39 datasets found
  1. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Honig, Joshua (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Chan-Tin, Eric
    Moran, Madeline
    Ferrell, Nathan
    Homan, Sophia
    Honig, Joshua
    Soni, Shreena
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  2. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    Belarus, Jamaica, Jordan, Latvia, Monaco, India, Uzbekistan, Saint Vincent and the Grenadines, Liechtenstein, Russian Federation
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  3. Google Analytics Sample

    • kaggle.com
    zip
    Updated Sep 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Google Analytics Sample [Dataset]. https://www.kaggle.com/bigquery/google-analytics-sample
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 19, 2019
    Dataset provided by
    Googlehttp://google.com/
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.

    Content

    The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:

    Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.

    Fork this kernel to get started.

    Acknowledgements

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:google_analytics_sample.ga_sessions_20170801

    Banner Photo by Edho Pratama from Unsplash.

    Inspiration

    What is the total number of transactions generated per device browser in July 2017?

    The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?

    What was the average number of product pageviews for users who made a purchase in July 2017?

    What was the average number of product pageviews for users who did not make a purchase in July 2017?

    What was the average total transactions per user that made a purchase in July 2017?

    What is the average amount of money spent per session in July 2017?

    What is the sequence of pages viewed?

  4. DataForSEO Labs API for keyword research and search analytics, real-time...

    • datarade.ai
    .json
    Updated Jun 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataForSEO (2021). DataForSEO Labs API for keyword research and search analytics, real-time data for all Google locations and languages [Dataset]. https://datarade.ai/data-products/dataforseo-labs-api-for-keyword-research-and-search-analytics-dataforseo
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Jun 4, 2021
    Dataset provided by
    Authors
    DataForSEO
    Area covered
    Azerbaijan, Morocco, Armenia, Cocos (Keeling) Islands, Isle of Man, Kenya, Tokelau, Korea (Democratic People's Republic of), Mauritania, Micronesia (Federated States of)
    Description

    DataForSEO Labs API offers three powerful keyword research algorithms and historical keyword data:

    • Related Keywords from the “searches related to” element of Google SERP. • Keyword Suggestions that match the specified seed keyword with additional words before, after, or within the seed key phrase. • Keyword Ideas that fall into the same category as specified seed keywords. • Historical Search Volume with current cost-per-click, and competition values.

    Based on in-market categories of Google Ads, you can get keyword ideas from the relevant Categories For Domain and discover relevant Keywords For Categories. You can also obtain Top Google Searches with AdWords and Bing Ads metrics, product categories, and Google SERP data.

    You will find well-rounded ways to scout the competitors:

    • Domain Whois Overview with ranking and traffic info from organic and paid search. • Ranked Keywords that any domain or URL has positions for in SERP. • SERP Competitors and the rankings they hold for the keywords you specify. • Competitors Domain with a full overview of its rankings and traffic from organic and paid search. • Domain Intersection keywords for which both specified domains rank within the same SERPs. • Subdomains for the target domain you specify along with the ranking distribution across organic and paid search. • Relevant Pages of the specified domain with rankings and traffic data. • Domain Rank Overview with ranking and traffic data from organic and paid search. • Historical Rank Overview with historical data on rankings and traffic of the specified domain from organic and paid search. • Page Intersection keywords for which the specified pages rank within the same SERP.

    All DataForSEO Labs API endpoints function in the Live mode. This means you will be provided with the results in response right after sending the necessary parameters with a POST request.

    The limit is 2000 API calls per minute, however, you can contact our support team if your project requires higher rates.

    We offer well-rounded API documentation, GUI for API usage control, comprehensive client libraries for different programming languages, free sandbox API testing, ad hoc integration, and deployment support.

    We have a pay-as-you-go pricing model. You simply add funds to your account and use them to get data. The account balance doesn't expire.

  5. C

    Competitive Analysis of Industry Rivals Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Competitive Analysis of Industry Rivals Report [Dataset]. https://www.archivemarketresearch.com/reports/competitive-analysis-of-industry-rivals-38541
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Competitive Analysis of Industry Rivals The market for competitive analysis is expected to grow significantly over the forecast period, driven by increasing need for businesses to understand their competitive landscape. Key players in the market include BuiltWith, WooRank, SEMrush, Google, SpyFu, Owletter, SimilarWeb, Moz, SunTec Data, and TrendSource. These companies offer a range of services to help businesses track their competitors' online performance, including website traffic, social media engagement, and search engine rankings. Some of the key trends driving the growth of the market include the increasing adoption of digital marketing by businesses, the growing importance of social media, and the increasing availability of data and analytics tools. The market is segmented by type, application, and region. In terms of type, the market is divided into product analysis, traffic analytics, sales analytics, and others. In terms of application, the market is divided into SMEs and large enterprises. In terms of region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. The North American region is expected to dominate the market during the forecast period, due to the presence of a large number of established players in the market. The Asia Pacific region is expected to grow at the highest CAGR during the forecast period, due to the increasing adoption of digital marketing by businesses in the region. This report provides a comprehensive analysis of the industry rivals, encompassing their concentration, product insights, regional trends, and key industry developments.

  6. Real Website Traffic Prediction

    • kaggle.com
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roman Gvaramadze (2025). Real Website Traffic Prediction [Dataset]. https://www.kaggle.com/datasets/madmanre/real-website-traffic-prediction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 22, 2025
    Dataset provided by
    Kaggle
    Authors
    Roman Gvaramadze
    Description

    📊 Website Performance & SEO Metrics: GSC, Yandex Metrika & Page Parsing

    This dataset contains real-world data collected from a live website, integrating insights from three powerful sources:

    • Google Search Console (GSC) — search performance metrics including clicks, impressions, and average positions.
    • Yandex Metrica — behavioral analytics like user visits, bounce rates, and session depths.
    • On-page Parsing — extracted metadata and structural elements directly from the site's pages.

    The dataset covers a specific time period, offering a rich ground for analysis, modeling, and discovery.

    🔍 What You Can Do:

    • Explore correlations between technical SEO and user behavior
    • Investigate how search visibility affects on-site interactions
    • Build predictive models to estimate the number of clicks based on other metrics
    • Perform feature engineering and multisource data blending

    Whether you're into digital marketing, data science, or SEO analytics, this dataset provides a hands-on opportunity to dive deep into web performance data and develop actionable insights.

  7. Z

    HTTPS Brute-force dataset with extended network flows

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karel Hynek (2022). HTTPS Brute-force dataset with extended network flows [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4275774
    Explore at:
    Dataset updated
    Apr 11, 2022
    Dataset provided by
    Karel Hynek
    Tomas Cejka
    Jan Luxemburk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We are publishing a dataset we created for designing a brute-force detector of attacks in HTTPS. The dataset consists of extended network flows that we captured with flow exporter Ipifixprobe. Apart from traditional fields like source and destination IP addresses and ports, each flow contains information (size, direction, inter-packet time, TCP flags) about up to the first 100 packets. The sizes of packets are taken from the transport layer (TCP, UPD); packets with zero payload (e.g., TCP ACKs) are ignored.

    We publish three files:

    flows.csv, which contains raw flow data.

    aggregated_flows.csv, which contains aggregated flows

    samples.csv, which contains samples with extracted features. This data can be used for training a machine-learning classification model.

    All IP addresses, source ports, TLS SNIs are sha256-hashed. Column CLASS is 0 for benign samples and 1 for brute-force samples.

    Brute-force data The brute-force data were generated with three popular attack tools - Ncrack, Thc-hydra, and Patator. Attacks were performed against these applications:

    WordPress
    
    Joomla 
    
    MediaWiki
    
    Ghost
    
    Grafana
    
    Discourse
    
    PhpBB
    
    OpenCart
    
    Redmine
    
    Nginx
    
    Apache
    

    The SCENARIO columns indicate which tool and application were used to generate the sample.

    Benign data Bening data consists of eight captures from a backbone network. The SCENARIO column indicates individual captures.

  8. v

    Web Analytics Market By Solution (Search Engine Tracking And Ranking, Heat...

    • verifiedmarketresearch.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH, Web Analytics Market By Solution (Search Engine Tracking And Ranking, Heat Map Analytics), By Application (Social Media Management, Display Advertising Optimization), By Vertical (Baking, Financial Services And Insurance (BFSI), Retail), And Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/web-analytics-market/
    Explore at:
    Dataset authored and provided by
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Description

    Web Analytics Market was valued at USD 6.16 Billion in 2024 and is projected to reach USD 13.6 Billion by 2032, growing at a CAGR of 18.58% from 2026 to 2032.

    Web Analytics Market Drivers

    Data-Driven Decision Making: Businesses increasingly rely on data-driven insights to optimize their online strategies. Web analytics provides valuable data on website traffic, user behavior, and conversion rates, enabling data-driven decision-making.

    E-commerce Growth: The rapid growth of e-commerce has fueled the demand for web analytics tools to track online sales, customer behavior, and marketing campaign effectiveness.

    Mobile Dominance: The increasing use of mobile devices for internet browsing has made mobile analytics a crucial aspect of web analytics. Businesses need to understand how users interact with their websites and apps on mobile devices.

    analytics tools can be complex to implement and use, requiring technical expertise.

  9. Urban Traffic Speed Dataset of Guangzhou, China

    • zenodo.org
    • explore.openaire.eu
    Updated Jan 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chen Xinyu; Chen Yixian; He Zhaocheng; Chen Xinyu; Chen Yixian; He Zhaocheng (2020). Urban Traffic Speed Dataset of Guangzhou, China [Dataset]. http://doi.org/10.5281/zenodo.1205221
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Chen Xinyu; Chen Yixian; He Zhaocheng; Chen Xinyu; Chen Yixian; He Zhaocheng
    Area covered
    China, Guangzhou
    Description

    This is an urban traffic speed dataset which consists of 214 anonymous road segments (mainly consist of urban expressways and arterials) within two months (i.e., 61 days from August 1, 2016 to September 30, 2016) at 10-minute interval, and the speed observations were collected from Guangzhou, China. In practice, it can be used to evaluate several missing data recovery, short-term traffic prediction and traffic pattern discovery methods.

    According to the spatial and temporal attributes, we can easily derive a third-order tensor as \(\mathcal{X}\in\mathbb{R}^{214\times 61\times 144}\) and its dimensions include road segment, day and time window (see the file tensor.mat). The total number of speed observations (or non-zero entries of the tensor \(\mathcal{X}\)) is \(1,855,589\). If the dataset is complete, then we have \(214\times 61\times 144=1,879,776\) observations, therefore, the original missing rate of this dataset is \(1.29\%\).

    Note that the file traffic_speed_data.csv is the original traffic speed data with four columns including road segment attribute, day attribute, time window attribute and traffic speed value. The file day_information_table.csv is a table referring to the specific date, and the file time_information_table.csv is a table expressing time window with start time and end time information.

  10. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  11. Z

    Data from: CESNET-QUIC22: A large one-month QUIC network traffic dataset...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Čejka, Tomáš (2024). CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7409923
    Explore at:
    Dataset updated
    Feb 29, 2024
    Dataset provided by
    Šiška, Pavel
    Luxemburk, Jan
    Hynek, Karel
    Lukačovič, Andrej
    Čejka, Tomáš
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please refer to the original data article for further data description: Jan Luxemburk et al. CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines, Data in Brief, 2023, 108888, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.108888. We recommend using the CESNET DataZoo python library, which facilitates the work with large network traffic datasets. More information about the DataZoo project can be found in the GitHub repository https://github.com/CESNET/cesnet-datazoo. The QUIC (Quick UDP Internet Connection) protocol has the potential to replace TLS over TCP, which is the standard choice for reliable and secure Internet communication. Due to its design that makes the inspection of QUIC handshakes challenging and its usage in HTTP/3, there is an increasing demand for research in QUIC traffic analysis. This dataset contains one month of QUIC traffic collected in an ISP backbone network, which connects 500 large institutions and serves around half a million people. The data are delivered as enriched flows that can be useful for various network monitoring tasks. The provided server names and packet-level information allow research in the encrypted traffic classification area. Moreover, included QUIC versions and user agents (smartphone, web browser, and operating system identifiers) provide information for large-scale QUIC deployment studies. Data capture The data was captured in the flow monitoring infrastructure of the CESNET2 network. The capturing was done for four weeks between 31.10.2022 and 27.11.2022. The following list provides per-week flow count, capture period, and uncompressed size:

    W-2022-44

    Uncompressed Size: 19 GB Capture Period: 31.10.2022 - 6.11.2022 Number of flows: 32.6M W-2022-45

    Uncompressed Size: 25 GB Capture Period: 7.11.2022 - 13.11.2022 Number of flows: 42.6M W-2022-46

    Uncompressed Size: 20 GB Capture Period: 14.11.2022 - 20.11.2022 Number of flows: 33.7M W-2022-47

    Uncompressed Size: 25 GB Capture Period: 21.11.2022 - 27.11.2022 Number of flows: 44.1M CESNET-QUIC22

    Uncompressed Size: 89 GB Capture Period: 31.10.2022 - 27.11.2022 Number of flows: 153M

    Data description The dataset consists of network flows describing encrypted QUIC communications. Flows were created using ipfixprobe flow exporter and are extended with packet metadata sequences, packet histograms, and with fields extracted from the QUIC Initial Packet, which is the first packet of the QUIC connection handshake. The extracted handshake fields are the Server Name Indication (SNI) domain, the used version of the QUIC protocol, and the user agent string that is available in a subset of QUIC communications. Packet Sequences Flows in the dataset are extended with sequences of packet sizes, directions, and inter-packet times. For the packet sizes, we consider payload size after transport headers (UDP headers for the QUIC case). Packet directions are encoded as ±1, +1 meaning a packet sent from client to server, and -1 a packet from server to client. Inter-packet times depend on the location of communicating hosts, their distance, and on the network conditions on the path. However, it is still possible to extract relevant information that correlates with user interactions and, for example, with the time required for an API/server/database to process the received data and generate the response to be sent in the next packet. Packet metadata sequences have a length of 30, which is the default setting of the used flow exporter. We also derive three fields from each packet sequence: its length, time duration, and the number of roundtrips. The roundtrips are counted as the number of changes in the communication direction (from packet directions data); in other words, each client request and server response pair counts as one roundtrip. Flow statistics Flows also include standard flow statistics, which represent aggregated information about the entire bidirectional flow. The fields are: the number of transmitted bytes and packets in both directions, the duration of flow, and packet histograms. Packet histograms include binned counts of packet sizes and inter-packet times of the entire flow in both directions (more information in the PHISTS plugin documentation There are eight bins with a logarithmic scale; the intervals are 0-15, 16-31, 32-63, 64-127, 128-255, 256-511, 512-1024, >1024 [ms or B]. The units are milliseconds for inter-packet times and bytes for packet sizes. Moreover, each flow has its end reason - either it was idle, reached the active timeout, or ended due to other reasons. This corresponds with the official IANA IPFIX-specified values. The FLOW_ENDREASON_OTHER field represents the forced end and lack of resources reasons. The end of flow detected reason is not considered because it is not relevant for UDP connections. Dataset structure The dataset flows are delivered in compressed CSV files. CSV files contain one flow per row; data columns are summarized in the provided list below. For each flow data file, there is a JSON file with the number of saved and seen (before sampling) flows per service and total counts of all received (observed on the CESNET2 network), service (belonging to one of the dataset's services), and saved (provided in the dataset) flows. There is also the stats-week.json file aggregating flow counts of a whole week and the stats-dataset.json file aggregating flow counts for the entire dataset. Flow counts before sampling can be used to compute sampling ratios of individual services and to resample the dataset back to the original service distribution. Moreover, various dataset statistics, such as feature distributions and value counts of QUIC versions and user agents, are provided in the dataset-statistics folder. The mapping between services and service providers is provided in the servicemap.csv file, which also includes SNI domains used for ground truth labeling. The following list describes flow data fields in CSV files:

    ID: Unique identifier SRC_IP: Source IP address DST_IP: Destination IP address DST_ASN: Destination Autonomous System number SRC_PORT: Source port DST_PORT: Destination port PROTOCOL: Transport protocol QUIC_VERSION QUIC: protocol version QUIC_SNI: Server Name Indication domain QUIC_USER_AGENT: User agent string, if available in the QUIC Initial Packet TIME_FIRST: Timestamp of the first packet in format YYYY-MM-DDTHH-MM-SS.ffffff TIME_LAST: Timestamp of the last packet in format YYYY-MM-DDTHH-MM-SS.ffffff DURATION: Duration of the flow in seconds BYTES: Number of transmitted bytes from client to server BYTES_REV: Number of transmitted bytes from server to client PACKETS: Number of packets transmitted from client to server PACKETS_REV: Number of packets transmitted from server to client PPI: Packet metadata sequence in the format: [[inter-packet times], [packet directions], [packet sizes]] PPI_LEN: Number of packets in the PPI sequence PPI_DURATION: Duration of the PPI sequence in seconds PPI_ROUNDTRIPS: Number of roundtrips in the PPI sequence PHIST_SRC_SIZES: Histogram of packet sizes from client to server PHIST_DST_SIZES: Histogram of packet sizes from server to client PHIST_SRC_IPT: Histogram of inter-packet times from client to server PHIST_DST_IPT: Histogram of inter-packet times from server to client APP: Web service label CATEGORY: Service category FLOW_ENDREASON_IDLE: Flow was terminated because it was idle FLOW_ENDREASON_ACTIVE: Flow was terminated because it reached the active timeout FLOW_ENDREASON_OTHER: Flow was terminated for other reasons

    Link to other CESNET datasets

    https://www.liberouter.org/technology-v2/tools-services-datasets/datasets/ https://github.com/CESNET/cesnet-datazoo Please cite the original data article:

    @article{CESNETQUIC22, author = {Jan Luxemburk and Karel Hynek and Tomáš Čejka and Andrej Lukačovič and Pavel Šiška}, title = {CESNET-QUIC22: a large one-month QUIC network traffic dataset from backbone lines}, journal = {Data in Brief}, pages = {108888}, year = {2023}, issn = {2352-3409}, doi = {https://doi.org/10.1016/j.dib.2023.108888}, url = {https://www.sciencedirect.com/science/article/pii/S2352340923000069} }

  12. d

    Data from: Graph Neural Networks for Road Safety Modeling: Datasets and...

    • search.dataone.org
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhinav Nippani; Dongyue Li (2024). Graph Neural Networks for Road Safety Modeling: Datasets and Evaluations for Accident Analysis [Dataset]. http://doi.org/10.7910/DVN/V71K5R
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Abhinav Nippani; Dongyue Li
    Description

    Here we deposit the datasets we have extracted for ten states in the US. In each zip file, we include each state's accident records, road networks, and network features. For further information about using the dataset and how we extracted the data, check out our GitHub repository for instructions.

  13. c

    Open Data Portal Web Analytics Dashboard

    • s.cnmilf.com
    • catalog.data.gov
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.austintexas.gov (2024). Open Data Portal Web Analytics Dashboard [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/open-data-portal-web-analytics-dashboard
    Explore at:
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    data.austintexas.gov
    Description

    An interactive dashboard that showcases the City of Austin Open Data Portal (data.austintexas.gov) web traffic and search-term performance metrics. *City of Austin Open Data Terms of Use https://data.austintexas.gov/stories/s/ranj‐cccq

  14. w

    NonTypical Jobs Projections (TAZ) - RTP 2019

    • data.wfrc.org
    Updated Jun 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2020). NonTypical Jobs Projections (TAZ) - RTP 2019 [Dataset]. https://data.wfrc.org/datasets/nontypical-jobs-projections-taz-rtp-2019
    Explore at:
    Dataset updated
    Jun 12, 2020
    Dataset authored and provided by
    Wasatch Front Regional Council
    Area covered
    Description

    Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019:This dataset now includes projections for all populated statewide traffic analysis zones (TAZs).Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below.Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org.Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services;Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

  15. d

    Manhattan, New York City, 2020 Traffic Time Series + R Code for Analysis

    • datadryad.org
    • zenodo.org
    • +1more
    zip
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jenni Shearston; Micaela Martinez; Yanelli Nunez; Markus Hilpert (2021). Manhattan, New York City, 2020 Traffic Time Series + R Code for Analysis [Dataset]. http://doi.org/10.5061/dryad.7sqv9s4s8
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    Dryad
    Authors
    Jenni Shearston; Micaela Martinez; Yanelli Nunez; Markus Hilpert
    Time period covered
    2021
    Area covered
    New York, Manhattan
    Description

    Raw (pre-processed) data was collected by automatically downloading tiles of Google Traffic maps. These images were then processed to select colors used by Google Traffic that correspond to traffic congestion level on their maps (green = free-flowing traffic, orange = some traffic delays, red = traffic congestion, dark red / maroon = severely congested traffic) and to determine the percent of the map area covered by each color. Each row in the data represents the average for a 3 hour period. Traffic time series were then analyzed to determine traffic patterns over the course of 2020 and to assess adherence to social distancing interventions put in place during the pandemic. Details about raw data collection, processing, and analysis can be found in other sources:

    Hilpert M, Shearston JA, Cole J, Chillrud SN, Martinez ME. Acquisition and analysis of crowd-sourced traffic data. arXiv. 2021:2105.12235. https://arxiv.org/abs/2105.12235

    Jenni A. She...

  16. A

    Air Traffic Management Industry Report

    • datainsightsmarket.com
    doc, ppt
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Air Traffic Management Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/air-traffic-management-industry-17680
    Explore at:
    ppt, docAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Air Traffic Management (ATM) industry is experiencing robust growth, projected to reach a market size of $10.85 billion in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 6.36% from 2025 to 2033. This expansion is fueled by several key factors. Increasing air passenger traffic globally necessitates more sophisticated and efficient ATM systems to manage the growing volume of flights safely and effectively. Furthermore, the integration of advanced technologies like Artificial Intelligence (AI), Machine Learning (ML), and automation is streamlining operations, enhancing safety protocols, and improving overall efficiency. The rising adoption of data analytics for predictive maintenance and optimized route planning further contributes to this growth. Government initiatives promoting airspace modernization and the implementation of Next Generation Air Transportation System (NextGen) technologies in various regions are also significant drivers. Competition among major players like L3Harris Technologies, Honeywell, Thales, and others is stimulating innovation and driving down costs, making ATM solutions more accessible to smaller airports and air navigation service providers. Segment-wise, the software component within ATM is witnessing particularly rapid growth, driven by the increasing demand for advanced software solutions for air traffic flow management, conflict alert systems, and data analytics platforms. Hardware segments, including radar systems and communication infrastructure, also contribute significantly, though potentially at a slightly slower growth rate than software due to higher upfront capital expenditure. Geographically, North America and Europe currently hold a significant market share, however, the Asia-Pacific region is expected to demonstrate substantial growth over the forecast period due to rapid economic development and a surge in air travel demand within countries like China and India. While regulatory hurdles and high implementation costs can pose challenges, ongoing technological advancements and increasing government investments are likely to mitigate these restraints and sustain the industry's upward trajectory. This report provides a comprehensive analysis of the Air Traffic Management (ATM) industry, projecting a robust growth trajectory fueled by technological advancements and increasing air travel demand. Covering the period from 2019 to 2033, with a focus on 2025, this in-depth study offers invaluable insights for stakeholders across the sector. The report incorporates high-search-volume keywords like "air traffic control systems," "ATM market size," "air traffic flow management," "aeronautical information management," and "air traffic management software." Recent developments include: January 2024: Easy Jet announced that they are the first airline partner of the Iris program, which is an initiative led by the European Space Agency (ESA) as well as the global communications company Viasat. Moreover, both of these organizations are now making use of the latest generation of satellite technologies to help modernize air traffic management., October 2023: Airport officials at Biju Patnaik International Airport located in Bhubaneswar, Odisha, announced that the airport received a new air traffic management automation system at the newly developed air traffic control center, which will help to improve the operational efficiency of the flight operations at the airport.. Notable trends are: Air Traffic Flow Management Segment To Showcase Remarkable Growth During the Forecast Period.

  17. w

    Global Network Traffic Analysis Solution Market Research Report: By...

    • wiseguyreports.com
    Updated Dec 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wWiseguy Research Consultants Pvt Ltd (2024). Global Network Traffic Analysis Solution Market Research Report: By Deployment Type (On-Premises, Cloud-Based, Hybrid), By Solution Type (Packet Analysis, Flow Analysis, Network Performance Monitoring, Application Performance Monitoring), By End User (Enterprise, Service Providers, Government), By Industry Vertical (Telecommunications, IT and ITES, Banking, Financial Services, and Insurance, Healthcare, Retail) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2032. [Dataset]. https://www.wiseguyreports.com/es/reports/network-traffic-analysis-solution-market
    Explore at:
    Dataset updated
    Dec 31, 2024
    Dataset authored and provided by
    wWiseguy Research Consultants Pvt Ltd
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2024
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20235.78(USD Billion)
    MARKET SIZE 20246.29(USD Billion)
    MARKET SIZE 203212.5(USD Billion)
    SEGMENTS COVEREDDeployment Type, Solution Type, End User, Industry Vertical, Regional
    COUNTRIES COVEREDNorth America, Europe, APAC, South America, MEA
    KEY MARKET DYNAMICSIncreasing cybersecurity threats, Growing demand for cloud solutions, Rising network complexity, Regulatory compliance requirements, Need for real-time analytics
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDNetScout Systems, AT and T, Fortinet, SolarWinds, Arista Networks, Splunk, IBM, Nokia, VMware, Chaos Search, Juniper Networks, Palo Alto Networks, ExtraHop Networks, Cisco Systems, McAfee
    MARKET FORECAST PERIOD2025 - 2032
    KEY MARKET OPPORTUNITIESCloud-based solutions demand, 5G deployment opportunities, IoT traffic management, Cybersecurity integration growth, AI-driven analytics solutions
    COMPOUND ANNUAL GROWTH RATE (CAGR) 8.95% (2025 - 2032)
  18. w

    Typical Jobs Projections (City Area) - RTP 2019

    • data.wfrc.org
    Updated Apr 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2019). Typical Jobs Projections (City Area) - RTP 2019 [Dataset]. https://data.wfrc.org/datasets/wfrc::typical-jobs-projections-city-area-rtp-2019/about
    Explore at:
    Dataset updated
    Apr 17, 2019
    Dataset authored and provided by
    Wasatch Front Regional Council
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019: This dataset now includes projections for all populated statewide traffic analysis zones (TAZs). Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org. Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas. These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process. As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes. Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services; Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres). ‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

  19. h

    Global AI Video Analytics Software Market Size, Growth & Revenue 2019-2030

    • htfmarketinsights.com
    pdf & excel
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HTF Market Intelligence (2024). Global AI Video Analytics Software Market Size, Growth & Revenue 2019-2030 [Dataset]. https://www.htfmarketinsights.com/report/3891533-ai-video-analytics-software-market
    Explore at:
    pdf & excelAvailable download formats
    Dataset updated
    Nov 15, 2024
    Dataset authored and provided by
    HTF Market Intelligence
    License

    https://www.htfmarketinsights.com/privacy-policyhttps://www.htfmarketinsights.com/privacy-policy

    Time period covered
    2019 - 2031
    Area covered
    Global
    Description

    Global AI Video Analytics Software is segmented by Application (Surveillance, Security, Retail Analytics, Sports Performance, Traffic Management), Type (Object Detection, Motion Detection, Facial Recognition, Behavior Analysis, Video Search and Indexing) and Geography(North America, LATAM, West Europe, Central & Eastern Europe, Northern Europe, Southern Europe, East Asia, Southeast Asia, South Asia, Central Asia, Oceania, MEA)

  20. T

    Traffic Access Points (TAPs) Report

    • promarketreports.com
    doc, pdf, ppt
    Updated May 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pro Market Reports (2025). Traffic Access Points (TAPs) Report [Dataset]. https://www.promarketreports.com/reports/traffic-access-points-taps-216847
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    May 9, 2025
    Dataset authored and provided by
    Pro Market Reports
    License

    https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Traffic Access Points (TAPs) market is experiencing robust growth, driven by the increasing demand for network visibility and security in various industries. The market, valued at approximately $1.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033. This growth is fueled by several key factors, including the rising adoption of cloud computing, the proliferation of IoT devices, and the need for advanced network monitoring capabilities to ensure efficient and secure network operations. The expansion of 5G networks and the increasing complexity of data centers also contribute significantly to the market's upward trajectory. Singlemode TAPs currently dominate the market due to their higher bandwidth capabilities, although multimode TAPs are gaining traction in specific applications. The optics segment holds a significant share, driven by the need for high-speed data transmission, while the network application segment benefits from the growing need for comprehensive network security and performance monitoring. Major players in this competitive market include Tripp Lite, Gigamon, Garland Technology, Keysight, CGS Tower Networks, and others. These companies are focusing on developing innovative TAP solutions, including those with advanced features such as packet brokering and network monitoring tools. Geographic distribution shows North America and Europe as currently leading regions, with significant growth potential anticipated in the Asia-Pacific region driven by increasing digitalization and infrastructure development. While the market faces challenges such as the high cost of advanced TAP solutions and the need for specialized technical expertise, the overall growth outlook remains positive, indicating significant opportunities for market participants throughout the forecast period. This continued expansion underscores the critical role of TAPs in modern network infrastructure. This comprehensive report provides an in-depth analysis of the global Traffic Access Points (TAPs) market, projected to reach a value exceeding $2 billion by 2028. We delve into market segmentation, key players, emerging trends, and growth catalysts, offering valuable insights for businesses operating in this dynamic sector. High-search-volume keywords such as "network TAPs," "optical TAPs," "multimode TAPs," "singlemode TAPs," and "network monitoring TAPs" are strategically integrated throughout the report for enhanced searchability.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Honig, Joshua (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410

Network Traffic Analysis: Data and Code

Explore at:
Dataset updated
Jun 12, 2024
Dataset provided by
Chan-Tin, Eric
Moran, Madeline
Ferrell, Nathan
Homan, Sophia
Honig, Joshua
Soni, Shreena
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Code:

Packet_Features_Generator.py & Features.py

To run this code:

pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

Purpose:

Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

Uses Features.py to calcualte the features.

startMachineLearning.sh & machineLearning.py

To run this code:

bash startMachineLearning.sh

This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

Options (to be edited within this file):

--evaluate-only to test 5 fold cross validation accuracy

--test-scaling-normalization to test 6 different combinations of scalers and normalizers

Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

Purpose:

Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

Data

Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

First number is a classification number to denote what website, query, or vr action is taking place.

The remaining numbers in each line denote:

The size of a packet,

and the direction it is traveling.

negative numbers denote incoming packets

positive numbers denote outgoing packets

Figure 4 Data

This data uses specific lines from the Virtual Reality.txt file.

The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

The .xlsx and .csv file are identical

Each file includes (from right to left):

The origional packet data,

each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

Search
Clear search
Close search
Google apps
Main menu