As of the fourth quarter of 2019, 49 percent of Yahoo's U.S. organic search traffic originated from mobile devices. Google had the highest share of organic mobile search traffic with 61 percent, slightly ahead of DuckDuckGo with 58 percent.
This statistic highlights the distribution of total and mobile organic search visits in the United States as of the first quarter of 2019, by engine. During the measured period, Google accounted for 92 percent of overall organic search engine visits in the United States.
https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy
In May 2025, the United States was responsible for 21.1 percent of the traffic to Google.com. In terms of web visits to the search platform, Japan came in second with 6.46 percent, followed by Brazil and India with 5.58 and 4.76 percent, respectively.
In July 2019, the Metropolitan Police Department (MPD) implemented new data collection methods that enabled officers to collect more comprehensive information about each police stop in an aggregated manner. More specifically, these changes have allowed for more detailed data collection on stops, protective pat down (PPDs), searches, and arrests. (For a complete list of terms, see the glossary on page 2.) These changes support data collection requirements in the Neighborhood Engagement Achieves Results Amendment Act of 2016 (NEAR Act).The accompanying data cover all MPD stops including vehicle, pedestrian, bicycle, and harbor stops for the period from July 22, 2019 to December 31, 2022. A stop may involve a ticket (actual or warning), investigatory stop, protective pat down, search, or arrest.If the final outcome of a stop results in an actual or warning ticket, the ticket serves as the official documentation for the stop. The information provided in the ticket include the subject’s name, race, gender, reason for the stop, and duration. All stops resulting in additional law enforcement actions (e.g., pat down, search, or arrest) are documented in MPD’s Record Management System (RMS). This dataset includes records pulled from both the ticket (District of Columbia Department of Motor Vehicles [DMV]) and RMS sources. Data variables not applicable to a particular stop are indicated as “NULL.” For example, if the stop type (“stop_type” field) is a “ticket stop,” then the fields: “stop_reason_nonticket” and “stop_reason_harbor” will be “NULL.” Each row in the data represents an individual stop of a single person, and that row reveals any and all recorded outcomes of that stop (including information about any actual or warning tickets issued, searches conducted, arrests made, etc.). A single traffic stop may generate multiple tickets, including actual, warning, and/or voided tickets. Additionally, an individual who is stopped and receives a traffic ticket may also be stopped for investigatory purposes, patted down, searched, and/or arrested. If any of these situations occur, the “stop_type” field would be labeled “Ticket and Non-Ticket Stop.” If an individual is searched, MPD differentiates between person and property searches. The “stop_location_block” field represents the block-level location of the stop and/or a street name. The age of the person being stopped is calculated based on the time between the person’s date ofbirth and the date of the stop.There are certain locations that have a high prevalence of non-ticket stops. These can be attributed to some centralized processing locations. Additionally, there is a time lag for data on some ticket stops as roughly 20 percent of tickets are handwritten. In these instances, the handwritten traffic tickets are delivered by MPD to the DMV, and then entered into data systems by DMV contractors. On August 1, 2021, MPD transitioned to a new version of its current records management system, Mark43 RMS.Due to this transition, the data collection and structures for the period between August 1, 2021 – December 31, 2021 were changed. The list below provides explanatory notes to consider when using this dataset.New fields for data collection resulted in an increase of outliers in stop duration (affecting 0.98% of stops). In order to mitigate the disruption of outliers on any analysis, these values have been set to null as consistent with past practices.Due to changes to the data structure that occurred after August 1, 2021, six attributes pertaining to reasons for searches of property and person are only available for the first seven months of 2021. These attributes are: Individual’s Actions, Information Obtained from Law Enforcement Sources, Information Obtained from Witnesses or Informants, Characteristics of an Armed Individual, Nature of the Alleged Crime, Prior Knowledge. These data structure changes have been updated to include these attributes going forward (as of April 23, 2022).Out of the four attributes for types of property search, warrant property search is only available for the first seven months of 2021. Data structure changes were made to include this type of property search in future datasets.The following chart shows how certain property search fields were aligned prior to and after August 1, 2021. A glossary is also provided following the chart. As of August 2, 2022, these fields have reverted to the original alignment.https://mpdc.dc.gov/sites/default/files/dc/sites/mpdc/publication/attachments/Explanatory%20Notes%202021%20Data.pdfIn October 2022 several fields were added to the dataset to provide additional clarity differentiating NOIs issued to bicycles (including Personal Mobility Devices, aka stand-on scooters), pedestrians, and vehicles as well as stops related specifically to MPD’s Harbor Patrol Unit and stops of an investigative nature where a police report was written. Please refer to the Data Dictionary for field definitions.In March 2023 an indicator was added to the data which reflects stops related to traffic enforcement and/or traffic violations. This indicator will be 1 if a stop originated as a traffic stop (including both stops where only a ticket was issued as well as stops that ultimately resulted in police action such as a search or arrest), involved an arrest for a traffic violation, and/or if the reason for the stop was Response to Crash, Observed Moving Violation, Observed Equipment Violation, or Traffic Violation.Between November 2021 and February 2022 several fields pertaining to items seized during searches of a person were not available for officers to use, leading to the data showing that no objects were seized pursuant to person searches during this time period. Finally, MPD is conducting on-going data audits on all data for thorough and complete information. For more information regarding police stops, please see: https://mpdc.dc.gov/stopdataFigures are subject to change due to delayed reporting, on-going data quality audits, and data improvement processes.
DataForSEO Labs API offers three powerful keyword research algorithms and historical keyword data:
• Related Keywords from the “searches related to” element of Google SERP. • Keyword Suggestions that match the specified seed keyword with additional words before, after, or within the seed key phrase. • Keyword Ideas that fall into the same category as specified seed keywords. • Historical Search Volume with current cost-per-click, and competition values.
Based on in-market categories of Google Ads, you can get keyword ideas from the relevant Categories For Domain and discover relevant Keywords For Categories. You can also obtain Top Google Searches with AdWords and Bing Ads metrics, product categories, and Google SERP data.
You will find well-rounded ways to scout the competitors:
• Domain Whois Overview with ranking and traffic info from organic and paid search. • Ranked Keywords that any domain or URL has positions for in SERP. • SERP Competitors and the rankings they hold for the keywords you specify. • Competitors Domain with a full overview of its rankings and traffic from organic and paid search. • Domain Intersection keywords for which both specified domains rank within the same SERPs. • Subdomains for the target domain you specify along with the ranking distribution across organic and paid search. • Relevant Pages of the specified domain with rankings and traffic data. • Domain Rank Overview with ranking and traffic data from organic and paid search. • Historical Rank Overview with historical data on rankings and traffic of the specified domain from organic and paid search. • Page Intersection keywords for which the specified pages rank within the same SERP.
All DataForSEO Labs API endpoints function in the Live mode. This means you will be provided with the results in response right after sending the necessary parameters with a POST request.
The limit is 2000 API calls per minute, however, you can contact our support team if your project requires higher rates.
We offer well-rounded API documentation, GUI for API usage control, comprehensive client libraries for different programming languages, free sandbox API testing, ad hoc integration, and deployment support.
We have a pay-as-you-go pricing model. You simply add funds to your account and use them to get data. The account balance doesn't expire.
In January 2024, users who reached Reddit.com from links displayed after launching a research on search engines like Google or Yahoo generated over 4.6 billion visits. Between April 2022 and January 2024, search traffic volumes to Reddit experienced a positive trend.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
The Saint Paul Police Department is committed to transparency. Each year, traffic stop data is released to the public. It explains who is stopped, where the stops are occurring and why officers are making the stops.2023 Data: At a glanceOfficers made 22,468 traffic stops20,964 traffic stops were made for moving violations637 traffic stops were made for equipment violations862 investigative traffic stops were made5 traffic stops were the result of 911 callsTraffic stops: An important public safety tool Most traffic stops occur in areas of the city that have the highest number of 911 calls receivedMost traffic stops occur in neighborhoods experiencing the highest levels of violent crimeOfficers are most likely to issue citations for behavior that leads to crashes, injuries and deathTraffic stops help officers take illegally possessed guns off the streets—in 2023, 116 firearms were recovered during traffic stopsPrevious data was removed from the city site to provide accuracy and consistency. The new data complies with MN data practices statutes and provides transparency to the public.Note: We have identified an issue with the time-related data in our datasets. The times are displayed correctly as Central time when viewing the data in the City’s open information portal. Upon downloading or exporting the data, any date/time columns are converted to Coordinated Universal Time (UTC). This results in the times getting converted to of either 5 hours (during Daylight savings time) or 6 hours (for Standard time) ahead of our Central time.To correct this issue, determine if it is Standard time or Daylight Savings time. Central Daylight Time (CDT) runs from the second Sunday in March to the first Sunday in November. Central Standard Time (CST) is the remainder of the year. If it is CDT, subtract 5 hours from UTC time and if it is CST, then subtract 6 hours. This issue comes from the ESRI platform and is unable to be modified at this time.
Google is not only popular in its home country, but is also the dominant internet search provider in many major online markets, frequently generating between ** and ** percent of desktop search traffic. The search engine giant has a market share of over ** percent in India and accounted for the majority of the global search engine market, way ahead of other competitors such as Yahoo, Bing, Yandex, and Baidu. Google’s online dominance All roads lead to Rome, or if you are browsing the internet, all roads lead to Google. It is hard to imagine an online experience without the online behemoth, as the company offers a wide range of online products and services that all seamlessly integrate with each other. Google search and advertising are the core products of the company, accounting for the vast majority of the company revenues. When adding this up with the Chrome browser, Gmail, Google Maps, YouTube, Google’s ownership of the Android mobile operating system, and various other consumer and enterprise services, Google is basically a one-stop shop for online needs. Google anti-trust rulings However, Google’s dominance of the search market is not always welcome and is keenly watched by authorities and industry watchdogs – since 2017, the EU commission has fined Google over ***** billion euros in antitrust fines for abusing its monopoly in online advertising. In March 2019, European Commission found that Google violated antitrust regulations by imposing contractual restrictions on third-party websites in order to make them less competitive and fined the company *** billion euros.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Competitive Analysis of Industry Rivals The market for competitive analysis is expected to grow significantly over the forecast period, driven by increasing need for businesses to understand their competitive landscape. Key players in the market include BuiltWith, WooRank, SEMrush, Google, SpyFu, Owletter, SimilarWeb, Moz, SunTec Data, and TrendSource. These companies offer a range of services to help businesses track their competitors' online performance, including website traffic, social media engagement, and search engine rankings. Some of the key trends driving the growth of the market include the increasing adoption of digital marketing by businesses, the growing importance of social media, and the increasing availability of data and analytics tools. The market is segmented by type, application, and region. In terms of type, the market is divided into product analysis, traffic analytics, sales analytics, and others. In terms of application, the market is divided into SMEs and large enterprises. In terms of region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. The North American region is expected to dominate the market during the forecast period, due to the presence of a large number of established players in the market. The Asia Pacific region is expected to grow at the highest CAGR during the forecast period, due to the increasing adoption of digital marketing by businesses in the region. This report provides a comprehensive analysis of the industry rivals, encompassing their concentration, product insights, regional trends, and key industry developments.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery
The FDOT Annual Average Daily Traffic feature class provides spatial information on Annual Average Daily Traffic section breaks for the state of Florida. In addition, it provides affiliated traffic information like KFCTR, DFCTR and TFCTR among others. This dataset is maintained by the Transportation Data & Analytics office (TDA). The source spatial data for this hosted feature layer was created on: 07/12/2025.Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/shapefiles/aadt.zip
Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.
Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.
User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.
Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.
GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.
Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.
High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.
Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.
Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.
As of 2019, direct traffic accounts for the largest percentage of website traffic worldwide, with a share of 55 percent. Additionally, search traffic accounts for 29 percent of worldwide website traffic.
In April 2023, desktop computer searches represented ***** percent of the search engine market in the UK. Mobile searches followed with ***** percent, with the remaining **** percent for consoles.
The Saint Paul Police Department is committed to transparency. Each year, traffic stop data is released to the public. It explains who is stopped, where the stops are occurring and why officers are making the stops.2023 Data: At a glanceOfficers made 22,468 traffic stops20,964 traffic stops were made for moving violations637 traffic stops were made for equipment violations862 investigative traffic stops were made5 traffic stops were the result of 911 callsTraffic stops: An important public safety tool Most traffic stops occur in areas of the city that have the highest number of 911 calls receivedMost traffic stops occur in neighborhoods experiencing the highest levels of violent crimeOfficers are most likely to issue citations for behavior that leads to crashes, injuries and deathTraffic stops help officers take illegally possessed guns off the streets—in 2023, 116 firearms were recovered during traffic stopsPrevious data was removed from the city site to provide accuracy and consistency. The new data complies with MN data practices statutes and provides transparency to the public.Note: We have identified an issue with the time-related data in our datasets. The times are displayed correctly as Central time when viewing the data in the City’s open information portal. Upon downloading or exporting the data, any date/time columns are converted to Coordinated Universal Time (UTC). This results in the times getting converted to of either 5 hours (during Daylight savings time) or 6 hours (for Standard time) ahead of our Central time.To correct this issue, determine if it is Standard time or Daylight Savings time. Central Daylight Time (CDT) runs from the second Sunday in March to the first Sunday in November. Central Standard Time (CST) is the remainder of the year. If it is CDT, subtract 5 hours from UTC time and if it is CST, then subtract 6 hours. This issue comes from the ESRI platform and is unable to be modified at this time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The historical traffic API provides historical data on NSW incidents for the last three months.
Live Traffic NSW allows you to search for a particular date and location.
Please note: If you do not receive a response on your first attempt at retrieving data, try again a few minutes later. The Historical Data Search system may be temporarily idle.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was used in the Kaggle Wikipedia Web Traffic forecasting competition. It contains 145063 daily time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2017-09-10.
The original dataset contains missing values. They have been simply replaced by zeros.
As of the fourth quarter of 2019, 49 percent of Yahoo's U.S. organic search traffic originated from mobile devices. Google had the highest share of organic mobile search traffic with 61 percent, slightly ahead of DuckDuckGo with 58 percent.