Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union".
Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content?
To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic.
In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained.
To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market.
It includes:
Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains raw, unprocessed data files pertaining to the management tool 'Customer Segmentation', including the closely related concept of Market Segmentation. The data originates from five distinct sources, each reflecting different facets of the tool's prominence and usage over time. Files preserve the original metrics and temporal granularity before any comparative normalization or harmonization. Data Sources & File Details: Google Trends File (Prefix: GT_): Metric: Relative Search Interest (RSI) Index (0-100 scale). Keywords Used: "customer segmentation" + "market segmentation" + "customer segmentation marketing" Time Period: January 2004 - January 2025 (Native Monthly Resolution). Scope: Global Web Search, broad categorization. Extraction Date: Data extracted January 2025. Notes: Index relative to peak interest within the period for these terms. Reflects public/professional search interest trends. Based on probabilistic sampling. Source URL: Google Trends Query Google Books Ngram Viewer File (Prefix: GB_): Metric: Annual Relative Frequency (% of total n-grams in the corpus). Keywords Used: Customer Segmentation + Market Segmentation Time Period: 1950 - 2022 (Annual Resolution). Corpus: English. Parameters: Case Insensitive OFF, Smoothing 0. Extraction Date: Data extracted January 2025. Notes: Reflects term usage frequency in Google's digitized book corpus. Subject to corpus limitations (English bias, coverage). Source URL: Ngram Viewer Query Crossref.org File (Prefix: CR_): Metric: Absolute count of publications per month matching keywords. Keywords Used: ("customer segmentation" OR "market segmentation") AND ("marketing" OR "strategy" OR "management" OR "targeting" OR "analysis" OR "approach" OR "practice") Time Period: 1950 - 2025 (Queried for monthly counts based on publication date metadata). Search Fields: Title, Abstract. Extraction Date: Data extracted January 2025. Notes: Reflects volume of relevant academic publications indexed by Crossref. Deduplicated using DOIs; records without DOIs omitted. Source URL: Crossref Search Query Bain & Co. Survey - Usability File (Prefix: BU_): Metric: Original Percentage (%) of executives reporting tool usage. Tool Names/Years Included: Customer Segmentation (1999, 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2017). Respondent Profile: CEOs, CFOs, COOs, other senior leaders; global, multi-sector. Source: Bain & Company Management Tools & Trends publications (Rigby D., Bilodeau B., et al., various years: 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017). Note: Tool not included in the 2022 survey data. Data Compilation Period: July 2024 - January 2025. Notes: Data points correspond to specific survey years. Sample sizes: 1999/475; 2000/214; 2002/708; 2004/960; 2006/1221; 2008/1430; 2010/1230; 2012/1208; 2014/1067; 2017/1268. Bain & Co. Survey - Satisfaction File (Prefix: BS_): Metric: Original Average Satisfaction Score (Scale 0-5). Tool Names/Years Included: Customer Segmentation (1999, 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2017). Respondent Profile: CEOs, CFOs, COOs, other senior leaders; global, multi-sector. Source: Bain & Company Management Tools & Trends publications (Rigby D., Bilodeau B., et al., various years: 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017). Note: Tool not included in the 2022 survey data. Data Compilation Period: July 2024 - January 2025. Notes: Data points correspond to specific survey years. Sample sizes: 1999/475; 2000/214; 2002/708; 2004/960; 2006/1221; 2008/1430; 2010/1230; 2012/1208; 2014/1067; 2017/1268. Reflects subjective executive perception of utility. File Naming Convention: Files generally follow the pattern: PREFIX_Tool.csv, where the PREFIX indicates the data source: GT_: Google Trends GB_: Google Books Ngram CR_: Crossref.org (Count Data for this Raw Dataset) BU_: Bain & Company Survey (Usability) BS_: Bain & Company Survey (Satisfaction) The essential identification comes from the PREFIX and the Tool Name segment. This dataset resides within the 'Management Tool Source Data (Raw Extracts)' Dataverse.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains raw, unprocessed data files pertaining to the management tool 'Benchmarking'. The data originates from five distinct sources, each reflecting different facets of the tool's prominence and usage over time. Files preserve the original metrics and temporal granularity before any comparative normalization or harmonization. Data Sources & File Details: Google Trends File (Prefix: GT_): Metric: Relative Search Interest (RSI) Index (0-100 scale). Keywords Used: "benchmarking" + "benchmarking management" Time Period: January 2004 - January 2025 (Native Monthly Resolution). Scope: Global Web Search, broad categorization. Extraction Date: Data extracted January 2025. Notes: Index relative to peak interest within the period for these terms. Reflects public/professional search interest trends. Based on probabilistic sampling. Source URL: Google Trends Query Google Books Ngram Viewer File (Prefix: GB_): Metric: Annual Relative Frequency (% of total n-grams in the corpus). Keywords Used: Benchmarking Time Period: 1950 - 2022 (Annual Resolution). Corpus: English. Parameters: Case Insensitive OFF, Smoothing 0. Extraction Date: Data extracted January 2025. Notes: Reflects term usage frequency in Google's digitized book corpus. Subject to corpus limitations (English bias, coverage). Source URL: Ngram Viewer Query Crossref.org File (Prefix: CR_): Metric: Absolute count of publications per month matching keywords. Keywords Used: "benchmarking" AND ("process" OR "management" OR "performance" OR "best practices" OR "implementation" OR "approach" OR "evaluation" OR "methodology") Time Period: 1950 - 2025 (Queried for monthly counts based on publication date metadata). Search Fields: Title, Abstract. Extraction Date: Data extracted January 2025. Notes: Reflects volume of relevant academic publications indexed by Crossref. Deduplicated using DOIs; records without DOIs omitted. Source URL: Crossref Search Query Bain & Co. Survey - Usability File (Prefix: BU_): Metric: Original Percentage (%) of executives reporting tool usage. Tool Names/Years Included: Benchmarking (1993, 1996, 1999, 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2017). Respondent Profile: CEOs, CFOs, COOs, other senior leaders; global, multi-sector. Source: Bain & Company Management Tools & Trends publications (Rigby D., Bilodeau B., et al., various years: 1994, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017). Note: Tool not included in the 2022 survey data. Data Compilation Period: July 2024 - January 2025. Notes: Data points correspond to specific survey years. Sample sizes: 1993/500; 1996/784; 1999/475; 2000/214; 2002/708; 2004/960; 2006/1221; 2008/1430; 2010/1230; 2012/1208; 2014/1067; 2017/1268. Bain & Co. Survey - Satisfaction File (Prefix: BS_): Metric: Original Average Satisfaction Score (Scale 0-5). Tool Names/Years Included: Benchmarking (1993, 1996, 1999, 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2017). Respondent Profile: CEOs, CFOs, COOs, other senior leaders; global, multi-sector. Source: Bain & Company Management Tools & Trends publications (Rigby D., Bilodeau B., et al., various years: 1994, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017). Note: Tool not included in the 2022 survey data. Data Compilation Period: July 2024 - January 2025. Notes: Data points correspond to specific survey years. Sample sizes: 1993/500; 1996/784; 1999/475; 2000/214; 2002/708; 2004/960; 2006/1221; 2008/1430; 2010/1230; 2012/1208; 2014/1067; 2017/1268. Reflects subjective executive perception of utility. File Naming Convention: Files generally follow the pattern: PREFIX_Tool.csv, where the PREFIX indicates the data source: GT_: Google Trends GB_: Google Books Ngram CR_: Crossref.org (Count Data for this Raw Dataset) BU_: Bain & Company Survey (Usability) BS_: Bain & Company Survey (Satisfaction) The essential identification comes from the PREFIX and the Tool Name segment. This dataset resides within the 'Management Tool Source Data (Raw Extracts)' Dataverse.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains raw, unprocessed data files pertaining to the management tool group focused on 'Price Optimization', including related concepts like Dynamic Pricing and Price Optimization Models. The data originates from five distinct sources, each reflecting different facets of the tool's prominence and usage over time. Files preserve the original metrics and temporal granularity before any comparative normalization or harmonization. Data Sources & File Details: Google Trends File (Prefix: GT_): Metric: Relative Search Interest (RSI) Index (0-100 scale). Keywords Used: "price optimization" + "dynamic pricing" + "price optimization strategy" Time Period: January 2004 - January 2025 (Native Monthly Resolution). Scope: Global Web Search, broad categorization. Extraction Date: Data extracted January 2025. Notes: Index relative to peak interest within the period for these terms. Reflects public/professional search interest trends. Based on probabilistic sampling. Source URL: Google Trends Query Google Books Ngram Viewer File (Prefix: GB_): Metric: Annual Relative Frequency (% of total n-grams in the corpus). Keywords Used: Price Optimization + Pricing Optimization + Dynamic Pricing Models + Optimal Pricing + Dynamic Pricing Time Period: 1950 - 2022 (Annual Resolution). Corpus: English. Parameters: Case Insensitive OFF, Smoothing 0. Extraction Date: Data extracted January 2025. Notes: Reflects term usage frequency in Google's digitized book corpus. Subject to corpus limitations (English bias, coverage). Source URL: Ngram Viewer Query Crossref.org File (Prefix: CR_): Metric: Absolute count of publications per month matching keywords. Keywords Used: ("price optimization" OR "pricing optimization" OR "dynamic pricing" OR "optimal pricing" OR "dynamic pricing models") AND ("management" OR "strategy" OR "revenue" OR "pricing" OR "model" OR "analysis") Time Period: 1950 - 2025 (Queried for monthly counts based on publication date metadata). Search Fields: Title, Abstract. Extraction Date: Data extracted January 2025. Notes: Reflects volume of relevant academic publications indexed by Crossref. Deduplicated using DOIs; records without DOIs omitted. Source URL: Crossref Search Query Bain & Co. Survey - Usability File (Prefix: BU_): Metric: Original Percentage (%) of executives reporting tool usage. Tool Names/Years Included: Price Optimization Models (2004, 2008, 2010, 2012, 2014, 2017). Respondent Profile: CEOs, CFOs, COOs, other senior leaders; global, multi-sector. Source: Bain & Company Management Tools & Trends publications (Rigby D., Bilodeau B., et al., various years: 2003, 2007, 2009, 2011, 2013, 2015, 2017). Note: Tool potentially not surveyed before 2004 or after 2017 under this specific name. Data Compilation Period: July 2024 - January 2025. Notes: Data points correspond to specific survey years. Sample sizes: 2004/960; 2008/1430; 2010/1230; 2012/1208; 2014/1067; 2017/1268. Bain & Co. Survey - Satisfaction File (Prefix: BS_): Metric: Original Average Satisfaction Score (Scale 0-5). Tool Names/Years Included: Price Optimization Models (2004, 2008, 2010, 2012, 2014, 2017). Respondent Profile: CEOs, CFOs, COOs, other senior leaders; global, multi-sector. Source: Bain & Company Management Tools & Trends publications (Rigby D., Bilodeau B., et al., various years: 2003, 2007, 2009, 2011, 2013, 2015, 2017). Note: Tool potentially not surveyed before 2004 or after 2017 under this specific name. Data Compilation Period: July 2024 - January 2025. Notes: Data points correspond to specific survey years. Sample sizes: 2004/960; 2008/1430; 2010/1230; 2012/1208; 2014/1067; 2017/1268. Reflects subjective executive perception of utility. File Naming Convention: Files generally follow the pattern: PREFIX_Tool.csv, where the PREFIX indicates the data source: GT_: Google Trends GB_: Google Books Ngram CR_: Crossref.org (Count Data for this Raw Dataset) BU_: Bain & Company Survey (Usability) BS_: Bain & Company Survey (Satisfaction) The essential identification comes from the PREFIX and the Tool Name segment. This dataset resides within the 'Management Tool Source Data (Raw Extracts)' Dataverse.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains raw, unprocessed data files pertaining to the management tool 'Core Competencies' (also Core Competence). The data originates from five distinct sources, each reflecting different facets of the tool's prominence and usage over time. Files preserve the original metrics and temporal granularity before any comparative normalization or harmonization. Data Sources & File Details: Google Trends File (Prefix: GT_): Metric: Relative Search Interest (RSI) Index (0-100 scale). Keywords Used: "core competencies" + "core competence strategy" Time Period: January 2004 - January 2025 (Native Monthly Resolution). Scope: Global Web Search, broad categorization. Extraction Date: Data extracted January 2025. Notes: Index relative to peak interest within the period for these terms. Reflects public/professional search interest trends. Based on probabilistic sampling. Source URL: Google Trends Query Google Books Ngram Viewer File (Prefix: GB_): Metric: Annual Relative Frequency (% of total n-grams in the corpus). Keywords Used: Core Competencies + Core Competence Time Period: 1950 - 2022 (Annual Resolution). Corpus: English. Parameters: Case Insensitive OFF, Smoothing 0. Extraction Date: Data extracted January 2025. Notes: Reflects term usage frequency in Google's digitized book corpus. Subject to corpus limitations (English bias, coverage). Source URL: Ngram Viewer Query Crossref.org File (Prefix: CR_): Metric: Absolute count of publications per month matching keywords. Keywords Used: ("core competencies" OR "core competence") AND ("management" OR "competitive advantage" OR "strategy" OR "capabilities" OR "resources" OR "approach" OR "development") Time Period: 1950 - 2025 (Queried for monthly counts based on publication date metadata). Search Fields: Title, Abstract. Extraction Date: Data extracted January 2025. Notes: Reflects volume of relevant academic publications indexed by Crossref. Deduplicated using DOIs; records without DOIs omitted. Source URL: Crossref Search Query Bain & Co. Survey - Usability File (Prefix: BU_): Metric: Original Percentage (%) of executives reporting tool usage. Tool Names/Years Included: Core Competencies (1993, 1996, 1999, 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2017). Respondent Profile: CEOs, CFOs, COOs, other senior leaders; global, multi-sector. Source: Bain & Company Management Tools & Trends publications (Rigby D., Bilodeau B., et al., various years: 1994, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017). Note: Tool not included in the 2022 survey data. Data Compilation Period: July 2024 - January 2025. Notes: Data points correspond to specific survey years. Sample sizes: 1993/500; 1996/784; 1999/475; 2000/214; 2002/708; 2004/960; 2006/1221; 2008/1430; 2010/1230; 2012/1208; 2014/1067; 2017/1268. Bain & Co. Survey - Satisfaction File (Prefix: BS_): Metric: Original Average Satisfaction Score (Scale 0-5). Tool Names/Years Included: Core Competencies (1993, 1996, 1999, 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2017). Respondent Profile: CEOs, CFOs, COOs, other senior leaders; global, multi-sector. Source: Bain & Company Management Tools & Trends publications (Rigby D., Bilodeau B., et al., various years: 1994, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017). Note: Tool not included in the 2022 survey data. Data Compilation Period: July 2024 - January 2025. Notes: Data points correspond to specific survey years. Sample sizes: 1993/500; 1996/784; 1999/475; 2000/214; 2002/708; 2004/960; 2006/1221; 2008/1430; 2010/1230; 2012/1208; 2014/1067; 2017/1268. Reflects subjective executive perception of utility. File Naming Convention: Files generally follow the pattern: PREFIX_Tool.csv, where the PREFIX indicates the data source: GT_: Google Trends GB_: Google Books Ngram CR_: Crossref.org (Count Data for this Raw Dataset) BU_: Bain & Company Survey (Usability) BS_: Bain & Company Survey (Satisfaction) The essential identification comes from the PREFIX and the Tool Name segment. This dataset resides within the 'Management Tool Source Data (Raw Extracts)' Dataverse.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionAntenatal exercise can reduce gestational weight gain, backache; pregnancy induced medical disorders, caesarean section rates, and improves pregnancy outcomes. American College of Obstetrics and Gynecology (ACOG) recommends prenatal exercise, which is associated with minimal risk and has been shown to be beneficial for pregnancy outcomes, although some exercise routines may need to be modified. Consequently, this meta-analysis is intended to verify the pooled practice of antenatal exercise in Africa using available primary articles.MethodsGenuine search of the research articles was done via PubMed, Scopes, Cochrane library, the Web of Science; free Google databases search engines, Google Scholar, and Science Direct databases. Published and unpublished articles were searched and screened for inclusion in the final analysis and Studies without sound methodologies, and review and meta-analysis were not included in this analysis. The Newcastle–Ottawa scale was used to assess the risk of bias. If heterogeneity exceeded 40%, the random effect method was used; otherwise, the fixed-effect method was used. Meta-analysis was conducted using STATA version 14.0 software. Publication bias was checked by funnel plot and Egger test.ResultsThis review analyzed data from 2880 women on antenatal care contact from different primary studies. The overall pooled effect estimate of antenatal exercise in Africa was 34.50(32.63–36.37). In the subgroup analysis for pooled antenatal exercise practice by country, it was 34.24 (31.41–37.08) in Ethiopia and 37.64(34.63–40.65) in Nigeria.ConclusionThe overall pooled effect estimate of antenatal exercise in Africa was low compared to other continent. As it was recommended by ACOG antenatal exercise to every patient in the absence of contraindications, it should be encouraged by professionals providing antenatal care service.
Google’s energy consumption has increased over the last few years, reaching 25.9 terawatt hours in 2023, up from 12.8 terawatt hours in 2019. The company has made efforts to make its data centers more efficient through customized high-performance servers, using smart temperature and lighting, advanced cooling techniques, and machine learning. Datacenters and energy Through its operations, Google pursues a more sustainable impact on the environment by creating efficient data centers that use less energy than the average, transitioning towards renewable energy, creating sustainable workplaces, and providing its users with the technological means towards a cleaner future for the future generations. Through its efficient data centers, Google has also managed to divert waste from its operations away from landfills. Reducing Google’s carbon footprint Google’s clean energy efforts is also related to their efforts to reduce their carbon footprint. Since their commitment to using 100 percent renewable energy, the company has met their targets largely through solar and wind energy power purchase agreements and buying renewable power from utilities. Google is one of the largest corporate purchasers of renewable energy in the world.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union".
Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content?
To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic.
In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained.
To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market.
It includes:
Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures