Russia); however, this century was defined by a number of costly, large-scale conflicts across Europe and in the new North American theater, which saw the loss of most overseas territories (particularly in North America) and almost bankrupted the French crown. A combination of regressive taxation, food shortages and enlightenment ideologies ultimately culminated in the French Revolution in 1789, which brought an end to the Ancien Régime, and set in motion a period of self-actualization.
War and peace
After a volatile and tumultuous decade, in which tens of thousands were executed by the state (most infamously: guillotined), relative stability was restored within France as Napoleon Bonaparte seized power in 1799, and the policies of the revolution became enforced. Beyond France's borders, the country was involved in a series of large scale wars for two almost decades, and the First French Empire eventually covered half of Europe by 1812. In 1815, Napoleon was defeated outright, the empire was dissolved, and the monarchy was restored to France; nonetheless, a large number of revolutionary and Napoleonic reforms remained in effect afterwards, and the ideas had a long-term impact across the globe. France experienced a century of comparative peace in the aftermath of the Napoleonic Wars; there were some notable uprisings and conflicts, and the monarchy was abolished yet again, but nothing on the scale of what had preceded or what was to follow. A new overseas colonial empire was also established in the late 1800s, particularly across Africa and Southeast Asia. Through most of the eighteenth and nineteenth century, France had the second largest population in Europe (after Russia), however political instability and the economic prioritization of Paris meant that the entire country did not urbanize or industrialize at the same rate as the other European powers. Because of this, Germany and Britain entered the twentieth century with larger populations, and other regions, such as Austria or Belgium, had overtaken France in terms of industrialization; the German annexation of Alsace-Lorraine in the Franco-Prussian War was also a major contributor to this.
World Wars and contemporary France
Coming into the 1900s, France had a population of approximately forty million people (officially 38 million* due to to territorial changes), and there was relatively little growth in the first half of the century. France was comparatively unprepared for a large scale war, however it became one of the most active theaters of the First World War when Germany invaded via Belgium in 1914, with the ability to mobilize over eight million men. By the war's end in 1918, France had lost almost 1.4 million in the conflict, and approximately 300,000 in the Spanish Flu pandemic that followed. Germany invaded France again during the Second World War, and occupied the country from 1940, until the Allied counter-invasion liberated the country during the summer of 1944. France lost around 600,000 people in the course of the war, over half of which were civilians. Following the war's end, the country experienced a baby boom, and the population grew by approximately twenty million people in the next fifty years (compared to just one million in the previous fifty years). Since the 1950s, France's economy quickly grew to be one of the strongest in the world, despite losing the vast majority of its overseas colonial empire by the 1970s. A wave of migration, especially from these former colonies, has greatly contributed to the growth and diversity of France's population today, which stands at over 65 million people in 2020.
This data set provides annual spatial patterns of cropland, natural pasture, and planted pasture land uses across Amazonia for the period 1940/1950-1995. Two series of 5-minute grid cell historical maps were generated starting from land use classification products for 1995. Annual data are the fraction of natural pasture, planted pasture, and cropland in each 5-min grid cell. The annual maps are provided in two NetCDF (.nc) format file at 5-minute resolution. The AMZ-C.nc file covers the Brazilian portion of Amazon and Tocantins Rivers basins, and is based on the 1995 land use classification of Cardille et al. (2002), generated through the fusion of remote sensing (AVHRR) and agricultural census data. The second file, AMZ-R.nc, covers the entire Legal Amazon region and adjacent areas and is based on the 1995 land use classification by Ramankutty et al. (2008). The land use classification was generated by the fusion of satellite imagery (MODIS and VEGETATION-SPOT) and data from the agricultural census. A historical land-use reconstruction algorithm was used to generate the annual spatial patterns (based on work from Ramunkutty and Foley, 1999).
Website alows the public full access to the 1940 Census images, census maps and descriptions.